最新重庆中考数学几何证明题--(专题练习+答案详解)
2021年重庆中考数学第26题几何证明专题训练

2021年重庆中考数学第26题几何证明专题训练1.如图1,在Rt△ACB中,AC=BC,过B点作BD⊥CD于D点,AB交CD于E.(1)如图1,若AC=6,tan∠ACD=2,求DE的长;(2)如图2,若CE=2BD,连接AD,在AD上找一点F,使CF=DF,在FD上取一点G,使∠EGF=∠CFG,求证:AF=EG;(3)如图3,D为线段BC上方一点,且∠BDC=90°,AC=6,连接AD,将AD绕A点逆时针旋转90°,D点对应点为E点,H为DE中点,求当AH有最小值时,直接写出△ACH 的面积.2.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=√26,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2√2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.3.如图,在△ABC和△DEF中,AB=AC,DE=DF,∠BAC=∠EDF=120°,线段BC与EF相交于点O.(1)若点O恰好是线段BC与线段EF的中点.①如图1,当点D在线段BC上,A、F、O、E四点在同一条直线上时,已知BC=4√3,DE=√3,求AD的长;②如图2,连接AD,CF相交于点G,连接OG,BG,当BG⊥OG时,求证:BG=√3CG.2(2)若点D与点A重合,CF//AB,H、K分别为OC、AF的中点,连接HK,直接写出HKAE−OF 的值.AC,连接4.在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE=12 EC,点G是EC中点,将△AEF绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=√3AB+GC;2GC最大时,直接写出直线AB,(3)如图3,若AB=3,在△AEF旋转过程中,当GB−12AC,BG所围成三角形的面积.5.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.6.如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB//CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=6√2,AD=4√2,tan∠ABC=2时,求CQ+√10BQ的最小值.107.已知△ABC中,∠ACB=90°,AC=2BC.(1)如图①,若AB=BD,AB⊥BD,求证:CD=√2AB;(2)如图②,若AB=AD,AB⊥AD,BC=1,求CD的长;(3)如图③,若AD=BD,AD⊥BD,AB=2√5,求CD的长.8.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3√2,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.9.在平行四边形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于E,过点C作CF⊥CD交AE于点F,连接OF.以OF为直角边作Rt△OFG,其中∠OFG=90°,连接AG.(1)如图1,若∠EAB=30°,OA=2√3,AB=6,则求CE的长度;(2)如图2,若CF=CD,∠FGO=45°,求证:EC=√2AG+2EF;(3)如图3,动点P从点A运动到点D(不与点A、点D重合),连接FP,过点P作FP的垂线,又过点D作AD的垂线交FP的垂线于点Q,点A′是点A关于FP的对称点,连接A′Q.若AE=2EC,FG=2OF,EF=1,AG=√5,则在动点P的运动过程中,直接写出A′Q的最小值.10.在正方形ABCD中,E为边CD上一点(不与点C、D重合),垂直于BE的一条直线MN分别交BC、BE、AD于点M、P、N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求线段PM的长度;(2)如图2,当点M在边BC上时,判断线段AN、MB、EC之间的数量关系,并说明理由;(3)如图3,当垂足P在正方形ABCD的对角线AC上运动时,连接NB,将△BPN沿着BN翻折,点P落在点P′处,AB的中点为Q,直接写出P′Q的最小值.11.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.12. 如图,在菱形ABCD 中,∠ABC =60°,分别过点B 作BC 的垂线,过点D 作CD 的垂线,两垂线相交于点E .(1)如图1,若AD =4,连接AE ,BD ,求三角形ADE 的面积;(2)如图2,点F 是DE 延长线上的一点,点G 为EB 延长线上的一点,且EF =BG ,连接BF ,DG ,DG 交FB 的延长线于点H ,连接AH ,试猜想线段AH ,BH ,HD 的数量关系并证明你的结论;(3)如图3,在(2)的条件下,在AH 上取得一点P ,使得HP =3AP ,已知Q 为直线ED 上一点,连接BQ ,连接QP ,当BQ +QP 最小时,直接写出S △QDC S 菱形ABCD 的值.13. 如图,已知△ABC 中,∠ABC =45°,CD 是边AB 上的高线,E 是AC 上一点,连接BE ,交CD 于点F .(1)如图1,若∠ABE =15°,BC =√3+1,求DF 的长;(2)如图2,若BF =AC ,过点D 作DG ⊥BE 于点G ,求证:BE =CE +2DG ;(3)如图3,若R 为射线BA 上的一个动点,以BR 为斜边向外作等腰直角△BRH ,M 为RH 的中点.在(2)的条件下,将△CEF 绕点C 旋转,得到△CE′F′,E ,F 的对应点分别为E′,F′,直线MF′与直线AB 交于点P ,tan∠ACD =13,直接写出当MF′取最小值时RMPF′的值.14. 如图△ABC 为等腰直角三角形,∠A =90°,D 、E 分别为AB 、AC 边上的点,连接DE ,以DE 为直角边向上作等腰直角三角形DEF ,连接BE 、BF .(1)如图1,当CE =AD 时,求证:BF ⊥BD ;(2)如图2,H 为BE 的中点,过点D 作DG ⊥BC 于点G ,连接GH.求证:BF =2HG ;(3)如图3,BE 与DF 交于点R ,延长BF 交AC 于点P ,∠APB 的角平分线交BE 于点Q.若点E 为AC 上靠近点A 的三等分点,且tan∠AED =67,请直接写出BR QR 的值.15. 如图,△ABC 是等边三角形,△BDE 是顶角为120°的等腰三角形,BD =DE ,连接CD ,AE .(1)如图1,连接AD ,若∠ABE =60°,AB =BE =√3,求CD 的长;(2)如图2,若点F 是AE 的中点,连接CF ,DF.求证:CD =2DF ;(3)如图3,在(2)的条件下,若AB =2√3,BD =2,将△BDE 绕点B 旋转,点H 是△AFC 内部的一点,当DF 最大时,请直接写出2HA +HF +√5HC 的最小值的平方.16.如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE=√2CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP 长度的最大值.17.如图,已知△ABC为等腰直角三角形,AB=AC且∠CAB=90°,E为BC上一点,且BE=AC,过E作EF⊥BC且EF=EC,连接CF.(1)如图1,已知AB=2,连接AE、AF,求△AEF的面积;(2)如图2所示,D为AB上一点,连接DB,作∠DBH=45°交EF于H点,求证:CD=HF+√2CE;(3)已知△ABC面积为8+4√2,D为射线AC上一点,作∠DBH=45°,交射线EF于H,连接DH,点M为DH的中点,当CM有最小值时,请直接写出△CMD的面积.18.如图,Rt△ABC中,∠ABC=90°,AB=BC,点E是边BC上的一个动点,点D是射线AC上的一个动点;连接DE,以DE为斜边,在DE右侧作等腰Rt△DFE,再过点D 作DH⊥BC,交射线BC于点H.(1)如图1,若点F恰好落在线段AE上,且∠DEH=60°,CD=3√2,求出DF的长;(2)如图2,若点D在AC延长线上,此时,过F作FG⊥BC于点G,FG与AC边的交点记为M,当AE=DE时,求证:FM+√2MD=AB;(3)如图3,若AB=4√10,点D在AC延长线上运动,点E也随之运动,且始终满足AE=DE,作点E关于DF的对称点E′,连接CF、FE′、DE′,当CF取得最小值时,请直接写出此时四边形CFE′D的面积.19.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A顺时针旋转90°,得到AE,连接DE.(1)如图1所示,若BC=4,在D点运动过程中,当tan∠BDE=8时,求线段CD的长;11(2)如图2所示,点F是线段DE的中点,连接BF并延长交CA延长线于点M,连接DM,交AB于点N,连接CF,AF,当点N在线段CF上时,求证:AD+BF=CF;(3)如图3,若AB=2√3,将△ABC绕点A顺时针旋转得△AB′C′,连接CC′,P为线段CC′上一点,且CC′=√3PC′,连接BP,将BP绕点B顺时针旋转60°得到BQ,连接PQ,K 为PQ的中点,连接CK,请直接写出线段CK的最大值.20.在△ABC中,AC=BC,D为△ABC外一点,连接CD.(1)如图1,若∠ACB=60°,CD//AB,连接BD交AC于点E,且CD=2AB=2,求S△BCE.EC,(2)如图2,CE=CD,∠ECB=∠DCA,ED交AB于点F,FG垂直平分EC,且FG=12BF.M,N分别为AF,CD中点,连接MN,求证:MN=12(3)如图3,若∠ACB=90°,CD//AB,将AD绕着A点顺时针旋转60°得到AD′,连接DD′,BD′,且AC=√6,求BD′的最小值.21.已知,等腰直角△ABC中,AC=BC,∠ACB=90°,D为AB边上的一点,连接CD,以CD为斜边向右侧作直角△CDE,连接AE并延长交BC的延长线于点F.(1)如图1,当∠CDE=30°,AD=1,BD=3时,求线段DE的长;(2)如图2,当CE=DE时,求证:点E为线段AF的中点;(3)如图3,当点D与点A重合,AB=4时,过E作EG⊥BA交直线BA于点G,EH⊥BC交直线BC于点H,连接GH,求GH长度的最大值.22.如图,在锐角△ABC中,∠ACB=45°,点D是边BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接DE交AC于点F.(1)如图1,若∠ADC=60°,求证:DF=AF+EF;(2)如图2,在点D运动的过程中,当∠ADC是锐角时,点M在线段DC上,且AM=AD,连接ME,猜想线段ME,MD,AC之间存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,当∠ADC是钝角时,点N是线段DE上一动点,连接CN,若AF=m,请直接用含m的代数式表示2CN+√2NE的最小值.CF=3523.如图1,在Rt△ABC与Rt△ABD中,∠ACB=∠ADB=90°,∠BAC=60°,CE⊥AB交AB于点E,AE=AD,点F在线段BD上,连接AF.(1)若AC=4,求线段BD的长;(2)如图2,若∠DAF=60°,点M为线段BF的中点,连接CM,证明:2CM=BF+√3AC;(3)如图3,在(2)的条件下,将△ADF绕点A旋转得△AD′F′,连接BF′,点M为线段BF′的中点,连接D′M,当D′M长度取最小时,在线段AB上有一动点N,连接MN,将线段MN绕点M逆时针旋转60°至MN′,连接D′N′,若AC=4,请直接写出(2MN′−√2D′N′)的最小值.。
重庆中考24题几何证明专题训练

重庆中考24题几何证明专题训练1、如图,△ABC 中,∠ABC=45°,过点C 作CD ⊥AB 于点D ,过点B 作BM ⊥AC 于点M ,BM 交CD 于点E ,且点E 为CD 的中点,连接MD ,过点D 作ND ⊥MD 于点D ,DN 交BM 于点N . 1)若BC= ,求△BDE 的周长; 2)求证:NE -ME=CM .2、如图,正方形ABCD 的边长为6, 点E 在边AB 上,连接ED ,过点D 作FD ⊥DE 与BC 的延长线相交于点F , 连接EF 与边CD 相交于点G 、与对角线BD 相交于点H . (1)若BD =BF ,求BE 的长;(2)若∠2=2∠1,求证:HF =HE +HD .3、如图,△ABC 中,∠BAC=90°,AB=AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E.在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC.(1)求证:BE=CF ;(2)在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME.求证:①ME ⊥BC ;②DE=DN.4、在正方形ABCD 中,E 为CD 上一点,连接AE ,过点C 作CF⊥AE 的延长线于点F ,连接DF ,过点D 作DG⊥DF 交AE 于点G . (1)求证:△AGD≌△CFD ;(2)若E 为CD 的中点,求证:CF+EF=GE .5、如图,在正方形ABCD 中,点E 是AB 中点,点F 是AD 上一点,且DE =CF ,ED 、FC 交于点G ,连接BG ,BH 平分∠GBC 交FC 于H ,连接DH 。
(1)若DE =10,求线段AB 的长;(2)求证:DE -HG =EG 。
6.如图,矩形ABCD 中,点E 是∠ABC 的平分线上一点,且AE ⊥CE 于点E ,连接ED ,BE 与边AD 边相交于点F 。
(1)求证:EF=ED ;(2)若AB=3,BC=5,求四边形BCDE 的面积。
2020重庆中考数学专题训练十三几何证明平行四边形三

专题训练十二-------几何证明之平行四边形三(线段二倍关系)1. 已知ABCD ,连接BD ,过B 作BE CD ⊥于E ,AB BE =。
(1)如图1,若=5AB ,=3CE ,求BD 的长; (2)如图2,将线段BD 绕着点B 逆时针旋转90°得到线段BF ,连接EF ,过B 作BG EF ⊥交AD 于H ,求证:2.EF BH =图1 图22.已知平行四边形ABCD,过点A作BC的垂线,垂足为点E,且满足AE=EC,过点C作AB 的垂线,垂足为点F,交AE于点G,,连接BG.(1)如图1,若4AC CD=,求BG的长度;(2)如图2,取AC上一点Q,连接EQ,在△QEC内取一点,连接QH,EH,过点H作AC的垂线,垂足为点P,若QH=EH,∠QEH=45°,求证:AQ=2HP.3.如图,在ABCD中,连接AC,AB=AC,点E为BC一点,连接AE,且BE AE=,延长AE至F,使AF CE=,连接BF.(1)如图1,若0120BAC∠=,AC=求EF的长;(2)如图2,若BF=2CE,连接CF并延长,交AB于点G,求证:2.CF FG=图1 图2证明:如图,过A作AH∥BC,∵EB=EA,AB=AC,∴∠BAE=∠ABC,∠ABC=∠ACB,∴∠BAE=∠ACB,∵AF EC=,在△ABF和△CAE中AB ACBAE ACBAF EC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△CAE(SAS),∴BF=AE,∵BF=2CE,∴AE=2CE=2AF,∴AF=FE,∵AH∥BC,∴∠G=∠ECF,∠GAF=∠CEF,B在△AGE和△DCE中GAF CEFG ECF AF FE∠∠∠∠⎧⎪⎨⎪⎩===∴△AHF≌△ECF(AAS),∴HF=CF,AH=CE=AF,∴△AHF为等腰三角形,∴∠HAG=∠ABC=∠BAE,∴G为HF的中点,∴CF=HF=2FG,4. 如图,在ABCD中,连接AC,BC=AC,E为线段BC上一点,,且BE=AE,过B作BF⊥AC于点F,取BC的中点G,连接AG.(1)如图1,若BF=AF=AG的长;(2)如图2,若∠BA,E=∠CAG,求证:AC=2AG.B图1 图2(2)证法一:(2)证法二:(2)证法三:5.如图,在四边形ABCD中,线段DE与四边形的边BC交于点E,对角线相交于点O,AG、CF分别垂直DE于点G和点F,连接OG.(1)如图1,若四边形ABCD为正方形,BC=6,BE=2EC,求DG的长;(2)如图2,若四边形ABCD为平行四边形,DE平分∠ADC,其它条件不变,求证:BE=2OG.解:(1)如图1,∵四边形ABCD为正方形,∴AD=CD=BC=6,∠ADC=∠BCD=90°∵BE=2EC,∴EC=2∴DE ===2∵AG、CF分别垂直DE于点G和点F,∴∠AGD=∠CFD=90°∵∠DAG+∠ADG=∠CDE+∠ADG=90°∴∠DAG=∠CDE∴△ADG∽△DEC∴=,即=∴DG =.(2)证明:如图2,延长AB、DE交于点H,∵DE平分∠ADC,∴∠ADH=∠CDE∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,OB=OD∴∠CED=∠ADH,∠H=∠CDE∴∠H=∠ADH=∠CDE=∠CED=∠BEH∴BE=BH,AH=AD,∵AG⊥DH,∴DG=GH,∴OG =BH∴OG =BE,即BE=2OG.6.如图,在平行四边形ABCD中,CE⊥BC交AD于点E,连接BE,点F是BE上一点,连接CF.(1)如图1,若∠ECD=30°,BC=BF=4,DC=2,求EF的长;(2)如图2,若BC=EC,过点E作EM⊥CF,交CF延长线于点M,延长ME、CD相交于点G,连接BG交CM于点N,若CM=MG,求证:EG=2MN.(1)解:如图1中,∵四边形ABCD是平行四边形,∴AD∥BC,∵EC⊥BC,∴AD⊥EC,∴∠BCE=∠CED=90°,∵∠ECD=30°,CD=2,∴CE =,在Rt△BCE中,BE ==,∵BC=CF=4,∴EF=BE﹣BF =﹣4.(2)证法一:如图2中,延长GM到H,使得MH=MG,连接CH,BH.∵CM=MG=MH,CM⊥GH,∴∠HCG=90°,CH=CG,∴∠HCG=∠BCE,∴∠BCH=∠ECG,∵CB=CE,∴△BCH≌△ECG(SAS),∴BH=EG,∠CHB=∠CGE=45°,∵∠CHG=45°,∴∠BHG=90°,∴∠BHG=∠CMG=90°,∴MN∥BH,∵HM=HG,∴BN=NG,∴BH=2MN,∴EG=2MN.证法二:7.如图所示,在ABCD中,AC BC⊥,点E是CD的中点,连接AE,作AF AE⊥交BC于点F.(1)若2AC=,BC,求AE的长;(2)点G为BC延长线上一点,且AG CG BC+=,求证:2EG AF=.(1)解:AC BC⊥,90ACB∴∠=︒,2AC =,BC=,3AB∴=,四边形ABCD是平行四边形,3CD AB∴==,//AD BCCA AD∴⊥,90CAD∴∠=︒,CE ED=,1322AE CD∴==.(2)证法一:如答图1,延长AE交BC的延长线于M.//AD CM,DAE M∴∠=∠,AED MEC∠=∠,DE EC=,第25题图DAE MCE ∴∆≅∆, AE EM CM AD ∴==,,又AD BC =,AM CD AB ∴==, BC CM ∴=,又AG CG BC +=, AG GM ∴=, GE AM ∴⊥,090,GEM ∴∠=又AF AE ⊥,090,FAE ∴∠=,FAE GEM ∴∠=∠ //EG AF ∴AE EM =,FG GM ∴=EG ∴是AFM ∆的中位线, 2EG AF ∴=.证法二:如答图2,延长GE 交AD 的延长线于M .//,AD BCD ECG ∴∠=∠,又MED CEG ∠=∠,DE EC =,GEC MED ∴∆≅∆,,CG MD ∴= 又AG CG BC +=AD BC =,AG AM ∴=, AE GM ∴⊥,AF AE ∴⊥ //MG AF ∴又//AM FG∴四边形AFGM 是平行四边形,2AF GM GE ∴==,8.已知如图,平行四边形ABCD 中,连接BD ,点E 、F 是BC 上两点,且BE CF =,过点E 作EG DF ⊥,交DC 于点G ,交DF 于点.H(1) 如图1,若,2DH EH DE HG ===,求DG 的长;(2) 如图2,若090,BD C ∠=D B D C =,过点F 作FM DC ⊥于点M ,连接AG ,求证:2.DG CM =AA图1 图2A答图2BD9.在ABCD中,BH平分∠ABC交AD于H,交AC于E,过点A作AG⊥BC于点G,过点E作FE⊥EC交BC于F,连接GE.(1)如图1,若G为BF中点, BG=5, AG=12,2BC AH=,求FC长度;(2)如图2,若AG=EG,∠BAE+∠EFC=180°,求证:HD=2AG.B图1 图210.如图,ABCD中,连接AC,090,BACAB AC∠==,点E是边BC上一点,(1)如图1,若4,AB CE==BE;(2)如图2,过点A作AF AE⊥且=AF AE,连接CF,过点A作AG CF⊥交BC于点H,求证:2.CF AH=DD图1 图211.如图,ABCD的对角线AC、BD相交于点O,AC=BC.(1)如图1,过点B作BE⊥AC于点E,若AC=8,BE=6,求OE的长;(2)如图2,若∠BDC=045,过点C作CF⊥CD交BD于F,过B作BG⊥BC,且BG=BC,.连接AG、DG,求证:AG=2OF.B图1 图2HB12. 已知,在▱ABCD中,AB⊥AC,点E是AC上一点,连换BE,延长BE交AD于点F,BE=CE.(1)如图1,当∠AEB=60°,BF=2时,求▱ABCD的面积;(2)如图2,点G是过点E且与BF垂直的直线上一点,连接GF,GC,FC,当GF=GC时,求证:AB=2EG.(1)解:如图1中,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠ECB,∠AFE=∠EBC,∵EB=EC,∴∠EBC=∠ECB,∴∠EAF=∠EF A,∴EA=EF,∴AC=BF=2,∵∠AEB=∠EBC+∠ECB=60°,∴∠ACB=∠ECB=30°,∴AB=AC•tan30°=,∴S 平行四边形ABCD =AB •AC=.(2)证明:如图2中,作GH ⊥CF 于H .∵CA =BF ,∠ACB =∠FBC =30°,BC =CB , ∴△ACB ≌△FBC (SAS ),∴∠BFC =∠BAC =90°,AB =CF , ∵GE ⊥BF ,GH ⊥CF ,∴∠GEF =∠EFH =∠GHF =90°, ∴四边形EFHG 是矩形, ∴EG =FH ,∵GE =GC ,GH ⊥CF , ∴FH =HC , ∴CF =2EG , ∴AB =2EG .11.如图,ABCD 的对角线AC 、BD 相交于点O ,AC=BC.(1)如图1,过点B 作BE ⊥AC 于点E ,若AC=8,BE=6,求OE 的长;(2)如图2,若∠BDC=045,过点C 作CF ⊥CD 交BD 于F ,过B 作BG ⊥BC ,且BG=BC,. 连接AG 、DG ,求证:AG=2OF.图1 图2HB12. 已知,在▱ABCD 中,AB ⊥AC ,点E 是AC 上一点,连换BE ,延长BE 交AD 于点F ,BE =CE .11 (1)如图1,当∠AEB =60°,BF =2时,求▱ABCD 的面积;(2)如图2,点G 是过点E 且与BF 垂直的直线上一点,连接GF ,GC ,FC ,当GF =GC 时,求证:AB =2EG .(1)解:如图1中,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠EAF =∠ECB ,∠AFE =∠EBC , ∵EB =EC ,∴∠EBC =∠ECB , ∴∠EAF =∠EF A , ∴EA =EF , ∴AC =BF =2,∵∠AEB =∠EBC +∠ECB =60°, ∴∠ACB =∠ECB =30°, ∴AB =AC •tan30°=,∴S 平行四边形ABCD =AB •AC=.(2)证明:如图2中,作GH ⊥CF 于H .∵CA =BF ,∠ACB =∠FBC =30°,BC =CB , ∴△ACB ≌△FBC (SAS ),∴∠BFC =∠BAC =90°,AB =CF , ∵GE ⊥BF ,GH ⊥CF ,∴∠GEF =∠EFH =∠GHF =90°,∴四边形EFHG 是矩形, ∴EG =FH ,∵GE =GC ,GH ⊥CF , ∴FH =HC , ∴CF =2EG , ∴AB =2EG .。
重庆中考数学几何专题训练及答案(一)

重庆中考数学几何专题训练(一)及答案1. (2019年重庆南开初三(下)半期考试题)在平行四边形ABCD 中,E 为AD 上一点,连接BE 、CE ,满足BC=BE=CE 。
(1)如图1,已知∠ABC=90°,BC=4,求AC 的长;(2)如图2,过点A 作AF ⊥BE 于点F,交CE 于点G ,连接BG ,在BG 上取点M ,使得∠AMG=60°,延长AM 交BC 于点N,求证:CN=2AE.图1 图2(1)解:ΘBC=BE=CE,∴o EBC 60=∠Θ ∠ABC=90° ∴ o ABE 30=∠Θ平行四边形ABCD,∴AD//BC ,∴ ∠EAB=90°∴AB=BE 23=3223=BC ∴AC=72281216==+(2)过点E 作EK//AN ,交BC 于点KΘBC=BE=CE,∴o BEC EBC 60=∠=∠Θ平行四边形ABCD ,∴AD//BC ,∴ 四边形 ANKE 是平行四边形∴o EBC BEA 60=∠=∠,o AEC 120=∠Θ∠AMG=60°,∴o o o o MGE MAE 180********=--=∠+∠∴ANB EAM CGB ∠=∠=∠,ΘEK//AN ,∴CEK EKB ANB CGB o ∠+=∠=∠=∠60又ΘEBG EBG BEC CGB o ∠+=∠+∠=∠60,∴CEK EBG =∠ΘBC=BE=CE,∴o BEG BCE 60=∠=∠,∴EKC BGE ∆≅∆(ASA )∴CK=EG 又Θo BEC BEA 60=∠=∠,AF ⊥BE ,∴AE=EG=CKΘ四边形 ANKE 是平行四边形,∴AE=NK=CK ,∴CN=2AE2. (2019年西南大学附属中学校初三下月考试题)在菱形ABCD 中,∠ABC=60°,BD 为菱形的一条对角线.(1) 如图1,过A 作AE ⊥BC 于点E,交BD 于点F,若EF=2,求菱形ABCD 的面积;(2)如图2,M 为菱形ABCD 外一点,过A 作AN ⊥BM 交BM 的延长线于点M,连接AM ,DM ,AG ⊥DM 于点G,且∠AMN=∠AMD,求证:(图1)F E D C A (图2)GN M D C B A(2)解答:因为∠AMN=∠AMD ,AN ⊥BM ,AG ⊥DM ∴AN=AG ,∠ANB=∠AGD=90︒,MN =MG 因为菱形ABCD∴AB=AD∴ABN ≅ADG (HL ) ∴D G=BN,∠ABM =∠ADM ∴∠BMD=∠BAD=180︒-∠ABC=120︒∴∠AMN=∠AMG=12∠DMN=30︒ ∴MN=MG=123AM ∴DM=DG+MG=BN+MG=BM+MN+MG=BM+3AM 即:DM=BM+3AM (1)解答:因为在菱形ABCD 中,∠ABC=60°,BD 为菱形的一条对角线 所以AB=BC ,∠ABD=∠CBD=30︒, 又因为AE ⊥BC ,所以∠AEB=90︒,∠BAE=30︒ 所以AF=BF=2EF=4,AE=6,所以BC=AB=43, 所以菱形ABCD 的面积是24 3.3.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角形内部作Rt△ABE,且∠AEB=90°,连接EO.求证:(1)∠OAE=∠OBE; (2)AE=BE+2OE.(1)证明:因为O为等腰Rt∆ABC斜边AC的中点, 所以∠ABO=∠BAO=45︒所以∠OAE=45︒-∠BAE因为AB为斜边作Rt∆ABE,所以∠ABE=90︒所以∠OBE=90︒-∠OBA-∠BAE=45︒-∠BAE即∠OAE=∠OBE(2)证明:在AE上取AF=BE,连接OF因为O为等腰Rt∆ABC斜边AC的中点, ∴∠ABO=∠BAO=45︒,∠AOB=90︒,∴AO=BO 因为∠OAE=∠OBE,∴∆AFO≅∆BEO(SAS)∴∠AOF=∠BOE,OF=OE∴∠EOF=∠AOB=90︒,∴EF=2OE因为AE=AF+EF∴AE=BE+2OEC A。
2023年中考数学常见几何模型全归纳之模型 全等模型-半角模型(解析版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,30A ∴∠=︒,90E ∠=︒,100DC DM ==DCM ∴是等边三角形,60DCM ∴∠=︒,90BCM ∴∠=︒,在Rt BCE 中,100BC =,18030ECB BCD ∠=︒-∠=︒,1502EB BC ==,EC ==100DE DC EC ∴=+=+Rt ADE △中,2200AD DE ==+150AE ==, ∴200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN ∴+=+=+Rt CMB △中,BM =)50501EN EB BN EC =+=+=ECN ∴是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB ∴∠=∠-∠=∠-∠-∠=︒=∠由阅读材料可得))100501501MN DM BN =+=+=,∴路线M N →的长比路线M A N →→的长少)250501200370+=+≈m .答案:370. 【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系. ADE ,证明∠AEF EAF ='E AF ∠,先利用圆内接四边形的性质证明为等腰直角三角形,等量代换即得结论.重合,点ADE=180°知,BAD,∠∠BAF=∠EAF=E∠,∠EF=E F'∠ABE绕点腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明) ②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,AN AF ∴=,90NAF ∠=︒,45EAF ∠=︒,45NAE ∴∠=︒,NAE FAE ∴∠=∠,AE AE =,()AFE ANE SAS ∴∆≅∆,EF EN ∴=,BE BN NE DF EF ∴=+=+.即BE EF DF =+.故答案为:BE EF DF =+.正方形Rt EFC中,2CF CE+解得:2x=.2DF∴=,226AF AD DF=+=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.又AH=AN,AB=AD,∠∠ABH∠∠ADN(SAS),∠DN=BH,∠ABH=∠ADN,∠∠B=60°,且∠EAF=60°.∠∠BAD=120°,∠∠DAF+∠BAE=∠EAF=60°,∠∠BAG+∠BAE=∠EAF,即∠MAH=∠MAN,而AH=AN,AM=AM,∠∠AMH∠∠AMN(SAS),∠MN=MH,∠AMN=∠AMH,∠菱形ABCD,∠B=60°,∠∠ABD=∠ADB=30°,∠∠HBD=∠ABH+∠ABD=60°,∠∠DAF=15°,∠EAF=60°,∠∠ADM中,∠DAM=∠AMD=75°,∠∠AMN=∠AMH=75°,∠∠HMB=180°-∠AMN-∠AMH=30°,∠∠BHM=90°,∠BH2+MH2=BM2,∠DN2+MN2=BM2.【点睛】本题是四边形综合题,主要考查了旋转的性质、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE∠∠ADG,再证明△AEF∠∠AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.证得ABE ADG ≌,得出证得AEF AGF ≌,之间的数量关系;(2)同(1)②即可得出,证得ABD ACM ≌,同(证得AEF AGF ≌,在Rt ECM 中,由勾股定理可解得90BAD B D =∠=∠=︒,ABCD 是矩形,又∠AB AD ,∠矩形CD 至点G ,使得DG=BE 90ADG ADF =∠=︒,∠∠,∠ABE ADG ≌,DG ,BAE DAG ∠=∠1BAD ∠,∠BAE DAF ∠+∠∠AEF AGF ≌,∠EF DG EF =∠BE FD +在ABC 中,B ACB ∠=∠∠ABD ACM ≌,同(1)②的证明方法得DE ME =, 2BD =,22+BC AB AC ==DE ME =x -,Rt ECM 中,2EM ,2(2)(32+【点睛】本题考查了特殊的平行四边形的判定、全等三角形的性质和判定及勾股定理的应用,熟练应用相关定理和性质是解决本题的关键.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.AB AD =∠ADC =∠B =90°∠则DAG ∠∠F AG =∠F AD理由:AB AD==∠BAE DAG∠=︒,BAD90∠+∠=ADC B在∠AFE和∠AFG∴=EF FG()3将∠ACE∠=BAC又∠∠F AB=∠则在∠ADF∠∠ADF∠∠∠∠C+∠ABD4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时,(如图1),易证BM+DN=MN.(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想. 【答案】(1)BM DN MN +=,理由见解析;(2)DN BMMN -=,理由见解析【分析】(1)把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,然后证明得到AEM ANM ∆∆≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM ∆∆≌,得DQ BM =,再证明AMN AQN ∆∆≌,得MN QN =,可得结论; (1)解:BM DN MN +=.理由如下:如图2,把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,90ABE ADN ∴∠=∠=︒,AE AN =,BE DN =,180ABE ABC ∴∠+∠=︒,∴点E ,点B ,点C 三点共线,90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM ∆与ANM ∆中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ANM ∴∆∆≌(SAS ),ME MN ∴=, ME BE BM DN BM =+=+,DN BM MN ∴+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ ∆与ABM ∆中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ABM ∴∆∆≌(SAS ),DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN ∆和AQN ∆中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN AQN ∴∆∆≌(SAS ),MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90︒,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △∠ANM ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ△∠ABM ,同(2)的方法,即可得出结论.(1)证明:如图1,∠把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=,BM DN =,2MN BM ∴=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=. (3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABM中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ∴∠()ABM SAS ,DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN 和AQN △中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN ∴∠()AQN SAS ,MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得∠ABE ∠∠ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD ∠=︒,50EAF ∠=︒,可证得∠AEF ∠∠AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得∠ABE ∠∠ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ∠∠=,可证得∠AEF ∠∠AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∠90ABC ADC∠=∠=︒,∠∠ADG=∠ABC=90°,∠AB=AD,∠∠ABE∠∠ADG,∠AE=AG,∠BAE=∠DAG,∠100BAD∠=︒,50EAF∠=︒,∠∠BAE+∠DAF=50°,∠∠F AG=∠EAF=50°,∠AF=AF,∠∠AEF∠∠AGF,∠EF=FG,∠FG=DG+DF,∠EF=DG+DF=BE+DF;(2)EF=BE+DF,理由如下:如图,延长CD至点H,使DH=BE,连接AH,∠180ABC ADC∠+∠=︒,∠ADC+∠ADH=180°,∠∠ADH=∠ABC,∠AB=AD,∠∠ABE∠∠ADH,∠AE=AH,∠BAE=∠DAH,∠2BAD EAF∠∠=∠∠EAF=∠BAE+∠DAF=∠DAF+∠DAH,∠∠EAF=∠HAF,∠AF=AF,∠∠AEF∠∠AHF,∠EF=FH,∠FH=DH+DF,∠EF=DH+DF=BE+DF;(3)如图,连接CD,延长AC、BD交于点M,根据题意得:∠AOB=20°+90°+40°=150°,∠OBD=60°+50°=110°,∠COD=75°,∠OAM=90°-20°=70°,OA=OB,∠∠AOB=2∠COD,∠OAM+∠OBM=70°+110°=180°,∠OA=OB,∠由(2)【迁移推广】得:CD=AC+BD,∠AC=80×0.5=40,BD=90×0.5=45,∠CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt∠ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD 绕点A 按逆时针方向旋转90º,得到∠ACF ,联结EF (如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE =45°,可证△F AE ∠△DAE ,得FE =DE .解△FCE ,可求得FE (即DE )的长.(1)请回答:在图2中,∠FCE 的度数是 ,DE 的长为 .参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .猜想线段BE ,EF ,FD 之间的数量关系并说明理由. )根据旋转的性质,可得ADB AFC ≌,勾股定理解按逆时针方向旋转,使AB 与AD 重合,FG =DG +FD =BE +按逆时针方向旋转90º,得到∠ACF ∠ADB AFC ≌ACF ∴∠,90AB AC BAC ∠==45ACF ABD ∴∠=∠=在Rt FCE 中,BD 2EF CF ∴=+(2)猜想:EF =BE 如图,将∠ABE8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN=,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∠45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∠GAB GAD DAN GAD ∠+∠=∠+∠,∠90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM BG GM -=,BG DN =,∠BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∠四边形ABCD 是正方形,∠AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∠MAB BAG GAD BAG ∠+∠=∠+∠,∠90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∠6CN =,8MC =,∠1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-, ∠DC BC =,∠48x x +=-,解得:2x =,∠6AB BC CD CN ====,∠//AB CD ,∠BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∠AD∠CP,DF=DE,∠CE=CF,∠∠DCF=∠DCE=45°,∠∠ACB=90°,∠∠ACD+∠ECB=45°,∠∠DCA+∠ACF=∠DCF=45°,∠∠FCA=∠ECB,在∠ACF和∠BCE中,CA CB ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ACF ∠∠BCE (SAS ),∠AF =BE ,∠AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
重庆中考几何证明讲义

专题复习:几何证明综合型问题——针对题型:24题(10分)☆核心:考虑构造辅助线,考虑证明全等专项突破1:特殊四边形(矩菱正)特殊性质与判定1.菱形A.性质①四边相等②对角线互相垂直,每一条对角线平分每一组对角S对角线乘积的一半③B.判定①一组邻边相等的平行四边形②两对角线垂直的平行四边形③四边相等的四边形2.矩形A.性质①四个角为直角②对角线相等B.判定①有一个角是直角的平行四边形②对角线相等的平行四边形③有三个角是直角的四边形注意:“三个角相等的四边形是矩形”是假命题3.正方形满足所有平矩菱的性质与判定专项突破2:角的转化(必考)✧ 1.和差角,用外角✧ 2.内角和(对角互补模型)✧ 3.平行线转角(倍长中线有平行)※注意:倍长中线无法证角时,考虑延长平行线和截线,构造三线八角✧ 4.同角(或等角)的余角(或补角)相等✧ 5.等量±等量✧ 6.以算代证,字母表示角✧7.八字模型(倒角重点图形)✧8.给角度算角度(67.5°,22.5°,45°,30°,60°,75°,120°······)✧9.利用四边形本身的平行(内错或同位或同旁内角)、对角特点(相等)倒角✧10.双垂图形,必有角等(相似)△11.四点共圆12.······专项突破3:四边形中常见辅助线☆可结合考查等边三角形、等腰(Rt )三角形、平矩菱正等特殊平行四边形的性质和判定✧ 1.截长补短:截谁相等,证谁全等(第一对全等容易出现)✧ 2.“几个等式”:①矩形+中点==斜边中线②平分+平行(或垂直)==等腰③中点+平行(四边形)==延长相交④Rt+等腰==斜边中点✧ 3.一边一角构全等✧ 4.手拉手模型✧ 5.依靠60°构造等边三角形✧ 6.特殊角度的转化60°(120°)、22.5°(45°、135°、67.5°)、15°(75°、150°、105°)、90°······✧7.半角模型【条件】如图,四边形ABCD 中,AB =AD ,180BAD BCD ABC ADC ︒∠+∠=∠+∠=,12EAF BAD E BC F CD ∠=∠,点在直线上,点在直线上【结论】BE DF EF 、、满足截长补短关系✧8.正方形中:①CFDE CF DE ⊥⇔=②对角线上有一点,构造对称型全等③旋转型全等④半角模型⑤旋转型全等✧9.以等腰Rt ∆斜边为斜边构造Rt ∆10.······考点突破(24题第1问)考点一:几何计算⎪⎩⎪⎨⎧③勾股定理②三角函数①相似“三板斧”(24题第2问)☆考点二:中点问题(一)已知中点(2倍/倍半关系)1.倍长中线法※注意:平行条件为后续证明提供条件2.中位线①有多个中点时,用中位线②有1个中点,再延长另一边使之成为中点,构造中位线※注意:必出平行条件,进而进行角的转化3.Rt ∆斜边中线等于斜边一半※注意:逆定理:如果一个三角形一边上的中线等于这边一半,那么这个三角形是直角三角形4.等腰(或等边)∆的三线合一5.中垂线※注意:常向两端把线连6.······(二)证明中点1.作平行,证平行2.有等腰,证两线(平分或垂直)3.······【例1】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,BAF DAE ∠=∠.(1)求证:CE =CF ;(2)若︒=∠120ABC ,点G 是线段AF 的中点,连接DG ,EG .求证:DG ⊥GE .☆考点三:角平分线问题(一)有角平分线1.“两等腰”:角平分+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧平行(内错)垂直(延长)⇒等腰2.“两全等”:角平分+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧等)截相等(构造对称型全引垂线⇒全等3.等腰三角形“三线合一”AB CDE F G4.······(三)证角平分线作垂直考点四:截长补短☆核心:截谁相等,证谁全等,第一对全等容易出现,易出等腰三角形等特殊图形切记不要死脑筋!!!!【例2】正方形ABCD 中,M 在CD 上,N 在DA 延长线上,AN CM =,点E 在BD 上,NE 平分DNM ∠.过E 作MN EF ⊥于F ,求证:EF AD MN 22-=.考点五:综合型试题【例3】正方形ABCD 中,连接其对角线AC ,∠BCA 的平分线CF 交AB 于点F ,过点B 作BM ⊥CF 于点N ,交AC 于点M ,过点C 作CP ⊥CF ,交AD 延长线于点P .(1)若正方形ABCD 的边长为4,求△ACP 的面积;(2)求证:CP=BM+2FN .【练习1】如图,正方形ABCD 中,对角线AC 与BD 相交于O ,︒=∠15ADE ,过D 作ED DG ⊥DG 于D ,且AD AG =,过G 作AC GF //交ED 的延长线于F .(1)若64=ED ,求AG ;(2)求证:BD ED DF =+2.【练习2】如图,正方形ABCD 中,E 为AB 边上一点,过点D 作DF ⊥DE ,与BC 延长线交于点F .连接EF ,与CD 边交于点G ,与对角线BD 交于点H .(1)若BF=BD =2,求BE 的长;(2)若∠ADE=2∠BFE ,求证:FH=HE+HD .【练习3】如图,AC 为正方形ABCD 的一条对角线,点E 为DA 边延长线上的一点,连接BE ,在BE 上取一点F ,使BC BF =,过点B 作BE BK ⊥于B ,交AC 于点K ,连接CF ,交AB 于点H ,交BK 于点G .(1)求证:BG BH =;(2)求证:AE BG BE +=.备注:。
重庆中考数学24题专题

重庆中考几何一、有关几何的基本量:线段、角度、全等、面积、四边形性质1、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC 交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.∴△EBH≌△GFC;(2)解:过点H作HI⊥EG于I,∵G为CH的中点,∴HG=GC,∵EF⊥DC,HI⊥EF,∴∠HIG=∠GFC=90°,∠FGC=∠HGI,∴△GIH≌△GFC,∵△EBH≌△EIH(AAS),∴FC=HI=BH=1,∴AD=4-1=3.2、已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD 和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.证明:(1)∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△DAC和△BAE中,AC=AE ∠DAC=∠BAE AD=AB ,∴△DAC≌△BAE(SAS),∴DC=BE;(2)如图,作DG∥AE,交AB于点G,由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,∴∠DGF=∠FAE=90°,又∵∠ACB=90°,∠CAB=30°,∴∠ABC=60°,又∵△ABD为等边三角形,∠DBG=60°,DB=AB,∴∠DBG=∠ABC=60°,在△DGB和△ACB中,∠DGB=∠ACB ∠DBG=∠ABC DB=AB ,∴△DGB≌△ACB(AAS),∴DG=AC,又∵△AEC为等边三角形,∴AE=AC,∴DG=AE,在△DGF和△EAF中,∠DGF=∠EAF ∠DFG=∠EFA DG=EA ,∴△DGF≌△EAF(AAS),∴DF=EF,即F为DE中点.3、如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.(1)求证:CF=CG;(2)连接DE,若BE=4CE,CD=2,求DE的长.解答:(1)证明:连接AC,∵DC ∥AB ,AB=BC ,∴∠1=∠CAB ,∠CAB=∠2, ∴∠1=∠2;∵∠ADC=∠AEC=90°,AC=AC , ∴△ADC ≌△AEC , ∴CD=CE ;∵∠FDC=∠GEC=90°,∠3=∠4, ∴△FDC ≌△GEC ,∴CF=CG .(2)解:由(1)知,CE=CD=2, ∴BE=4CE=8,∴AB=BC=CE+BE=10,∴在Rt △ABE 中,AE= AB 2-BE 2 =6, ∴在Rt △ACE 中,AC= AE 2+CE 2 =102 由(1)知,△ADC ≌△AEC , ∴CD=CE ,AD=AE ,∴C 、A 分别是DE 垂直平分线上的点, ∴DE ⊥AC ,DE=2EH ;(8分) 在Rt △AEC 中,S △AEC =21 AE •CE=21AC •EH , ∴EH=AC CEAE ⋅ =10226⨯ =5103∴DE=2EH=2×5103=5106 4、如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于点E ,交BC 于点P ,连接OP ,OQ ;求证:(1)△BCQ ≌△CDP ; (2)OP=OQ .证明:∵四边形ABCD 是正方形, ∴∠B=∠PCD=90°,BC=CD , ∴∠2+∠3=90°,又∵DP ⊥CQ , ∴∠2+∠1=90°, ∴∠1=∠3,在△BCQ 和△CDP 中,∠B=∠PCD BC=CD ∠1=∠3 . ∴△BCQ ≌△CDP . (2)连接OB . 由(1):△BCQ ≌△CDP 可知:BQ=PC , ∵四边形ABCD 是正方形, ∴∠ABC=90°,AB=BC , 而点O 是AC 中点, ∴BO=21AC=CO ,∠4=21∠ABC=45°=∠PCO , 在△BCQ 和△CDP 中, BQ=CP ∠4=∠PCO BO=CO∴△BOQ ≌△COP , ∴OQ=OP .5、在等腰梯形ABCD 中,AD ∥BC ,AB=AD=CD,∠ABC=60°,延长AD 到E,使DE=AD,延长DC 到F ,使DC=CF,连接BE 、BF 和EF.⑴求证:△ABE ≌△CFB; ⑵如果AD=6,tan ∠EBC 的值. 解:(1)证明:连结CE , 在△BAE 与△FCB 中,∵ BA=FC ,∠A=∠BCF ,, AE=BC , ∴△BAE ≌△FCB ;(2)延长BC 交EF 于点G ,作AH ⊥BG 于H ,作AM ⊥BG ,∵△BAE ≌△FCB ,∴∠AEB=∠FBG ,BE=BF ,∴△BEF 为等腰三角形,又∵AE ∥BC , ∴∠AEB=∠EBG ,∴∠EBG=∠FBG ,∴BG ⊥EF ,∵∠AMG=∠EGM=∠AEG=90°, ∴四边形AMGE 为矩形,∴AM=EG , 在Rt △ABM 中,AM=AB •sin60°=6×23=33 ,∴EG=AM=33, BG=BM+MG=6×2+6×cos60°=15,∴tan ∠EBC=531533==BG EG 6、如图,在梯形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 的中点,EF ∥AB 交BC 于点F(1)求证:BF=AD+CF ;ABDECF(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.(1)证明:如图(1),延长AD交FE的延长线于N∵∠NDE=∠FCE=90°∠DEN=∠FEC DE=EC∴△NDE≌△FCE ∴DN=CF ∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形∴BF=AD+DN=AD+FC(2)解:∵AB∥EF,∴∠ABN=∠EFC,即∠1+∠2=∠3,又∵∠2+∠BEF=∠3,∴∠1=∠BEF,∴BF=EF,∵∠1=∠2,∴∠BEF=∠2,∴EF=BF,又∵BC+AD=7+1∴BF+CF+AD=8而由(1)知CF+AD=BF∴BF+BF=8∴2BF=8,∴BF=4,∴BF=EF=47、已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连接DF、CF分别交AB于G、H点(1)求证:FG=FH;(2)若∠E=60°,且AE=8时,求梯形AECD 的面积.(1)证明:连接BF∵ABCD为矩形∴AB⊥BC AB⊥AD AD=BC∴△ABE为直角三角形∵F是AE的中点∴AF=BF=BE∴∠FAB=∠FBA∴∠DAF=∠CBF∵AD=BC, ∠DAF=∠CBF ,AF=BF ,∴△DAF≌△CBF∴∠ADF=∠BCF∴∠FDC=∠FCD∴∠FGH=∠FHG ∴FG=FH ;(2)解:∵AC=CE ∠E=60° ∴△ACE 为等边三角形 ∴CE=AE=8 ∵AB ⊥BC ∴BC=BE=CE 21=4 ∴根据勾股定理AB=34 ∴梯形AECD 的面积=21×(AD+CE)×CD=21×(4+8)×34=3248、如图,直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,且CD=2AD ,tan ∠ABC=2,过点D作DE ∥AB ,交∠BCD 的平分线于点E ,连接BE . (1)求证:BC=CD ;(2)将△BCE 绕点C ,顺时针旋转90°得到△DCG ,连接EG .求证:CD 垂直平分EG ; (3)延长BE 交CD 于点P .求证:P 是CD 的中点. 证明:(1)延长DE 交BC 于F ,∵AD ∥BC ,AB ∥DF ,∴AD=BF ,∠ABC=∠DFC . 在Rt △DCF 中,∵tan ∠DFC=tan ∠ABC=2, ∴CFCD=2, 即CD=2CF ,∵CD=2AD=2BF , ∴BF=CF , ∴BC=BF+CF=21CD+21CD=CD . 即BC=CD .(2)∵CE 平分∠BCD ,∴∠BCE=∠DCE , 由(1)知BC=CD , ∵CE=CE ,∴△BCE ≌△DCE , ∴BE=DE ,由图形旋转的性质知CE=CG ,BE=DG , ∴DE=DG ,∴C ,D 都在EG 的垂直平分线上, ∴CD 垂直平分EG . (3)连接BD , 由(2)知BE=DE , ∴∠1=∠2. ∵AB ∥DE ,∴∠3=∠2.∴∠1=∠3.∵AD ∥BC ,∴∠4=∠DBC .由(1)知BC=CD ,∴∠DBC=∠BDC ,∴∠4=∠BDP . 又∵BD=BD ,∴△BAD ≌△BPD(ASA)∴DP=AD . ∵AD=21CD ,∴DP=21CD .∴P 是CD 的中点. 9.(2011南岸二诊)如图,已知点P 是正方形ABCD 的对角线AC 上一点,过点P 作EF ⊥DP ,交AB 于点E ,交CD 于点G ,交BC 的延长线于点F ,连接DF .(1)若23=DF ,求DP 的长; (2)求证:CF AE =.10.如图,正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上(CG >BC ),M 是线段AE 的中点,DM 的延长线交CE 于N . (1)线段AD 与NE 相等吗?请说明理由; (2)探究:线段MD 、MF 的关系,并加以证明.11、如图,梯形ABCD 中,AD ∥BC ,AB=DC=10cm ,AC 交BD 于G ,且∠AGD=60°,E 、F 分别为CG 、AB 的中点.(1)求证:△AGD 为正三角形; (2)求EF 的长度.G 24题图PFEDCBA解答:(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.12、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.解答:解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;当P与F重合时,△PCD是等腰三角形,∴PB=2;当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)13.在梯形ABCD中,AD∥BC,AB=CD,且DE⊥AD于D,∠EBC=∠CDE,∠ECB=45°.⑴求证:AB=BE ;⑵延长BE ,交CD 于F .若CE =2,tan ∠CD E =31,求BF 的长. 13.⑴证明:延长DE ,交BC 于G .∵DE ⊥AD 于D ,∴∠ADE =90°又AD ∥BC , ∴∠DGC =∠BGE =∠ADE =90°, 而∠ECB =45°, ∴△EGC 是等腰直角三角形, ∴EG=CG在△BEG 和△DCG 中,EBG CDG EGB CGD EG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEG ≌△DCG (AAS ) ∴BE=CD=AB ⑵连结BD .∵∠EBC=∠CDE ∴∠EBC +∠BCD =∠CDE +∠BCD =90°,即∠BFC =90° ∵CE=2,∴EG=CG=1又tan ∠CDE =31,∴13CG DG =,∴DG =3 ∵△BEG ≌△DCG ,∴BG=DG=3∴2210BE BG EG =+=∴CD=BE=10法一:∵1122BCDSBC DG CD BF ==,11431022BF ⨯⨯=⨯∴6105BF = 法二:经探索得,△BEG ∽△BFC ,∴BE BCBG BF=,∴1043BF = ∴6105BF = 14.如图,直角梯形ABCD 中,,90,45,AD BC ADC ABC AB ∠=∠=∥的垂直平分线EG 交BC 于F ,交DC 的延长线于.G求证:(1)CG CF =;(2).BC DG =AB CDEF证明:(1) ,AB EF ⊥ 45B ∠=904545EFB ∴∠=-=45CFG ∴∠=//,90AD BC ADC ∠=90FCG ∴∠=45,FCG ∴∠= CG CF =∴(2)连接AF , EF 是AB 的中垂线,AF BF FE AB ∴=⊥45=∠=∠∴BFE AFE90=∠∴AFB DCB AFB ∠=∠∴BC AD CD AF //,// ∴,AF DC BF DC ∴=∴=由(1)知CG CF = ,CG DC CF BF +=+∴即:DG BC =二、有关“截长补短”题型1、在ABCD 中,对角线,BD BC G BD ⊥为延长线上一点且ABG ∆为等边三角形,BAD ∠、CBD ∠的平分线相交于点E ,连接AE BD F 交于,连接GE 。
2024年重庆市中考数学真题试卷及答案解析(b卷)

2 (3)若点 D 在点 B 的右侧,连接 AD ,点 F 是 AD 的中点,且 AF AC .点 P 是直线 AC 上一动点,连 接 FP ,将 FP 绕点 F 逆时针旋转 60 得到 FQ ,连接 BQ ,点 R 是直线 AD 上一动点,连接 BR ,QR .在 点 P 的运动过程中,当 BQ 取得最小值时,在平面内将 BQR 沿直线 QR 翻折得到△TQR ,连接 FT .在
1
的解均为负整数,则所有满足条件的整数 a 的值之和是________.
17. 如图, AB 是 O 的直径, BC 是 O 的切线,点 B 为切点.连接 AC 交 O 于点 D ,点 E 是 O 上
一点,连接 BE ,DE ,过点 A 作 AF ∥ BE 交 BD 的延长线于点 F .若 BC 5 ,CD 3 ,F ADE ,
15. 如图,在 ABC 中, AB AC , A 36 , BD 平分 ABC 交 AC 于点 D .若 BC 2 ,则 AD 的
长度为________.
16.
若关于
x
的一元一次不等式组
重庆市中考数学题型复习 题型七 几何图形的相关证明及

类型三向角两边作垂线1. 如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE.(1)若正方形ABCD的边长是4,BE=3, 求EF的长;(2)求证:AE=EC+CD.第1题图2. (2017重庆育才一模)已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE .(1)如图①,若∠ABE =15°,O 为BE 中点,连接AO ,且AO =1,求BC 的长;(2)如图②,F 也为AC 上一点,且满足AE =CF ,过A 作AD ⊥BE 交BE 于点H ,交BC 于点D ,连接DF 交BE 于点G ,连接AG .若AG 平分∠CAD ,求证:AH =12AC .第2题图答案1. (1)解:∵正方形ABCD ,∴AD=CD=BC, ∠D=∠C=90°.∵BE=3,∴EC=1.∵F是CD的中点,∴DF=CF=2.在Rt△EFC中,由勾股定理得EF=CE2+CF2=12+22= 5. (2)证明:如解图,过点F作FG⊥AE于点G,∵AF平分∠DAE,∠D=90°,∴FG=DF.在Rt△ADF和△AGF中,∵AF=AF,DF=GF,∴△ADF≌△AGF(HL),∴AG=AD.∵DF=FC=FG,EF=EF,∠C=∠FGE=90°,∴△FCE≌△FGE(HL),∴CE=GE.∵AE=AG+GE,AG=AD=CD,GE=CE,∴AE=EC+CD.第1题解图2. (1)解:如解图①,在AB上取一点M,使得BM=ME,连接ME. 在Rt△ABE中,∵OB=OE,∴BE =2OA =2,∵MB =ME ,∴∠MBE =∠MEB =15°,∴∠AME =∠MBE +∠MEB =30°,设AE =x ,则ME =BM =2x ,AM =3x , ∵AB 2+AE 2=BE 2,∴(2x +3x )2+x 2=22,∴x =6-22或-6+22(舍),∴AB =AC =(2+3)·6-22,∴BC =2AB =3+1.第2题解图①(2)证明:如解图②, 过点G 作GM ⊥AC 于M .∵AG 平分∠CAD , GH ⊥AD ,∴GH =GM .在Rt △GAH 和Rt △GAM 中,⎩⎪⎨⎪⎧AG =AG GH =GM ,∴△GAH ≌△GAM (HL ),∴AH =AM .过点C 作CP ⊥AC ,交AD 的延长线于P ,∵BE ⊥AP ,∴∠AHB =90°,∴∠ABH +∠BAH =90°,∵∠BAH +∠PAC =90°,∴∠ABE =∠PAC ,在△ABE 和△CAP 中,⎩⎪⎨⎪⎧∠ABE =∠CAP AB =AC ∠BAE=∠ACP,∴△ABE ≌△CAP (ASA ),∴AE =CP =CF ,∠AEB =∠P , 在△DCF 和△DCP 中,⎩⎪⎨⎪⎧CD =CD ∠DCF=∠DCP CF =CP,∴△DCF ≌△DCP (SAS ),∴∠DFC =∠P ,∴∠GFE =∠GEF , ∴GE =GF ,∵GM ⊥EF ,∴FM =ME ,∵AE =CF ,∴AF =CE ,∴AM =CM ,∴AH =AM =CM =12AC .第2题解图②。
最新重庆中考数学20题简单几何证明及尺规作图

1.(10分)如图,已知ABC △满足AB BC AC <<.(1)用尺规作图在边AC 上确定一点P ,使得PB PC =(不写作法和证明,保留作图痕迹);(2)若AB AP =,37ABC A ︒∠-∠=,求C ∠的大小.2. 如图,在钝角中,.(1) 作AC 的重直平分线,与边BC 、AC 分别交于点D 、E(要求:尺规作图,不写作法,保留作图痕迹),(2)在(1)的条件下,过点B 作BHLAC 交CA 的延长线于点H. 连接AD,求证3.如图,在平行四边形ABCD 中,AE 平分交BD 于点E,交BC 于点M.(1)尺规作图:作的平分线CN,交BD 于点F.(基本作图,保留作图痕迹,不写作法,并标明字母)(2)求证:AE=CF.ABC ∆090BAC ∠>ADE HBC ∠=∠BAD ∠BCD∠4.(10分)如图,在平行四边形ABCD 中,AC 是对角线。
(1)尺规作图:过点A 作BC 的垂线交BC 于点E(不写作法,保留作图痕迹,并标明字母); (2)在(1)的条件下,若BC=5,求,平行四边形ABCD 的面积。
5. 如图,在平行四边形ABCD 中,AB=AC,.(1)使用直尺和圆规,作的平分线AE 交CD 于点F(保留作图痕迹);(2)在(1)的条件下,求的度数。
6.如图,在矩形ABCD 中,点E 是BC 边上一点,AD=DE (1)过A 作于点F,(基本作图,保留作图痕迹,不写作法,要下结论);(2)求证:AF=CD.50B ∠=DAC ∠AFC ∠AF DE ⊥3tan 2ACB ∠=045B ∠=7.20.如图,已知三角形ABC,CD 平分(1)以D 为顶点,在边AB 右侧作,交AC 于点E. (要求:尺规作图,不写做法,保留作图痕迹)(2)在(1)所作的图中,求证:DE=CE8.如图,已知ΔABC,在BC 的延长线上取一点D 使得AD=AC.(1)在AC 左侧,求作点E,使得AE=AB,CE=DB,连接AE 、CE.(用基本作图,保留作图痕迹,不写作法、结论)(2)求证:9. 如图,在平行四边形ABCD 中,CF 平分交BD 于点F.(1)尺规作图:过点A 作AE 平分交BD 于点E,注意:不写作法,保留作图痕迹,并标明字母,(2)求证:AE=CF.ACB ∠ADE ABC ∠=∠EAB CAD ∠=∠BCD ∠BAD ∠10.(10分)如图,菱形ABCD 的对角线AC,BD 交于点O.尺规作图:过点A 作直线BC 的垂线(不写作法和证明,保留作图痕迹),该垂线与BC 交于点E,F 为AD 边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE 与OF 的数量关系,并证明你的猜想。
2024年中考数学真题汇编专题21 特殊的平行四边形+答案详解

2024年中考数学真题汇编专题21 特殊的平行四边形+答案详解(试题部分)一、单选题1.(2024·重庆·中考真题)如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π−B .4πC .324π−D .8π2.(2024·甘肃临夏·中考真题)如图,O 是坐标原点,菱形ABOC 的顶点B 在x 轴的负半轴上,顶点C 的坐标为()3,4,则顶点A 的坐标为( )A .()4,2−B .()4C .()2,4−D .(− 3.(2024·湖北武汉·中考真题)小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A .64︒B .66︒C .68︒D .70︒4.(2024·四川成都·中考真题)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AB AD = B .AC BD ⊥ C .AC BD = D .ACB ACD ∠=∠5.(2024·黑龙江绥化·中考真题)如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A .245B .6C .485D .126.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D7.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A 的坐标为()4,0−,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2−−B .()4,2−C .()2,4D .()4,28.(2024·甘肃·中考真题)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为( )A .6B .5C .4D .39.(2024·四川眉山·中考真题)如图,在矩形ABCD 中,6AB =,8BC =,点E 在DC 上,把ADE V 沿AE 折叠,点D 恰好落在BC 边上的点F 处,则cos CEF ∠的值为( )A B C .34 D .5410.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A.2 B .3 C D .11.(2024·甘肃临夏·中考真题)如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D B C →→的路径行进,过点P 作PQ CD ⊥,垂足为Q .设点P 的运动路程为x ,PQ DQ −为y ,y 与x 的函数图象如图2,则AD 的长为( )A B .83 C D .11412.(2024·广西·中考真题)如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A .1B .2C .5D .1013.(2024·内蒙古呼伦贝尔·中考真题)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O .E 是BC 边上一点,F 是BD 上一点,连接,DE EF .若DEF 与DEC 关于直线DE 对称,则BEF △的周长是( )A.B .2C .4−D 14.(2024·上海·中考真题)四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形15.(2024·四川德阳·的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为( )A .3B .2C .1D .016.(2024·四川泸州·中考真题)如图,在边长为6的正方形ABCD 中,点E ,F 分别是边AB BC ,上的动点,且满足AE BF =,AF 与DE 交于点O ,点M 是DF 的中点,G 是边AB 上的点,2AG GB =,则12OM FG +的最小值是( )A .4B .5C .8D .1017.(2024·重庆·中考真题)如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A .2BCD .125二、填空题18.(2024·福建·中考真题)如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为 .19.(2024·山东威海·中考真题)将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C '处,折痕为MN ,点D 落在点D '处,C D ''交AD 于点E .若3BM =,4BC '=,3AC '=,则DN = .20.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .21.(2024·广西·中考真题)如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为 cm .22.(2024·天津·中考真题)如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F 为DE 的中点,则线段AF 的长为 .23.(2024·内蒙古包头·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,6AB =,AC 是一条对角线,E 是AC 上一点,过点E 作EF AB ⊥,垂足为F ,连接DE .若CE AF =,则DE 的长为 .24.(2024·广东·中考真题)如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为 .25.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是 cm .三、解答题27.(2024·陕西·中考真题)如图,四边形ABCD 是矩形,点E 和点F 在边BC 上,且BE CF =.求证:AF DE =.28.(2024·吉林长春·中考真题)如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.29.(2024·青海·中考真题)综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形......数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用.以下从对角线的数量关系和位置关系两个方面展开探究.【探究一】如图1,在四边形ABCD中,E、F、G、H分别是各边的中点.求证:中点四边形EFGH是平行四边形.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF、GH分别是ABC和ACD的中位线,∴12EF AC=,12GH AC=(____①____)∴EF GH=.同理可得:EH FG=.∴中点四边形EFGH是平行四边形.结论:任意四边形的中点四边形是平行四边形.(1)请你补全上述过程中的证明依据①________【探究二】从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想Ⅰ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【探究三】(3)从作图、测量结果得出猜想Ⅱ:原四边形对角线垂直时,中点四边形是②________.(4)下面我们结合图3来证明猜想Ⅱ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.结论:原四边形对角线③________时,中点四边形是④________.30.(2024·吉林长春·中考真题)【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边ABC 中,3AB =,点M 、N 分别在边AC 、BC 上,且AM CN =,试探究线段MN 长度的最小值.【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.【问题解决】如图②,过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP .在【问题呈现】的条件下,完成下列问题:(1)证明:AM MP =;(2)CAP ∠的大小为 度,线段MN 长度的最小值为________.【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,ABC 是等腰三角形,四边形BCDE 是矩形,2AB AC CD ===米,30ACB ∠=︒.MN 是一条两端点位置和长度均可调节的钢丝绳,点M 在AC 上,点N 在DE 上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持AM DN =.钢丝绳MN 长度的最小值为多少米.31.(2024·河北·中考真题)情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF 的长;(2)直接写出图3中所有与线段BE 相等的线段,并计算BE 的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC 边上找一点P (可以借助刻度尺或圆规),画出裁剪线(线段PQ )的位置,并直接写出BP 的长.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在平行四边形ABCD 中,点F 在边AD 上,AB AF =,连接BF ,点O 为BF 的中点,AO BC 于点E ,连接EE(1)求证:四边形ABEF 是菱形:(2)若平行四边形ABCD 的周长为22,1,120CE BAD =∠=︒,求AE 的长.33.(2024·河南·中考真题)如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形34.(2024·贵州·中考真题)如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.35.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.36.(2024·吉林·中考真题)小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S =______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.37.(2024·四川广元·中考真题)如图,已知矩形ABCD .(1)尺规作图:作对角线AC 的垂直平分线,交CD 于点E ,交AB 于点F ;(不写作法,保留作图痕迹)(2)连接AE CF 、.求证:四边形AFCE 是菱形.38.(2024·黑龙江牡丹江·中考真题)在Rt ACB △中,90ACB ∠=︒,12BC =,8AC =,以BC 为边向ACB △外作有一个内角为60︒的菱形BCDE ,对角线BD CE ,交于点O ,连接OA ,请用尺规和三角板作出图形,并直接写出AOC 的面积.39.(2024·广东广州·中考真题)如图,Rt ABC △中,90B ??.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.40.(2024·广东广州·中考真题)如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.41.(2024·四川遂宁·中考真题)康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O ;②以点O 为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA OB OC OD 、、、; ③顺次连结所得的四点得到四边形ABCD .于是可以直接..判定四边形ABCD 是平行四边形,则该判定定理是:______. (2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD 是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD 是平行四边形,AC BD =.求证:四边形ABCD 是矩形.42.(2024·重庆·中考真题)在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④. 43.(2024·吉林长春·中考真题)如图,在ABC 中,5AB AC ==,6BC =.点D 是边BC 上的一点(点D 不与点B 、C 重合),作射线AD ,在射线AD 上取点P ,使AP BD =,以AP 为边作正方形APMN ,使点M 和点C 在直线AD 同侧.(1)当点D 是边BC 的中点时,求AD 的长;(2)当4BD =时,点D 到直线AC 的距离为________;(3)连结PN ,当PN AC ⊥时,求正方形APMN 的边长;(4)若点N 到直线AC 的距离是点M 到直线AC 距离的3倍,则CD 的长为________.(写出一个即可) 44.(2024·甘肃·中考真题)【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.45.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x −−=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB −运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA −运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标;(2)求S 与t 的函数关系式;(3)在(2)的条件下,当S =M 在y 轴上,坐标平面内是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.2024年中考数学真题汇编专题21 特殊的平行四边形+答案详解(答案详解)一、单选题1.(2024·重庆·中考真题)如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π−B .4πC .324π−D .8π 根据题意可得2AC AD =∵矩形ABCD ,∴AD =在Rt ABC △中,AB =2.(2024·甘肃临夏·中考真题)如图,O 是坐标原点,菱形ABOC 的顶点B 在x 轴的负半轴上,顶点C 的坐标为()3,4,则顶点A 的坐标为( )A .()4,2−B .()4C .()2,4−D .(−3.(2024·湖北武汉·中考真题)小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A .64︒B .66︒C .68︒D .70︒【答案】C,AD BC ABD ∠44=︒,MBC A =∠=(11802CBD =故选:C .4.(2024·四川成都·中考真题)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AB AD =B .AC BD ⊥ C .AC BD = D .ACB ACD ∠=∠5.(2024·黑龙江绥化·中考真题)如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A .245B .6C .485D .126.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D【答案】B 【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设(),A a b ,AB m =,AD n =,可得(),D a b n +,(),B a m b +,(),C a m b n ++,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设(),A a b ,AB m =,AD n =,7.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A 的坐标为()4,0−,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2−−B .()4,2−C .()2,4D .()4,28.(2024·甘肃·中考真题)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为( )A .6B .5C .4D .3 ,得到AOB 是等边三 ∴AOB 是等边三角形,2AB =,OA OB ==解得4AC =故选C .9.(2024·四川眉山·中考真题)如图,在矩形ABCD 中,6AB =,8BC =,点E 在DC 上,把ADE V 沿AE 折叠,点D 恰好落在BC 边上的点F 处,则cos CEF ∠的值为( )A B C .34 D .54【答案】A【分析】本题考查了矩形的性质,折叠的性质,勾股定理,求角的三角函数等知识点,正确利用折叠的性质是解题的关键.根据折叠的性质,可求得8AF AD ==,EF DE =,从而求得BF ,CF ,在Rt EFC △中,由勾股定理,得222EF CE CF =+,即可求得结果.【详解】解:四边形ABCD 是矩形,把10.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A .2B .3CD .11.(2024·甘肃临夏·中考真题)如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D B C →→的路径行进,过点P 作PQ CD ⊥,垂足为Q .设点P 的运动路程为x ,PQ DQ −为y ,y 与x 的函数图象如图2,则AD 的长为( )A .3B .83CD .114Rt BCD 中,()(24a −−解得:23a =,2AD a =+=故选:B .12.(2024·广西·中考真题)如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A .1B .2C .5D .10 明()SAS ADG BAH ≌四边形MNPQ 是矩形,证明(AAS ADQ BAM ≌矩形MNPQ 是正方形,ADQ △中,利用勾股定理求出【详解】解:∵四边形ABCD 是正方形,AB BC CD DA ===CD ∥,AD BC ∥,分别为各边中点,DF BH ,∴四边形MNPQ 是平行四边形,CE ,1DGCG =,PQ ,∴()SAS ADG BAH ≌DAG ABH ∠=∠,90DAG GAB ∠+∠=90ABH GAB ∠+∠=︒,90QMN AMB ∠=∠=︒,同理∴平行四边形MNPQ 是矩形,∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =,∴()AAS ADQ BAM ≌,∴DQ AM =,又DQ PQ =,AM QM =, ∴DQ AM PQ QM ===,∴矩形MNPQ 是正方形,在Rt ADQ △中,222AD DQ AQ =+,∴()22252QM QM =+,∴25QM =,∴正方形MNPQ 的面积为5,故选:C .【点睛】本题考查了正方形的判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理等知识,明确题意,灵活运用相关知识求解是解题的关键.13.(2024·内蒙古呼伦贝尔·中考真题)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O .E 是BC 边上一点,F 是BD 上一点,连接,DE EF .若DEF 与DEC 关于直线DE 对称,则BEF △的周长是( )A .B .2C .4−D∵DEF 与DEC 关于直线2DF DC ==,DFE ∠2BF BD DF =−=45FBE FEB ∠=∠=︒,222EF BF ==−(14.(2024·上海·中考真题)四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形 OBC OAD S S =,OC 再由菱形的判定即可得到答案.四边形OBC OAD S S ∴=,OC OB OA ==过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF ∴==⋅=CH BF AE ===如果四个垂线拼成一个四边形,那这个四边形为菱形,15.(2024·四川德阳·的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为( )A .3B .2C .1D .0设AB a =,BC b =,假设存在点P ,且在Rt ABP 中,2222BP AB AP a =+=在Rt PDC 中,222(PC PD CD b =+= PB PC ⊥,∴ 222BC BP PC =+,即222b a x =++整理得2x bx +− 24b ac ∆=−16.(2024·四川泸州·中考真题)如图,在边长为6的正方形ABCD 中,点E ,F 分别是边AB BC ,上的动点,且满足AE BF =,AF 与DE 交于点O ,点M 是DF 的中点,G 是边AB 上的点,2AG GB =,则12OM FG +的最小值是( )A .4B .5C .8D .10 先证明()SAS ADE BAF ≌12DF ,如图所示,在易证明()SAS FBG FBH ≌H 、D 、F 三点共线时,有最小值,最小值即为一半,求出8AH =,在Rt ADH 中,由勾股定理得10=,责任12OM +ABCD 是正方形,90ABC =︒,∴()SAS ADE BAF ≌ADE BAF ∠=∠,DOF ADO ∠=∠+∠∵点M 是DF 的中点,12OM DF =;∴()SAS FBG FBH ≌FH FG =,1122OM FG DF +=∴当H 、D 、F 三点共线时,Rt ADH 中,由勾股定理得12OM FG +的最小值为故选:B .17.(2024·重庆·中考真题)如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A .2B C D .125【答案】D 【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到二、填空题18.(2024·福建·中考真题)如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为 .【答案】2【分析】本题考查正方形性质,线段中点的性质,根据正方形性质和线段中点的性质得到1HD DG ==,进而得到DGH S ,12AHE EFB CGF S S S ===,个小三角形面积求解,即可解题.【详解】解:正方形ABCD 的面积为4,点DGH S =同理可得12AHE EFB CGF S S S ===,四边形EFGH 的面积为11422−−故答案为:2.19.(2024·山东威海·中考真题)将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C '处,折痕为MN ,点D 落在点D '处,C D ''交AD 于点E .若3BM =,4BC '=,3AC '=,则DN = .然后证明BC M AEC ''≌,得到中,利用222NE D E D N '+'=解题即可.Rt C BM '中,2C M C B '+'=5CM =,D C M D ∠=∠=∠'''是矩形,,E AEC '=∠∴BC M AEC ''≌,4BC AE '==,MC ='7AB CD C D ''===,84DE AD AE =−=−D N DN a '==,则EN 20.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .Rt EGF 中,利用勾股定理构建关于的边长为a ,CD 与则四边形AOGD 是矩形,∴OG AD a ==,DG ∵折叠,∴BF BC a ==,CE =∵点A 的坐标为()20−,,点F 的坐标为()06,, ∴2AO =,6FO =,∴2BO AB AO a =−=−,在Rt BOF △中,222BO FO BF +=,∴()22226a a −+=,解得10a =,∴4FG OG OF =−=,8GE CD DG CE CE =−−=−,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE −+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.21.(2024·广西·中考真题)如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为 cm .ABCD S =BC CD =∴四边形Rt ADN △22.(2024·天津·中考真题)如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F为DE的中点,则线段AF的长为.)四边形Rt DOC中,DC=,32∴==OD OC OAOE=5∴AE OE OA=−=(2)延长AFAB=,AC是一条对角线,E 23.(2024·内蒙古包头·中考真题)如图,在菱形ABCD中,60ABC∠=︒,6=,则DE的长为.是AC上一点,过点E作EF AB⊥,垂足为F,连接DE.若CE AF先判断ABC,ACD都是等边三角形,的直角三角形的性质可得出【详解】解∶过D作DH∠=∵菱形ABCD中,ABC===,∠∴AB BC CD AD∴ABC,ACD都是等边三角形,==∴60EAF∠=︒,AC AB⊥,EF ABAEF∠=︒,30=,2AE AF24.(2024·广东·中考真题)如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为 .ADE S =8ABF S =,则可求出CDF 的面积,然后利用ADE BEF CDF S S S S S =−−阴影求解即可.【详解】解:连接AF BD 、,1122ADE ABD S S ==⨯28ABF BEF S S ==,设菱形ABCD 中BC 边上的高为12ABFABCDBF h S ⋅=菱形,即23BF BC =,2BF =ABFCDF SS =CDF =△10ADE BEF CDF S SS S =−−=,25.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为CEB OEB SS ''=,然后证明出(AAS A ED CEB ''≌明出()SSS ODE OB E '≌,得到ODE OB E SS '=,进而求解即可. 【详解】∵四边形ABCD 是菱形,53AC BD = 10AC a =,6BD a =152OA OC AC a ===,∵线段AB 与A B ''关于过点O 的直线∴12BOF COF BOB '∠=∠=∠=∴45AOG DOG ∠=∠=︒∴点A ',D ,O 三点共线∴2A D A O OD a ''=−=,B C 'CEB OEB S S ''=A D B '=CD AB ∥CDO ∠∴(AAS A ED CEB ''≌A E CE '=A B AB CD ''==DE B E '=又∵OD B O =',OE =∴()SSS ODE OB E '≌ODE OB E SS '= 3CEB CEB OEB ODE OB ED S S S S S ''''==++四边形故答案为:13. 26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E到矩形对角线所在直线的距离是cm.Rt AE F中,11=∠OAD ODARt E F D中,12在射线ADRt DCE中,2=∠CAD DCE+∠DCE DCA23Rt DE F 中,综上所述,点故答案为:25三、解答题27.(2024·陕西·中考真题)如图,四边形ABCD 是矩形,点E 和点F 在边BC 上,且BE CF =.求证:AF DE =.【答案】见解析【分析】本题考查了矩形的性质,全等三角形的判定和性质.根据矩形的性质得到AB CD =,90B C ∠=∠=︒,再推出BF CE =,利用SAS 证明ABF DCE ≌△△,即可得到AF DE =. 【详解】证明:∵四边形ABCD 是矩形, ∴AB DC =,90B C ∠=∠=︒, ∵BE CF =,∴BE EF CF EF +=+,即BF CE =, ∴()SAS ABF DCE ≌, ∴AF DE =.28.(2024·吉林长春·中考真题)如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.【答案】证明见解析.【分析】本题考查全等三角形的判定与性质、平行四边形的判定及矩形的判定,熟练掌握判定定理是解题关键.利用SAS 可证明AOD BOC ≌△△,得出AD BC =,根据90A B ∠=∠=︒得出AD BC ∥,即可证明四边形ABCD 是平行四边形,进而根据有一个角是直角的平行四边形是矩形即可证明四边形ABCD 是矩形. 【详解】证明:∵O 是边AB 的中点, ∴OA OB =,在AOD △和BOC 中,90A B OA OB AOD BOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴AOD BOC ≌△△, ∴ADBC =, ∵90A B ∠=∠=︒, ∴AD BC ∥,∴四边形ABCD 是平行四边形, ∵90A B ∠=∠=︒, ∴四边形ABCD 是矩形.29.(2024·青海·中考真题)综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形......数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用. 以下从对角线的数量关系和位置关系两个方面展开探究.如图1,在四边形ABCD 中,E 、F 、G 、H 分别是各边的中点. 求证:中点四边形EFGH 是平行四边形.证明:∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点, ∴EF 、GH 分别是ABC 和ACD 的中位线, ∴12EF AC =,12GH AC =(____①____)∴EF GH =. 同理可得:EH FG =.∴中点四边形EFGH 是平行四边形.结论:任意四边形的中点四边形是平行四边形. (1)请你补全上述过程中的证明依据①________ 【探究二】从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想Ⅰ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【探究三】(3)从作图、测量结果得出猜想Ⅱ:原四边形对角线垂直时,中点四边形是②________. (4)下面我们结合图3来证明猜想Ⅱ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.。
2023年重庆市中考数学真题(A卷)(含答案解析)

那么称这个四位数为“递减数”.例如:四位数 4129,∵ 41 12 29 ,∴4129 是“递减数”;
又如:四位数 5324,∵ 53 32 21 24 ,∴5324 不是“递减数”.若一个“递减数”为 a312 ,
则这个数为___________;若一个“递减数”的前三个数字组成的三位数 abc 与后三个数字
已知:如图,四边形 ABCD 是平行四边形, AC 是对角线, EF 垂直平分 AC ,垂足为
点 O.
求证: OE OF .
证明:∵四边形 ABCD 是平行四边形,
∴ DC ∥ AB .
∴ ECO ① .
∵ EF 垂直平分 AC ,
∴② .
又 EOC ___________③ .
∴ COE AOF ASA .
∴ OE OF .
小虹再进一步研究发现,过平行四边形对角线 AC 中点的直线与平行四边形一组对边相
交形成的线段均有此特征.请你依照题意完成下面命题:
过平行四边形对角线中点的直线 ④ .
20.为了解 A、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关
人员分别随机调查了 A、B 两款智能玩具飞机各 10 架,记录下它们运行的最长时间(分
组成的三位数 bcd 的和能被 9 整除,则满足条件的数的最大值是___________.
三、解答题
18.计算:
(1) a 2 a a 1 a 1 ;
(2)
x2
x
x
.
2
x 2x 1
x 1
19.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对
【详解】解:∵两个相似三角形周长的比为 1: 4 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若AD=DC=2,求AG的长.
14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.
15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:CD=BE;
(2)若AD=3,DC=4,求AE.
18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.
19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且 .
(1)求证:BF=EF﹣ED;
(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.
23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.
(1)试说明梯形ABCD是等腰梯形;
(2)若AD=1,BC=3,DC= ,试判断△DCF的形状;
(3)在条件(2)下,射线BC上是否存在一点P,使△P说明理由.
(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.
9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.
10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;
24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.
(1)求证:AD=AE;
(2)若AD=8,DC=4,求AB的长.
16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.
17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.
(1)求证:DH= (AD+BC);
(2)若AC=6,求梯形ABCD的面积.
22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.
(1)求证:△AGE≌△DAB;
(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.
12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
(1)求证:AE=GF;
(2)设AE=1,求四边形DEGF的面积.
13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.
(1)证明:EF=EA;
(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.
11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求线段CD的长;
(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣ ∠EBC.
6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.
(1)若AB=6cm, ,求梯形ABCD的面积;
(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.
2015年重庆中考数学24题专题练习
1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE
(1)求证:BE=CE;
(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.
2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.
(1)若HE=HG,求证:△EBH≌△GFC;
(2)若CD=4,BH=1,求AD的长.
3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.
(1)当CE=1时,求△BCE的面积;
(2)求证:BD=EF+CE.
20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.
(1)若EF⊥AF,AF=4,AB=6,求AE的长.
(2)若点F是CD的中点,求证:CE=BE﹣AD.
21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.
4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且 .过点E EF∥CA,交CD于点F,连接OF.
(1)求证:OF∥BC;
(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.
5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB= ,CF=6.
7、已知:如图, ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.
(1)求证:AE=ED;
(2)若AB=BC,求∠CAF的度数.
8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.
(1)求证:∠DAE=∠DCE;