金属的应力腐蚀和氢脆断裂
6 金属的应力腐蚀和氢脆断裂
举例
低碳钢,低合金钢— 低碳钢,低合金钢—碱脆,硝脆; 高强度钢 钛合金 不锈钢— 不锈钢—氯脆; 铜合金— 铜合金—氨脆; 高强度铝合金— 高强度铝合金—脆裂.
2,产生条件
应力:静应力远低于材料的屈服强度,且 一般为拉应力.包括工作应力和残余应力. 化学介质:一定材料对应一定的化学介质; 如黄铜—氨气氛,不锈钢— 如黄铜—氨气氛,不锈钢—氯离子的腐蚀 介质,低碳钢— 介质,低碳钢—碱脆. 金属材料:纯金属一般不会产生应力腐蚀, 合金对应力腐蚀都比较敏感,不同的合金 成分,敏感性不同.
四,防止应力腐蚀的措施
应力腐蚀是通过阳极溶解的过程进行的. 应力腐蚀机理就是滑移— 应力腐蚀机理就是滑移—溶解理论.它 可以简单地归结为四个过程,即滑移— 可以简单地归结为四个过程,即滑移— 膜破—阳极溶解— 膜破—阳极溶解—再钝化. 防止应力腐蚀的方法要视具体的材料— 防止应力腐蚀的方法要视具体的材料— 介质而定.
2,应力腐蚀临界应力场强度因子KISCC 应力腐蚀临界应力场强度因子K
定义:在特定介质中不发生应力腐蚀断裂 的最大应力场强度因子. 含宏观裂纹的试样,恒定载荷,特定介质, 测KI~tf曲线. KISCC值的测定:1) 恒载荷法:使KI不断增 值的测定:1) 恒载荷法:使K 大的方法,最常用的是恒载荷的悬臂梁弯 曲试验装置.2) 恒位移法:使K 曲试验装置.2) 恒位移法:使KI不断减少, 用紧凑拉伸试样和螺栓加载.
防止应力腐蚀的措施
1,合理选择金属材料:正确选材,选用 KISCC较高的合金. 2,减少或消除机件中的残余拉应力:主要是 应力集中,注意工艺措施. 3,改善化学介质. 4,采用电化学保护:使金属远离电化学腐蚀 区域.一般采用阴极保护法,但高强度钢 或其它氢脆敏感的材料不宜采用.
第六章 金属的应力腐蚀与氢脆断裂
第六章金属的应力腐蚀与氢脆断裂Chapter 6 Stress Corrosion and Hydrogen Embrittlement ofMetals第一节概述(Brief introduction)1、定义(Definition)在应力和环境介质的共同作用下,金属构件产生破坏行为按其受力情况与破坏方式的不同可分为以下三种基本类型。
应力腐蚀——金属构件在静态或准静态拉应力和环境介质的共同作用下,经过一定的时间后而产生的低应力脆断称为应力腐蚀(SCC);(包括低碳钢的碱脆、低碳钢的硝脆、奥氏体不锈钢的氯脆和低合金高强度钢的氢脆等)腐蚀疲劳——金属构件在交变应力和环境介质的共同作用下,经过一定的时间后而产生的断裂称为腐蚀疲劳;腐蚀磨损——金属构件在环境介质作用下还受机械摩擦,或者由于腐蚀介质的直接冲刷等引起表面磨损的现象腐蚀磨损。
由于金属的应力腐蚀现象更为普遍,并且其破坏原理更为复杂,氢脆也是极为重要的一种破坏方式,因此本章重点以应力腐蚀和氢脆为主。
同时由于这类腐蚀大多为低应力脆断,因此具有很多的危险性,同时随着航空、原子能、石油化工等工业的迅速发展,这类腐蚀越来越多,因此有必要进行研究。
第二节应力腐蚀(Stress corrosion)(一)应力腐蚀现象及其产生条件(Stress corrosion phenomenon and engendering condition)应力和环境综合作用的结果,其效果不是两者的简单迭加。
绝大多数金属材料在一定介质下都有应力腐蚀倾向。
如:1)低碳及低合金钢的碱脆与硝脆;2)奥氏体不绣钢的氯脆;3)铜合金的氨脆;4)高强度铝合金在空气、蒸馏水中的脆断;5)低合金高强度钢及不锈钢的氢脆等。
可见产生应力腐蚀的条件是:应力、介质及合金的材料(纯金属不会产生应力腐蚀)。
(二)应力腐蚀断裂机理及断口形貌特征(Fracture mechanism and morphology of stress corrosion)1、断裂机理(Fracture mechanism)目前断裂机理有多种理论,至今尚未得到统一,但主要以阳极溶解为基础的钝化膜破坏理论为主。
应力腐蚀断裂和氢脆
海川流浪人应力腐蚀断裂和氢脆金属材料的两种经常有关而又有别的被破坏(或断裂)的现象。
应力腐蚀断裂(SCC) 是应力与腐蚀介质协同作用下引起的金属断裂现象(见金属腐蚀)。
它有三个主要特征:①应力腐蚀断裂是时间的函数。
拉伸应力越大,则断裂所需时间越短;断裂所需应力一般都低于材料的屈服强度。
这种应力包括外加载荷产生的应力、残余应力、腐蚀产物的楔形应力等。
②腐蚀介质是特定的,只有某些金属-介质的组合(见表发生应力腐蚀断裂的典型体系──金属与腐蚀介质的组合)情况下,才会发生应力腐蚀断裂。
若无应力,金属在其特定腐蚀介质中的腐蚀速度是微小的。
③断裂速度在纯腐蚀及纯力学破坏之间,断口一般为脆断型。
氢脆(HE) 又称氢致开裂或氢损伤,是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象。
所谓“损伤”,是指材料的力学性能下降。
在氢脆情况下会发生“滞后破坏”,因为这种破坏需要经历一定时间才发生。
氢的来源有“内含”的及“外来”的两种:前者指材料在冶炼及随后的机械制造(如焊接、酸洗、电镀等)过程中所吸收的氢;而后者是指材料在致氢环境的使用过程中所吸收的氢(见金属中氢)。
致氢环境既包括含有氢的气体,如H□、H□S;也包括金属在水溶液中腐蚀时阴极过程所放出的氢。
金属的应力腐蚀断裂和氢脆是两种既经常相关而又不同的现象。
在高温高压氢气中结构件的开裂,既是HE,又是SCC;水溶液中应力腐蚀时,若阴极过程析出的氢对断裂起了决定性作用,则这种破坏既是SCC,也是HE;这两个实例便位于图1应力腐蚀断裂(SCC)和氢脆(HE)关系的示意所示的重叠区内。
试验方法和工程参量应力腐蚀试验一般采用光滑或缺口试样,固定环境条件(即腐蚀介质和温度),采用断裂为临界点、测定固定应力下的断裂时间(□□)或固定□□下的断裂应力(□□),用□□的长短或□□的高低,来衡量材料抗应力腐蚀断裂能力的大小。
70年代以来,人们广泛地运用了断裂力学研究应力腐蚀断裂;用预制裂纹的试样进行应力腐蚀试验,如图2断裂时间□□与应力场强度因子(□□)之间的关系所示。
应力腐蚀和氢脆
应力腐蚀和氢脆
工艺情况: 淬火、回火后 酸洗、电镀
严格控制电镀工艺,镀后还要通过 对电镀件长时间的烘烤,使游离状 的氢得以释放,减轻对镀件产品的 影响。
应力腐蚀和氢脆
⑵环境氢脆
指材料原先不含氢或含氢极微,但在有氢的环境 与介质中产生氢脆。这样的环境通常包括: 1)在纯氢气氛中(有少量的水分,甚至干氢)由分 子氢造成氢脆; 2)由氢化物,如HF致脆; 3)由H2S致脆; 4)高强钢在中性水或潮湿的大气中致脆。
应力腐蚀和氢脆
模块二 氢 脆
应力腐蚀和氢脆
能力知识点1 氢脆和氢的来源
应力腐蚀和氢脆
一、什么是氢脆
氢脆(Hydrogen embrittlement —HE) 又称氢致开裂或氢 损伤,是由于氢和应力的共同作用而导致金属材料产生塑 性下降、断裂或损伤的现象。
从力学性能上看,氢脆有以下表现:
氢对金属材料的强度指标影响不大,但使断面收缩率严重
应力腐蚀和氢脆
模块一 应力腐蚀
能力知识点1 应力腐蚀现象
应力腐蚀和氢脆
一、应力腐蚀
▪ 金属在应力和特定化学介质共同作用下,经过一 段时间后所产生的低应力脆断现象,称为应力腐 蚀断裂(Stress Corrosion Crack,缩写为SCC)。
▪ 发生应力腐蚀的温度一般在50~300℃之间。
危害:缓和的介质+较小的应力 1.导致应力腐蚀破坏的介质为不腐蚀或轻微
▪ 这是由于氢与金属中的第二相作用生成高压气体,使基体 金属晶界结合力减弱而导致金属脆化。
▪ 如在石油高压加氢及液化石油气的设备中,在300~ 500℃时,由于氢与钢中的碳化物作用生成高压的CH4气 泡,当气泡在晶界上达到一定密度后,金属的塑性将大幅 度降低。
氢脆与应力腐蚀断裂的比较
三、氢脆与应力腐蚀断裂的比较
应力腐蚀与氢脆往往同时发生。
因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。
但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。
表5-2 氢脆与应力腐蚀断裂异同
应力腐蚀开裂氢脆
产生条件
1 临界值以上的拉应力或低速度应力
临界值以上的拉应力(三
轴应力)
2 合金发生。
而纯金属不发生
合金与某些纯金属都能发
生
3
一种合金只对少数特定化学介质是敏感
的。
其数量和浓度不一定大
只要含氢或能产生氢(酸
洗、电镀)的情况都能发
生
4 发生温度从室温到300℃从-100~100℃
5 无应力时合金对环境是惰性的
无应力时合金对环境是惰
性的
6 阳极反应阴极反应
7 采用阴极防护能明显改善阴极极化反而促进氢脆
8 受应力作用时间支配不明显
9 对金属组织敏感对金属组织敏感
10 不同的σs有不同的门槛值不同的σs有不同的含氢量
外观形貌特征1 裂纹从表面开始。
断口不平整
裂纹从次表面或内部开
始。
断口较平整
2 裂纹分叉,有二次裂纹几乎不分叉,有二次裂纹
3
裂纹张开度小
裂纹不张开
4
裂纹萌生处可能有腐蚀产物,但不一定有
点蚀
裂纹萌生点在内部与点蚀
无关
5 裂纹萌生点可能是一个或多个
裂纹萌生点可能是一个或
多个
6 裂纹不一定在应力集中处萌生裂纹多在三轴应力区萌生
7 多数为沿晶、奥氏体不锈钢为穿晶断口多数为沿晶
8 沿晶断口上有腐蚀产物断口上没有腐蚀。
[机械电子]金属的应力腐蚀和氢脆断裂
2. 白点(发裂)
当钢中含有过量的氢肘,随着温度降低, 氢在钢中的溶解度减小。如果过饱和的氢未 能扩散逸出,便聚集在某些缺陷处而形成氢 分子。此时。氢的体积发生急剧膨胀,内压 力很大足以将金属局部撕裂,而形成微裂纹。 这种微裂纹的断面呈圆形或椭圆形,颜色为 银白色。故称为白点。
图6-9为10CrNiMoV钢锻材调质后纵断面上 的白点形貌
(二). 应力腐蚀断口特征
应力腐蚀的显微裂纹如 图6-2所示,常有分叉现象, 呈枯树枝状。这表明,在应 力腐蚀时,有一主裂纹扩展 较快,其它分支裂纹扩展较 慢。根据这一特征可以将应 力腐蚀与腐蚀疲劳、晶间腐 蚀以及其它形式的断裂区分 开来。
断口的微观形貌丁般为沿晶断裂,也可 能为穿晶解理断裂。其表面可见到“泥状花 样”的腐蚀产物(图6-4a)及腐蚀坑(图6-4b)。
,特别适于单件、成批生产企业使用 。马鞍 车床在 马鞍槽 内可加 工较大 直径工 件。机 床导轨 经淬硬 并精磨 ,操作 方便可 靠。车 床具有 功率大 、转速 高
,刚性强、精度高、噪音低等特点。
12.仪表车床
仪表车床属于简单的卧式车床,一般来 说最大 工件加 工直径 在250mm以下 的机床 ,多属 于
一、应力腐蚀现象及其产生条件
1. 应力腐蚀现象
金属在拉应力和特定的化学介质共同作 用下,经过一段时间后所产生的低应力脆断 现象,称为应力腐蚀断裂(Stress Corrosion Cracking,缩写办SCC)。
2. 产生条件
应力、化学介质和金属材料三者是产生应力腐 蚀的条件。
⑴ 应力 在化学介质诱导开裂过程中起作用的是拉应力。 ⑵ 化学介质 只有在特定的化学介质中,某种金属材料才能
HRC62-65。约为45号钢硬度的2.7倍 。具有 一定的 红热硬 度,耐 温程度 可达560-600摄氏度 。韧性 和加工 机能较 好。高 速钢刀 具制造 简朴, 刃磨利 便,
第7章_金属的应力腐蚀和氢脆断裂
da/dt-KI曲线几乎与纵坐标轴平行。da/dt 值小, 但受K之影响较大。
第II段出现水平线段,da/dt 决定于环境而受应力强
度的影响较小,第II阶段时间越长,材料抗应力腐蚀
性能越好。若通过实验测出某种材料在第II阶段的
da/dt值及第二阶段结束时的KI值,就可估算出机件
22
三、钢的氢致延滞断裂机理
• 三个阶段:孕育,裂纹亚稳扩展,失稳扩展阶段。
• 孕育期:α-Fe晶格中氢原子数量↑+迁移+偏聚
• 1)氢气团导致裂纹
•
氢固溶于α-Fe晶格,存在刃型位错的应力场时,氢原子与位错交互作用,
迁移到位错线附近的拉应力区,形成氢气团。 气团随位错运动,当其遇到障
碍时产生位错塞积,同时氢原子在塞积区聚集。若应力足够大,则在位错塞积
貌也是完全脆性的。 (2)断口往往是粗糙的。 (3)在亚稳扩展区可见腐蚀产物带来的颜色变化(黑色或灰
黑色),但深裂纹的裂夹区颜色可能很浅,不易为肉 眼辨认。 (4)由于断裂总是从与介质接触的表面开始,故启裂区表面 附近的断口颜色最深,有时由于腐蚀进展的变化会在 断口上留下海滩花样。 (5)与介质接触表面往往有点蚀或蚀斑。 (6)应注意,有腐蚀产物不是判定应力腐蚀的充分条件。因 为也有可能由于别的机制导致断裂后,断口受到随后 的腐蚀。
2、力学因素:减小残余拉应力,尽可能增加残余压 应力。
3、材质因素:降低含氢量,细化组织。合理选择制 备和热处理工艺
27
28
21
3、氢化物致脆 与氢有较大亲和力的ⅣB、ⅤB族金属,极易生成脆性氢化
物,氢化物很硬、脆,与基体结合不牢。使金属脆化。 晶粒粗大,氢化物呈薄片状→较大应力集中→危害大 晶粒细小,氢化物块状不连续分布→危害小 4、氢导致延滞断裂 定义:由于适量以固溶形式存在的氢,金属在低于屈服强
应力腐蚀和氢脆
在纵向断面上,裂纹呈现近似圆形或椭圆形的银白色斑点, 故称白点;在横断面宏观磨片上,腐蚀后则呈现为毛细裂 纹,故又称发裂。
10CrNiMoV钢锻材调质后纵断面上的白点形貌
如炼油过程中的一些加氢反应装置;石油化工生产
过程中的甲醇合成塔等。
二、氢的来源
按照氢的来源可将氢脆分为内部氢脆和环境氢脆。
⑴内部氢脆:材料在使用前内部已含有足够的氢
并导致了脆性,它可以是材料在冶炼、热加工、 热处理、焊接、电镀、酸洗等制造过程中产生。
严格控制电镀工艺,镀后还要通过 对电镀件长时间的烘烤,使游离状 的氢得以释放,减轻对镀件产品的 影响。
M——裂纹截面上的弯矩, M=F·。 L B——试样厚度。 W—— 试样宽度。 a—— 裂纹长度。
1/ 2
4.12M KI 3/ 2 BW
1 3 a a3
能力知识点3 提高应力腐蚀抗力的措施
降低和消除应力
在加工(如热处理、焊接、电镀等)和装配过程中, 应尽量避免产生残余拉应力,或者在加工中采取 必要的消除应力措施。 制备和装配时尽量使结构具有最小的应力集中系 数,并使其与介质接触部分具有最小的残余拉应 力。
三、氢脆的类型和特点
氢可通过不同的机制使金属脆化,因氢脆的种类 很多,现将常见的几种氢脆现象从其特征简介如 下。
1.氢蚀
这是由于氢与金属中的第二相作用生成高压气体,使基体 金属晶界结合力减弱而导致金属脆化。 如在石油高压加氢及液化石油气的设备中,在300~ 500℃时,由于氢与钢中的碳化物作用生成高压的CH4气 泡,当气泡在晶界上达到一定密度后,金属的塑性将大幅 度降低。 这种氢脆现象的断裂源产生在工件与高温、高压氢气相接 触的部位。 宏观断口形貌:呈氧化色,颗粒状;微观:晶界明显加宽, 呈沿晶断裂。
第6章_金属的应力腐蚀和氢脆断裂
6.1 应力腐蚀
一、定义:
应力腐蚀断裂: 金属在拉应力和特定的化学介质共同作用
下,经过一段时间后所产生的低应力脆断现象, 称为应力腐蚀断裂。
实际服役的零件通常承受的应力水平较低,介质 的腐蚀作用也较弱,它们单独存在时,零件可能 不会失效。但在二者联合作用下,失效则发生。
应力腐蚀断裂并不是金属在应力作用下的机械性破 坏与在化学介质作用下的腐蚀性破坏的叠加所造成 的,而是在应力和化学介质的联合作用下,按特有 机理产生的断裂。其断裂强度比单个因素分别作用 后再叠加起来的要低得多。
6.1 应力腐蚀
二、应力腐蚀断裂产生的条件及特征
1、拉应力是产生应力腐蚀断裂的必要条件 拉应力可来自外载(工作应力),也可以来自各 种残余应力,如焊接、冷加工、热处理等引起的 残余应力。
2、产生应力腐蚀的环境总是存在化学介质 介质的腐蚀性一般都很弱,若无拉应力作用,材 料在介质中的腐蚀速度很慢,甚至可在金属表面 形成保护膜而不产生应力腐蚀断裂。只有在介质 与拉应力同时作用下,才产生强烈的应力腐蚀。 而且,产生应力腐蚀的介质一般都是特定的,即 每种材料只对某些介质敏感,而该介质对其它材 料可能没有明显作用。
3、金属材料中只有合金才产生应力腐蚀,一般纯金 属不会发生应力腐蚀。所有合金对应力腐蚀都有 不同程度的敏感性。
4、应力腐蚀是一种延迟断裂,即在拉应力作用下, 需经一定时间后才产生裂纹和裂纹扩展。
5、应力腐蚀断裂一般是脆性的,不产生宏观塑性变 形。其断口可为沿晶、穿晶和混合型断裂。多数
情况下,以沿晶断裂为主。
一、氢脆的概念
由氢和应力联合作用而使材料产生脆性断 裂的现象谓之氢脆断裂,简称氢脆,亦称氢损 伤。
二、氢脆产生原因
• 氢脆的产生可有多种途径。在应力腐蚀过程 中,除在阳极产生金属溶解外,若同时在阴极 发生 H++eH 的反应生成原子氢,则会使氢 吸附在金属表面。
材料力学性能金属的应力腐蚀和氢脆
镍基合金
热浓NaOH溶液,HF溶 液和蒸汽
发烟硝酸,300℃以上旳
钛合金 氯化物,潮湿性空气及海
水
(3)一般以为,纯金属不会产生应力腐蚀,全部合金相应 力腐蚀都有不同程度旳敏感性,合金也只有在拉伸应力与 特定腐蚀介质联合作用下才会产生应力腐蚀断裂。
但在每—种合金系列中,都有相应力腐蚀敏感旳合金成 份。例如,铝镁合金中当镁旳质量分数不小于4%,相应力 腐蚀很敏感;而镁旳质量分数不不小于4%时,则不论热处 理条件怎样,它几乎都具有抗应力腐蚀旳能力。
第六章金属旳应力腐蚀和氢脆断裂
金属工件在加工过程中往往产生残余应力,在服役过程中 又承受外加载荷,假如与周围环境中多种化学介质或氢相接 触,便会产生特殊旳断裂现象,其中主要有应力腐蚀断裂和 氢脆断裂等,这些断裂形式大多为低应力脆断,具有很大旳 危险性。
本单元主要简介应力腐蚀、氢脆和腐蚀疲劳产生旳原因、 断裂特征和影响原因等,简介金属材料抵抗应力腐蚀、氢脆 和疲劳腐蚀断裂旳力学性能指标及预防其断裂旳措施。
➢ 与脆性断口相同。沿晶断裂,晶界面上有许多撕裂棱。 ➢ 实际断口裂纹扩展途径和KI有关:
KI高,穿晶韧窝; KI中,准解理; KI低,沿晶
➢ 断裂类型与杂质含量有关 杂质高——沿晶断裂 杂质低——穿晶断裂
三、钢旳HIC机理
高强钢HIC三阶段:
1)孕育阶段([H]钢中迁移[H]偏聚裂纹)
➢ 三个环节:氢原子进入钢中、氢在钢中旳迁移和氢旳 偏聚。 → 需要时间
腐蚀; 2.造成应力腐蚀破坏旳应力为极小应力。
钢丝应力腐蚀与一般拉应力断裂比较
二、应力腐蚀产生旳条件
(1)只有在拉伸应力作用下才干引起应力腐蚀开裂( 近年来,也发觉在不锈钢中能够有压应力引起)。
第06章金属的应力腐蚀和氢脆断裂-材料力学性能
应力腐蚀敏感性最大。
7
二、应力腐蚀断裂机理和断口形貌特征
(一)应力腐蚀断裂机理 机理有多种,目前还没有一种理论能够解释所 有的应力腐蚀断裂现象,应力腐蚀断裂最基本的机 理是滑移溶解理论(或称钝化膜破坏理论)和氢脆
的水平部分所对应的ΚⅠ初值即为材料的ΚⅠscc。
14
2、应力腐蚀裂纹扩展速率da/dt
当应力腐蚀裂纹尖端的 KI>KISCC时,裂纹就会
不断扩展。
单位时间内裂纹的扩展量称为应力腐蚀裂纹 扩展速率,da/dt。
da lg K dt
关系曲线分三个阶段(Ⅰ、Ⅱ、Ⅲ或初
始、稳定、失稳),如图6-7所示。
理论。
在此仅介绍两种为多数人接受的应力腐蚀开裂 理论。 1、以阳极溶解为基础的钝化膜破坏理论 如图所示。 (该理论只能很好地解释沿晶断裂
的应力腐蚀)
8
2、晶界微电池溶解理论
在 γ 体护环钢的龟裂现象中发现:沉淀于晶界
的碳化物其实为类似珠光体的结构,该结构与介质
形成微电池并迅速溶解,导致脆断。断裂过程分为
第Ⅱ阶段时间越长材料抵抗应力腐蚀性能越好。
由图6-7中第Ⅱ阶段的da/dt—KI两个数值的关系,
可以估算机件的剩余寿命。
15
四、防止应力腐蚀的措施
从导致应力腐蚀的三要素(三个条件)下手。 1、合理选择金属材料 根据机件所承受的应力和接触的化学介质,选 用耐应力腐蚀的金属材料(避开灵敏材料)。即选
用KⅠscc较高的合金。
金属的应力腐蚀和氢脆断裂
§6-2 氢脆
由于氢和应力的共同作用,而导致金属材料产 生脆性断裂的现象,称为氢脆断裂(简称氢脆) 一、氢在金属中存在的形式 内含的(冶炼和加工中带入的氢); 外来的(工作中,吸H)。 间隙原子状 固溶在金属中; 分子状 气泡中; 化学物(氢化物)。
二、氢脆类型及其特征
1、氢蚀(或称气蚀) 高压气泡(H2,CH4) 宏观断口:呈氧化色,颗粒状(沿晶); 微观断口:晶界明显加宽,沿晶断裂。 2)白点(发裂) 氢的溶解度↓,形成气泡体积↑,将金属的局 部胀裂。 宏观:断面呈圆形或椭圆形,颜色为银白色。 甚至有白线。
二、应力腐蚀
1、机理 滑移——溶解理论(钝化膜破坏 理论) a)应力作用下,滑移台阶露头 且钝化膜破裂(在表面或裂纹 面); b)电化学腐蚀(有钝化膜的金 属为阴极,新鲜金属为阳极); c)应力集中,使阳极电极电位 降低,加大腐蚀; d)若应力集中始终存在,则微 电池反应不断进行,钝化膜不能 恢复。则裂纹逐步向纵深扩展。 (该理论只能很好地解释沿晶断 裂的应力腐蚀)
2、断口特征
宏观:有亚稳扩展区, 最后瞬断区(与疲劳 裂纹相似);断口呈 黑色或灰色。 微观:显微裂纹呈枯树 枝状;腐蚀坑;沿晶 断裂和穿晶断裂。 (见图6-2,和p2)
三、力学性能指标
用常规方法测定的 σSCC~tf曲 线,得到的σSCC不能客观地 反映材料的应力腐蚀抗力。 1、临界应力场强度因子KISCC 恒定载荷,特定介质,测 KI~tf曲线。 将不发生应力腐蚀断裂的最 大应力场强度因子,称为应 力腐蚀临界应力场强度因子。
2、裂纹扩展速度da/dt
KI>KISCC,裂纹扩 展,速率da/dt da/dt~ KI |曲线上 的三个阶段(初始、 稳定、失稳)由 (图6-7,P152) 可以估算机件的剩 余寿命。
金属应力腐蚀和氢脆断裂ppt课件
2. 白点〔发裂〕
当钢中含有过量的氢肘,随着温度降低, 氢在钢中的溶解度减小。假设过饱和的氢未 能分散逸出,便聚集在某些缺陷处而构成氢 分子。此时。氢的体积发生急剧膨胀,内压 力很大足以将金属部分撕裂,而构成微裂纹。 这种微裂纹的断面呈圆形或椭圆形,颜色为 雪白色。故称为白点。
图6-9为10CrNiMoV钢锻材调质后纵断面上 的白点形貌
产生应力腐蚀。 ⑶ 金属资料 普通以为,纯金属不会产生应力腐蚀,一切合
金对应力腐蚀都有不同程度的敏感性。
二、应力腐蚀断裂机理及断口形貌特征
〔一〕 应力腐蚀断裂机理 关于在应力和化学介质结协作用下裂纹
的构成和扩展问题,有多种实际,至今尚未 得到一致的见解。下面着重引见以 阳极溶解为根底的钝 化膜破坏实际。如图 6-1所示。
〔二〕. 应力腐蚀断口特征
应力腐蚀的显微裂纹如 图6-2所示,常有分叉景象, 呈枯树枝状。这阐明,在应 力腐蚀时,有一主裂纹扩展 较快,其它分支裂纹扩展较 慢。根据这一特征可以将应 力腐蚀与腐蚀疲劳、晶间腐 蚀以及其它方式的断裂区分 开来。
断口的微观形貌丁般为沿晶断裂,也能 够为穿晶解理断裂。其外表可见到“泥状花 样〞的腐蚀产物(图6-4a)及腐蚀坑(图6-4b)。
图6-5为某种钛合金的预制裂纹试样在恒载荷下, 于3.5%NaCl水溶液中进展应力腐蚀实验的结果。
试样在特定化学介质中不发生应力腐蚀断裂的、 最大应力场强 度因子称为应 力腐蚀临界应 力场强度因子 (或称为应力腐 蚀门槛值),以
表示。
KⅠscc
对于含有裂纹的机件,当作用于裂纹尖端的初
始应力场强度因 KⅠ初 ≤ KⅠsc时c ,原始裂纹在化学介
第Ⅱ阶段时间越长,资料抗应力腐蚀性能越好。
四、防止应力腐蚀的措施
氢脆与应力腐蚀断裂的比较
三、氢脆与应力腐蚀断裂的比较
应力腐蚀与氢脆往往同时发生。
因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。
但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。
表5-2 氢脆与应力腐蚀断裂异同
? 应力腐蚀开裂氢脆
产生条件1临界值以上的拉应力或低速度应力
临界值以上的拉应力
(三轴应力)
2合金发生。
而纯金属不发生
合金与某些纯金属都能
发生
3
一种合金只对少数特定化学介质是
敏感的。
其数量和浓度不一定大
只要含氢或能产生氢
(酸洗、电镀)的情况
都能发生
4发生温度从室温到300℃从-100~100℃
5无应力时合金对环境是惰性的
无应力时合金对环境是
惰性的
6阳极反应阴极反应
7采用阴极防护能明显改善阴极极化反而促进氢脆8受应力作用时间支配不明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 测定金属材料的KIscc可用 恒载荷法或恒位移KI初, 一般用恒载荷法。
• 整个试验过程中载荷恒定, 随着裂纹的扩展,裂纹尖
端KI增大,可用下式计算:
KI
4.12M BW 3/ 2
1
[
3
3 ]1/ 2
• 其中α=1-a/W,M=FL
• 应力腐蚀断裂SCC:拉应力和特定介质共同作
用下所引起的断裂 • • 一.应力腐蚀断裂的条件及特征 • 1、应力腐蚀现象 低碳钢和低合金钢在苛性碱溶液中的“碱脆”和在含
有硝酸根离子介质中的“硝脆”。 奥氏体不锈钢在含有氯离子介质中的“氯脆”。 铜合金在氨气介质中的氨脆。
2、产生条件
(1)应力:机件所承受的应力包括工作应力和 残余应力。在化学介质诱导开裂过程起作用 的是拉应力,且产生应力腐蚀的应力不一定 很大。
• 可按下式将腐蚀的失重指标换算成腐蚀的深度指 标:
• VL= V-×24×365×10-3/ρ= V-×8.76/ρ • VL-腐蚀的深度指标 mm/a (毫米/年) • ρ-金属的密度 g/cm3
• (3)均匀腐蚀金属耐蚀性的评定 • 对于均匀腐蚀的金属材料,耐蚀性等级的划分大
多采用深度指标,但金属腐蚀深度一般是随时间变 化的,所以从腐蚀手册查到的资料难以精确地反映 出实际情况,因此选用评定标准时,应考虑实际情 况和使用期限。
1、均匀腐蚀的程度与评定方法
• (1)腐蚀速度的质量指标
• 金属因腐蚀而发生质量变化,在失重时是指腐蚀前的 质量与清除腐蚀产物后的质量之间的差值1
S t
• V--失重时的腐蚀速度g/m2h
• W0-金属初始质量 • W1-清除腐蚀产物后的质量 • S-金属的表面积 t-腐蚀时间
连成一片的腐蚀破坏。
• (2)不均匀腐蚀:腐蚀主要发生在金属表面的某一区 域,而表面的其他部分未被破坏。
金属腐蚀破坏形态 1-均匀腐蚀,2-不均匀腐蚀,3-选择性腐蚀,4-应力腐蚀, 5-斑点腐蚀,6-溃疡腐蚀,7-孔蚀,8-缝隙腐蚀, 9-晶间腐蚀,10-穿晶腐蚀,11-表面下腐蚀,12-疲劳腐蚀
• 记录各种KI初作用下的断 裂时间tf,以KI初与lgtf为坐 标作图,曲线水平部分所 对应KI初的即为KISCC。
图6-9悬臂梁弯曲试验装置简图 1.砝码,2.溶液槽,3.试样
3.应力腐蚀裂纹扩展速率
• 单位时间内应力腐蚀 裂纹的扩展量称应力腐蚀 裂纹扩展速率即da/dt, 实验证明:
•
da/dt = f(KI)
• 二.应力腐蚀的机理 • 阳极溶解机理—钝化膜破坏理论:拉应力
使钝化膜破裂,阳极电位下降,形成微电 池,产生阳极溶解。偏析引起晶间腐蚀。
图8-2
图6-1应力腐蚀断裂机理简图
在应力腐蚀过程中,衡量腐蚀速度的腐蚀电流I为:
1 I R (Vc Va )
• R-微电池中的电阻;Vc,Va电池两极的电位。
• (2) 电化学腐蚀:金属表面与电解质溶液发 生电化学反应而引起的破坏。(阳极反应与阴极 反应)
腐蚀电池形成原因举例
钢 铝
渗碳体
新管道
新管道
(a)不同金属组合 应力集中
(d)应力及形变差异
铁 (b)金属中含杂相
©表面状态不同
粘土
砂土
(e)氧浓度差异
表面状态不同缝内Cu2+浓度 比缝外高
铜
铜
(f)金属离子浓度差异
2、局部腐蚀的程度与评定方法
• (1)局部腐蚀程度的表示方法
• 金属的局部腐蚀其质量及外形尺寸一般没有明显 变化,但其力学性能下降。为判断金属局部腐蚀的 程度,可以进行力学性能试验测定金属腐蚀后的性 能变化加以评定:
• 腐蚀强度指标:指材料腐蚀前后的强度极限变化 率。
• Kσ=[(σb-σ’b)/ σb] ×100%(腐蚀时间t后) • Kσ-腐蚀强度指标 σb-腐蚀前强度 • σ’b-腐蚀后强度
表面为泥状花样,被一层腐 蚀产物覆盖,有泥状裂纹
图6-3 奥氏体不锈钢应力腐蚀断口微观形貌
混合断裂
穿晶型应力腐蚀裂 纹可用在应力作用下局 部微区产生滑移台阶使 钝化膜破裂来说明,如 图6-4(a)所示。
沿晶型应力腐蚀裂 纹是因晶界被沉淀相弱 化,而在表面突出的单 个晶粒形成台阶,使表 面钝化膜破裂而形成的, 如图6-4(b)所示。
• (3) 应力和环境共同作用下的腐蚀 • ① 应力腐蚀断裂:拉应力下的电化学腐
蚀
• ② 腐蚀疲劳:交变应力下电化学腐蚀: 船用螺旋桨推进器、涡轮及涡轮叶片、内 燃机连杆。
• ③ 氢损伤:氢脆、氢鼓泡、氢蚀
•
三、耐蚀性及其评定方法
• 金属材料在某一环境介质下承受或抵抗腐蚀的能力 ――称为金属材料的耐蚀性或抗蚀性。
• 5、应力腐蚀的主裂纹扩展时常有分枝。但 应力腐蚀裂纹并不总是分技的。
2、应力腐蚀断口微观特征
• 表面为泥状花样及腐蚀坑。断口为沿晶 断裂,也有穿晶解理断裂或者准解理断 裂,或混合型断裂。
泥状花样
腐蚀坑
图6-2 应力腐蚀断口的微观形貌特征
奥氏体不锈钢应力腐蚀的断口的 微观形貌。
表面有腐蚀产物和外来杂 质覆盖层,形似岩石状
• 曲线分为三个阶段:
• (1)存在一个门槛值 KISCC。当KI<KISCC时, da/dt =0 或微不足道。
图6-8 应力腐蚀裂纹的da/dt-KI关 系曲线
• (2)第Ⅰ阶段:当KI超过 KIscc时裂纹突然加速扩展, d轴a平/dt行-。KId曲a线/dt几值乎小与,纵但坐受标 KI之影响较大。
• 腐蚀的延伸率指标:指材料腐蚀前后延 伸率的变化。
• Kδ=[(δ-δ’)/ δ] ×100%(腐蚀时间t后) • (2)局部腐蚀耐蚀性评定
• 局部腐蚀的种类和测试方法很多,评 定标准也不尽相同,所以应根据局部腐 蚀的类型选择表示腐蚀程度的指标,按 其使用条件与要求选用评定标准。
• 第二节 金属材料的应力腐蚀断裂
• (2)腐蚀破坏扩展到金属材料的内部;并使金属性 质和组成发生改变。这种破坏往往是局部向整体扩 展;
• (3)局部一旦遭到破坏;常常造成突发事件; • (4)金属材料的表面状态对金属的腐蚀过程的进行
有显著的影响。
• 第一节 材料腐蚀的基本概念
• 一.腐蚀的基本概念
• 腐蚀:物质的表面因发生化学或电化学反 应而受到破坏的现象。
• 如果在介质中的极化过程相当强烈,则Vc-Va变 得很小,腐蚀过程就大受抑制;
• 如果介质中去极化过程很强,Vc-Va很大,腐蚀 电流增大,致使金属表面受到全面腐蚀,表面 不能形成钝化膜。
三、应力腐蚀断裂断口分析
• 1、应力腐蚀断裂断口宏观特征 • 应力腐蚀端口的宏观形貌与疲劳断口颇为
相似。也有亚稳扩展区和最后瞬断区。在亚 稳扩展区可见到腐蚀产物和氧化物。常呈黑 色或黑灰色,具有脆性特征。 • 最后瞬断区一般为快速撕裂破坏,显示基体 材料的特性。
3、改善化学介质
• 一方面设法减少和消除促进应力腐蚀开裂 的有害化学离子;另一方面可在化学介质 中添加缓蚀剂。
4、采用电化学保护
• 采用阴极保护法使金属在化学介质中的电 位远离应力腐蚀敏感电位区域。
第三节 氢脆
由于氢和应力的共同作用,而导致金属材料产生脆性断 裂的现象,称为氢脆断裂。
一、氢的来源及其在金属中的存在形态
图6-5应力腐蚀裂纹的分叉 现象
三、应力腐蚀力学性能指标
• 1.临界腐蚀应力 求一出组应相力同腐试蚀样断测裂量强不度同σ应SC力C。下的断裂时间tf,
图8-8 图6-6应力腐蚀σ-tf关系图8曲-线9
• 2. 应力腐蚀临界应力场强度因子 • KI初—tf,应力一定。KI在变化直至KIc,当KI小于
2. 根据腐蚀的环境分类 • (1) 大气腐蚀:金属在大气环境下发生的腐蚀。 • (2) 海水腐蚀:金属构件在海洋环境中发生的腐蚀。 • (3) 淡水腐蚀:金属在硬水或软水中的腐蚀。 • (4) 土壤腐蚀:金属在土壤中的腐蚀。 • (5) 化工介质腐蚀:酸、碱、盐溶液、有机化合物 • (6) 熔融介质腐蚀:熔融盐、碱、高温液体金属 3. 根据腐蚀破坏的外部特征分类 • (1) 全面腐蚀:均匀腐蚀,腐蚀分布在整个表面上并
• (3)第II段出现水平线段, da/dt 决定于环境而受应力 强度的影响较小。
• (4)第Ⅲ阶段裂纹长度接 近临界尺寸,da/dt依赖于KI, 材料进入失稳扩展的过渡区。 当KI增大到KIC时便失稳扩展 断裂。
图6-8 应力腐蚀裂纹的da/dt-KI关 系曲线
四、防止应力腐蚀的措施
1、合理选择金属材料 • 针对机件所受应力和接触的化学介质,选用耐应 力腐蚀的金属材料。选材时还应尽可能选取KIscc • 较高的合金。 2、减少或消除机件中的残余拉应力 • 必要时采用退火工艺以消除应力或采用喷丸等表 • 面处理方法。
化学介质
NaOH溶液; 低碳钢 沸腾硝酸盐溶液;沸 和低合 腾浓MgCl2溶液, 金钢 海水、海洋性和工业
性气氛;
奥氏体 酸性和中性氯化物溶 不锈钢 液;熔融氯化物
镍基 热浓NaOH溶液; 合金 HF蒸气和溶液;
铝合金 铜合金 钛合金
氯化物水溶液; 海水和海洋大气; 潮湿工业大气;
氨蒸气; 含氨气体; 含氨离子的水溶液 发烟硝酸;300℃以 上的氯化物;潮湿 空气及海水;
• 材料的腐蚀是一种自发进行的过程,是物 质由高能态向低能态的转变形式。
材料的腐蚀具有双重性。通常腐蚀对金属构 件是有害的,但有时可以利用腐蚀现象对金 属材料进行电化学加工,如制备信息硬件的 印刷线路板,制取奥氏体不锈钢粉末等。
• 二. 腐蚀的类型
1. 根据金属腐蚀的机理不同分类
• (1) 化学腐蚀:金属表面或非电解质直接发 生化学作用而引起的破坏,非电解质是指干燥气 体、高温气体、非电解质溶液等。金属的高温氧 化不属于电化学腐蚀。金属在非电解质溶液中的 腐蚀是指金属在有机物液体中的腐蚀。