一元二次方程教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程教学设计Quadratic equation teaching

一元二次方程教学设计

前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。

教学目标2.知道的一般形式,会把化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:的概念和它的一般形式。

难点:对的一般形式的正确理解及其各项系数的确定。

教学建议:

1.教材分析:

1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。

2)重点、难点分析

理解的定义:

是的重要组成部分。方程,只有当时,才叫做。如果

且,它就是了。解题时遇到字母系数的方程可能出现以下情况:(1)的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合的定义。

(2)条件是用“关于的”这样的语句表述的,那么它就隐

含了二次项系数不为零的条件。如“关于的”,这时题中隐含

了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”

这样的语句,就要对方程中的字母系数进行讨论。如:“关于的

方程”,这就有两种可能,当时,它是一元一次方程;当时,它是,解题时就会有不同的结果。

教学目的

1.了解整式方程和的概念;

2.知道的一般形式,会把化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践

又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的

兴趣。

教学难点和难点:

重点:

1.的有关概念

2.会把化成一般形式

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽

多5cm、这块铁片应该怎样剪?

分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应

用题。

3.让学生自己列出方程( x(x十5)=

150 )

深入引导:方程x(x十5)=150有人会解吗?你能叫出这

个方程的名字吗? 1.从上面的引例我们有这样一个感觉:在

解决日常生活的计算问题中确需列方程解应用题,但有些方程我

们解不了,但必须想办法解出来。事实上初中代数研究的主要对

象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们

对方程研究的还很不够,从今天起我们就开始研究这样一类方程-

-------一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,

就这一点来说它与一元一次方程没有什么区别、也就是说首先必须是一个整式方程,但是一个整式方程未必就是一个、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是

2、这样的整式方程叫做.(板书的定义)下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是?

(1)3x十2=5x—3:(2)x2=4

(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。提问:很多吗?你有办法一下写出所有的吗?

引导学生回顾的定义,分析项的情况,启发学生运用字母,找到的一般形式

ax2+bx+c=0 (a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=

0、b≠就成了一元一次方程了)。

2).讲解方程中ax

2、bx、c各项的名称及a、b的系数名称.

3).强调:的一般形式中“=”的左边最多三项、其中一

次项、常数项可以不出现、但二次项必须存在、而且左边通常按x 的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本P6)

1.说出下列的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O (2)x2—3x十4=0;(3)

3x2-5=0

(4)4x2十3x—2=0;(5)3x2—5=

0;(6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2 (1)本节课主要介绍了一类很重要的方程—一(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道的一般形式ax2十bx十c=0(a≠

0)并且注意的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个中一二次项、一次项、常数项:二次项系数、一次项系数.

-------- Designed By JinTai College ---------

相关文档
最新文档