温度控制系统项目设计方案

合集下载

PLC温室温度控制系统设计方案

PLC温室温度控制系统设计方案

PLC温室温度控制系统设计方案嘿,大家好!今天咱们就来聊聊如何打造一套高效、稳定的PLC 温室温度控制系统。

这个方案可是融合了我10年的写作经验和实践心得,下面咱们就直接进入主题吧!一、系统概述咱们先来简单了解一下这个系统。

这个PLC温室温度控制系统是基于可编程逻辑控制器(PLC)技术,通过传感器实时监测温室内的温度,再通过执行机构对温室内的环境进行调节,从而达到恒定温度的目的。

这套系统不仅智能,而且高效,是现代农业发展的好帮手。

二、系统设计1.硬件设计(1)传感器:选用高精度的温度传感器,如PT100或热电偶,实时监测温室内的温度。

(2)执行机构:选用电动调节阀或者电加热器,用于调节温室内的温度。

(3)PLC控制器:选用具有良好扩展性的PLC控制器,如西门子S7-1200系列。

(4)通信模块:选用支持Modbus协议的通信模块,实现数据传输。

2.软件设计(1)温度监测模块:实时采集温室内的温度数据,并进行显示。

(2)温度控制模块:根据设定的温度范围,自动调节执行机构的动作,实现温室内的温度控制。

(3)报警模块:当温室内的温度超出设定的范围时,发出报警提示。

(4)通信模块:实现与上位机的数据交换,便于远程监控和操作。

三、系统实现1.硬件连接将温度传感器、执行机构、PLC控制器和通信模块按照设计要求进行连接。

其中,温度传感器和执行机构与PLC控制器之间的连接采用模拟量输入输出模块。

2.软件编程(1)温度监测程序:编写程序实现温度数据的实时采集和显示。

(2)温度控制程序:编写程序实现根据设定的温度范围自动调节执行机构的动作。

(3)报警程序:编写程序实现当温室内的温度超出设定的范围时,发出报警提示。

(4)通信程序:编写程序实现与上位机的数据交换。

3.系统调试(1)检查硬件连接是否正确,确保各个设备正常工作。

(2)运行软件程序,观察温度监测、控制、报警等功能是否正常。

(3)进行远程监控和操作,检验通信模块是否正常工作。

温度控制系统项目设计方案

温度控制系统项目设计方案

温度控制系统项目设计方案1 EWB简介EWB软件,全称为ELECTRONICS WORKBENCH EDA,是交互图像技术有限公司在九十年代初推出的EDA软件,用于模拟电路和数字电路的混合仿真,利用它可以直接从屏幕上看到各种电路的输出波形。

EWB是一款小巧,但是仿真功能十分强大的软件。

相对其它EDA软件而言,它是个较小巧的软件,只有16M,功能也比较单一,就是进行模拟电路和数字电路的混合仿真,但你绝对不可小瞧它,它的仿真功能十分强大,可以几乎100%地仿真出真实电路的结果,而且它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器等工具,它的器件库中则包含了许多大公司的晶体管元器件、集成电路和数字门电路芯片,器件库中没有的元器件,还可以由外部模块导入,在众多的电路仿真软件中,EWB是最容易上手的,它的工作界面非常直观,原理图和各种工具都在同一个窗口内,未接触过它的人稍加学习就可以很熟练地使用该软件,对于电子设计工作者来说,它是个极好的EDA工具,许多电路你无需动用烙铁就可得知它的结果,而且若想更换元器件或改变元器件参数,只需点点鼠标即可,它也可以作为电学知识的辅助教学软件使用。

图1-1 EWB启动页面2 设计的技术指标及要求2.1设计任务及要求2.1.1设计任务根据技术要求和所给条件,完成对温度控制系统的设计,装配与调试。

2.1.2 设计要求一、设计任务利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler,即半导体致冷器)等设计一个温度控制器。

二、要求(1)控制密闭容器内空气温度(2)容器容积>5cm*5cm*5cm(3)测温和控温范围:0℃~室温(4)控温精度±1℃三、发挥部分(1)测温和控温范围:0℃~(室温+30℃)2.2设计思想本次设计使用温度传感器收集当前密室的温度,然后经过各部分电路处理,与所要控制的电路进行比较。

多点温度控制系统可行性分析及设计方案

多点温度控制系统可行性分析及设计方案

多点温度控制系统可行性分析及设计方案一、可行性分析温度控制系统是一种用于监测和调节温度的系统,广泛应用于各个领域,如工业、医疗、农业等。

以下是对温度控制系统可行性的分析:1.市场需求:随着技术的发展和人们对生活质量的要求提高,对温度控制的需求也在不断增加。

各行各业都有温度控制的需求,因此市场潜力巨大。

2.技术可行性:目前,温度控制系统所需的传感器、控制器和执行器等关键技术已经非常成熟,可以满足各种需求。

同时,温度控制算法的研究也相对成熟,可以提供高精度的温度控制。

3.成本可行性:随着技术的进步,温度控制系统的成本逐渐下降。

同时,多种材料和设备的广泛应用也为温度控制系统提供了更多的选择,降低了成本。

4.政策环境:政府对于环境保护和能源节约的要求越来越高,温度控制系统可以有效地控制能源的消耗和减少对环境的影响,符合国家政策。

二、设计方案基于以上可行性分析,以下是一份300字多点温度控制系统的设计方案:该温度控制系统适用于工业生产中的多点温度监测和调节。

系统的主要组成部分包括传感器、控制器和执行器。

1.传感器:使用高精度的温度传感器,将多个监测点的温度数据实时传输给控制器。

传感器应具有快速响应、高精度和可靠性。

2.控制器:采用先进的控制算法,根据监测到的温度数据进行分析和判断,并通过控制执行器来实现温度的调节。

控制器应具有高速计算能力和稳定性。

3.执行器:根据控制器的指令,控制执行器来调节温度。

执行器可以是电磁阀、加热器、冷却器等,根据具体需求选择合适的执行器。

4.数据记录与报警:系统应具备数据记录功能,将温度数据进行存储和分析,以便进行后续统计和分析。

同时,系统还应具备报警功能,当温度超过设定的范围时,及时发出警报。

5.远程监控与控制:系统应支持远程监控和控制,可以通过网络对温度控制进行实时监测和调节,方便操作人员进行远程管理。

该多点温度控制系统具备可行性,并提供了一个基本的设计方案。

在实际应用中,可以根据具体需求进行调整和改进,以实现更好的温度控制效果。

高二项目设计报告案例

高二项目设计报告案例

设计报告:室内温度监测与控制系统1. 研究背景和问题陈述当前,随着人们生活水平的提高和科技的发展,人们对于舒适的起居环境要求越来越高。

室内温度是影响人们舒适感的重要因素之一。

然而,由于不同季节和气候条件下的室内温度变化,如何实现室内温度的自动监测和控制成为一个重要的问题。

在这个设计报告中,我们将介绍一种室内温度监测与控制系统的设计。

该系统可以实时监测室内温度,并根据设定的温度范围自动调节空调或加热设备,以保持室内温度在舒适范围内。

通过使用该系统,人们可以享受到不受外界气候条件影响的舒适生活。

2. 设计原理和方法2.1 硬件设计硬件设计是实现室内温度监测与控制系统的关键部分。

该系统需要以下硬件组成:•温度传感器:用于实时监测室内的温度变化;•控制器:负责数据采集和温度控制算法的处理;•调温设备:根据温度控制算法的指令,调节空调或加热设备的工作状态;•显示屏:显示室内温度和控制系统的工作状态。

2.2 软件设计软件设计是实现室内温度监测与控制系统的另一个重要部分。

该系统需要以下软件功能:•数据采集与处理:控制器通过温度传感器实时采集室内温度数据,并进行处理和分析;•温度控制算法:根据设定的舒适温度范围和室内温度,控制器采用相应的控制算法,自动调节调温设备的工作状态;•状态显示与操作:显示屏可以显示实时室内温度和控制系统的工作状态,用户可以通过显示屏进行操作,如设定舒适温度范围。

3. 设计实施步骤3.1 硬件实施在硬件实施步骤中,需要按照以下步骤进行:1.购买所需硬件组件:根据设计原理中列出的硬件需求,购买温度传感器、控制器、调温设备和显示屏等硬件组件;2.连接硬件组件:按照硬件组件的连接方式,将温度传感器、控制器、调温设备和显示屏进行连接;3.测试硬件连接:进行硬件连接的测试,确保硬件组件正常工作。

3.2 软件实施在软件实施步骤中,需要按照以下步骤进行:1.开发数据采集与处理功能:使用合适的编程语言,实现控制器中的数据采集与处理功能,确保能够实时采集室内温度数据并进行处理;2.开发温度控制算法:根据设定的舒适温度范围和室内温度,开发相应的温度控制算法,以控制调温设备的工作状态;3.开发状态显示与操作功能:开发显示屏的状态显示与操作功能,确保能够显示实时室内温度和控制系统的工作状态,并进行用户操作。

温度调节产品设计方案模板

温度调节产品设计方案模板

温度调节产品设计方案模板一、项目概述在我们日常生活中,温度调节是一个重要的需求。

为了满足人们对于温度的不同要求,我们设计了一款温度调节产品。

本文将详细介绍该产品的设计方案。

二、产品目标本产品的目标是提供一个便捷、高效的温度调节解决方案,满足用户对于不同环境温度的需求。

它将具备以下特点:1. 精准调节:能够精确控制温度,满足用户对于特定温度的需求。

2. 多功能:除了温度调节,还具备其他功能,如湿度调节、风速调节等。

3. 省能环保:采用节能技术,减少对环境的负面影响。

4. 智能化:具备智能控制系统,能够根据用户的习惯和需求自动调节温度。

三、产品设计方案1. 外观设计本产品外观简洁、时尚,颜色可根据用户喜好自由选择。

控制面板和显示屏位于产品的顶部,便于用户使用和观察温度变化。

产品尺寸适中,方便携带和安放在不同场所。

2. 温度控制本产品内部搭载了精密的温度探测和调节装置。

用户可通过控制面板或智能手机应用程序对温度进行调节。

调节范围广泛,能够满足不同环境下的温度需求。

3. 湿度控制除了温度调节,本产品还具备湿度控制功能。

用户可根据需求调节湿度,创造一个舒适的环境。

4. 风速调节产品还能够实现风速调节。

用户可以选择不同的风速档位,根据个人喜好和需求调节风量大小。

5. 节能环保本产品采用先进的节能技术,能够在满足用户需求的同时降低能耗。

同时,产品材料环保,符合相关标准。

6. 智能控制产品具备智能控制系统,能够学习用户的习惯和需求,并根据情景智能调节温度。

用户也可以通过智能手机应用程序进行远程控制。

7. 使用安全本产品在设计时考虑了使用安全性。

具备过热保护功能,能够在温度过高时自动断电,并提供短路保护机制,确保用户的安全使用。

四、生产与销售计划我们计划将该产品分阶段投入生产与销售。

首先,在市场调研的基础上,确定目标用户群体和市场需求。

然后,制定生产计划,确保产品质量和交货时间。

同时,注重营销和宣传,扩大产品知名度和影响力。

(完整版)基于PLC和组态王的温度控制系统设计完整毕业论文设计

(完整版)基于PLC和组态王的温度控制系统设计完整毕业论文设计

优秀论文审核通过未经允许切勿外传摘要可编程控制器是一种应用很广泛的自动控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制能力强、操作灵活方便、可靠性高、适宜长期连续工作的特点,非常适合温度控制的要求。

在工业领域,随着自动化程度的迅速提高,用户对控制系统的过程监控要求越来越高,人机界面的出现正好满足了用户这一需求。

人机界面可以对控制系统进行全面监控,包括过程监测、报警提示、数据记录等功能,从而使控制系统变得操作人性化、过程可视化,在自动控制领域的作用日益显著。

本文主要介绍了基于西门子公司S7-200系列的可编程控制器和亚控公司的组态软件组态王的炉温控制系统的设计方案。

编程时调用了编程软件STEP 7 -Micro WIN中自带的PID控制模块,使得程序更为简洁,运行速度更为理想。

利用组态软件组态王设计人机界面,实现控制系统的实时监控、数据的实时采样与处理。

实验证明,此系统具有快、准、稳等优点,在工业温度控制领域能够广泛应用。

关键词:温度控制可编程控制器人机界面组态王目录第一章前言 (1)1.1项目背景、意义 (1)1.2温控系统的现状 (2)1.3项目研究内容 (3)第二章PLC和HMI基础 (5)2.1可编程控制器基础 (5)2.1.1可编程控制器的产生和应用 (5)2.1.2可编程控制器的组成和工作原理 (5)2.1.3可编程控制器的分类及特点 (8)2.2人机界面基础 (8)2.2.1人机界面的定义 (8)2.2.2人机界面产品的组成及工作原理 (9)2.2.3人机界面产品的特点 (9)第三章PLC控制系统硬件设计 (10)3.1PLC控制系统设计的基本原则和步骤 (10)3.1.1PLC控制系统设计的基本原则 (10)3.1.2PLC控制系统设计的一般步骤 (11)3.2PLC的选型与硬件配置 (13)3.2.1PLC型号的选择 (13)3.2.2S7-200 CPU的选择 (14)3.2.3EM231模拟量输入模块 (14)3.2.4热电式传感器 (16)3.3IO点分配及电气连接图 (17)3.4PLC控制器的设计 (17)3.4.1控制系统数学模型的建立 (17)3.4.2PID控制及参数整定 (19)第四章PLC控制系统软件设计 (22)4.1PLC程序设计方法 (22)4.2编程软件STEP7--M ICRO WIN概述 (23)4.2.1STEP7-MicroWIN简单介绍 (23)4.2.2梯形图语言特点 (24)4.2.3STEP7-MicroWIN参数设置(通讯设置) (25)4.3程序设计 (27)4.3.1设计思路 (27)4.3.2控制程序流程图 (27)4.3.3梯形图程序 (28)4.3.4PID指令向导的运用 (31)4.3.5语句表(STL)程序 (35)第五章基于组态王的HMI设计 (37)5.1人机界面(HMI)设计 (37)5.1.1监控主界面 (38)5.1.2实时趋势曲线 (39)5.1.3历史趋势曲线 (40)5.1.4报警窗口 (40)5.1.5设定画面 (42)5.2变量设置 (42)5.3动画连接 (44)第六章系统运行结果及分析 (46)6.1系统运行 (46)6.2运行结果分析 (47)6.2.1温度趋势曲线分析 (47)6.2.2报警信息分析 (49)第七章总结 (50)参考文献 (51)致谢 (52)第一章前言1.1项目背景、意义温度控制在电子、冶金、机械等工业领域应用非常广泛。

干燥器温度控制系统方案设计

干燥器温度控制系统方案设计

前言 (3)一、工艺过程描述 (3)二、设计要求 (4)三、设计方案 (4)四、仪器仪表的选择 (9)五、设计总结 (12)六、参考文献 (12)干燥器温度控制系统方案设计前言当今中国工业技术蓬勃发展,日益先进的科学技术推动了自动化技术的发展,过程控制技术是自动化技术的重要组成部分,在现代工业生产过程自动化中,过程控制技术正在为实现各种最优技术经济指标,提高经济效益,节约能源、提高市场竞争能力等方面起着越来越重要的作用。

本次课程设计通过一个干燥器温度控制系统方案设计,旨在让学生将过程控制与检测技术这门课程的精髓学以致用。

随着工业生产自动化的不断发展,单回路控制系统仅适用于较简单的单输出生产的控制,不能解决多输出过程的控制问题。

因此我们可以采用复杂过程控制系统,本课程设计中就用到串级控制,前馈控制等复杂控制过程。

一、工艺过程描述某干燥器的流程所示。

干燥器采用夹套加热和真空抽吸并行的方式来干燥物料。

夹套内通入的是经列管式加热器加热后的热水,而加热介质采用的是饱和蒸汽。

为了提高干燥速度,应有较高的干燥温度θ,但θ过高会使物料的物性发生变化,这是不允许的,因此要求对干燥器温度进行严格控制。

二、设计要求分别针对以下情况:①蒸汽压力波动是主要干扰;②冷水流量波动是主要干扰;③冷水流量和蒸汽压力均波动明显;④冷水流量、蒸汽压力以及进料压力波动均为主要干扰;1、确定控制方案,说明理论依据,画出控制工艺流程图;2、画出控制系统原理方框图;3、确定调节器正反作用,阐述系统工作过程。

4、对设计中用到的仪表的结构、特点进行说明。

三、设计方案1、蒸汽压力波动是主要干扰该系统应采用干燥温度与蒸汽压力的串级控制系统如图所示,这时选择蒸汽压力作为副变量。

一旦蒸汽压力有所波动,引起蒸汽流量变化,马上由副回路可以及时得到克服,以减少或消除蒸汽压力波动对主变量θ的影响,提高控制质量。

系统工艺流程图如下所示。

蒸汽压力波动为主的工艺流程图控制阀应选择气开式,这样一旦气源中断,马上关闭蒸汽阀门,以防止干燥器内温度θ过高。

基于stm32的智能温湿度控制系统的设计与实现主要内容

基于stm32的智能温湿度控制系统的设计与实现主要内容

基于stm32的智能温湿度控制系统的设计与实现主要内容基于STM32的智能温湿度控制系统的设计与实现主要涉及以下几个关键部分:1. 硬件设计:选择STM32作为主控制器,因为它具有强大的处理能力和丰富的外设接口。

温度传感器:例如DS18B20或LM35,用于测量环境温度。

湿度传感器:例如DHT11或SHT20,用于测量环境湿度。

微控制器与传感器的接口设计。

可能的输出设备:如LED、LCD或蜂鸣器。

电源管理:为系统提供稳定的电源。

2. 软件设计:使用C语言为STM32编写代码。

驱动程序:为传感器和输出设备编写驱动程序。

主程序:管理系统的整体运行,包括数据采集、处理和输出控制。

通信协议:如果系统需要与其他设备或网络通信,应实现相应的通信协议。

3. 数据处理:读取传感器数据并进行必要的处理。

根据温度和湿度设定值,决定是否进行控制动作。

4. 控制策略:根据采集的温度和湿度值,决定如何调整环境(例如,通过加热器、风扇或湿度发生器)。

控制策略可以根据应用的需要进行调整。

5. 系统测试与优化:在实际环境中测试系统的性能。

根据测试结果进行必要的优化和调整。

6. 安全与稳定性考虑:考虑系统的安全性,防止过热、过湿或其他可能的故障情况。

实现故障检测和安全关闭机制。

7. 用户界面与交互:如果需要,设计用户界面(如LCD显示、图形用户界面或手机APP)。

允许用户设置温度和湿度的阈值。

8. 系统集成与调试:将所有硬件和软件组件集成到一起。

进行系统调试,确保所有功能正常运行。

9. 文档与项目报告:编写详细的项目文档,包括设计说明、电路图、软件代码注释等。

编写项目报告,总结实现过程和结果。

10. 可能的扩展与改进:根据应用需求,添加更多的传感器或执行器。

使用WiFi或蓝牙技术实现远程控制。

集成AI或机器学习算法以优化控制策略。

基于STM32的智能温湿度控制系统是一个综合性的项目,涉及多个领域的知识和技术。

在设计过程中,需要综合考虑硬件、软件、传感器选择和控制策略等多个方面,以确保系统的稳定性和性能。

基于单片机温度控制系统的方案设计书

基于单片机温度控制系统的方案设计书

中文摘要随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。

本设计论述了一种以STC89C52单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。

该控制系统可以实时存储相关的温度数据并记录当前的时间。

系统设计了相关的硬件电路和相关应用程序。

硬件电路主要包括STC89C52单片机最小系统,测温电路、实时时钟电路、LCD液晶显示电路以及通讯模块电路等。

系统程序主要包括主程序,读出温度子程序,计算温度子程序、按键处理程序、LCD显示程序以及数据存储程序等。

[关键词] STC89C52单片机;DS18B20;显示电路Based on single chip microcomputer temperature control system designAbstractAlong with the computer measurement and control technology of the rapid development and wideapplication, based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind of mainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and record related to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperature detection circuit smallest system, and real-time clock circuit, LCD display circuit, communication module circuit, etc. System programming mainly include main program, read temperature subroutine, the calculation of temperature subroutines, key processing procedures, LCD display procedures and data storage procedures, etc.[Keywords] STC89C52 microcontroller;DS18B20;display circuit目录一、引言 (3)(一)课题研究的背景 (3)(二)课题研究的目的和意义 (4)二、硬件电路的设计 (4)(一)系统设计的框架 (4)(二)单片机最小系统电路 (5)(三)单片机的选型 (5)1.STC89C52单片机简介 (5)2.STC89C52单片机时序 (6)3.STC89C52单片机引脚介绍 (6)(四)温度传感器电路 (8)(五)系统电源电路的设计 (9)(六)LCD显示电路 (10)(七)串口通讯电路 (10)(八)按键接口电路 (11)(九)DS1302时钟电路 (12)(十)存储器接口电路 (12)三、系统软件设计 (12)(一)计算温度子程序 (13)(二)按键处理子程序 (14)(三)计算温度子程序 (15)(四)显示数据刷新子程序 (16)四、结束语 (17)参考文献 (18)致谢 (19)附件1:系统原理图 (20)附件2:系统相关程序 (21)一、DS18B20底层驱动程序 (21)二、DS1302时钟底层驱动程序 (26)三、数据存储底层驱动程序 (32)一、引言(一)课题研究的背景工业控制是计算机的一个重要应用领域,计算机控制系统正是为了适应这一领域的需要而发展起来的一门专业技术,它主要研究如何将计算机技术、通过信息技术和自动控制理论应用于工业生产过程,并设计出所需要的计算机控制系统。

基于单片机游泳池温度控制系统的设计

基于单片机游泳池温度控制系统的设计

洛陽理工學院游泳池水温控制系统设计课程答辩王明超2014/12/29班级:B110411学号:B********姓名:***摘要随着人民生活的进步,恒温游泳池走进了我们的生活,而游泳池的保温控制器,它能自动控制游泳池的水温。

从而大大的方便了人们对游泳池水温恒温的需求。

本文对该测控仪系统进行了分析设计。

本游泳池恒温控制系统选用AT89C51单片机作为控制器,利用PID和PWM技术实现对游泳池的水温控制。

该控制系统主要由CPU主控制模块、主电源模块、键盘处理模块、温度采集模块、继电器控制模块及LED显示模块构成。

本游泳池恒温控制系统选用AT89C51单片机作为控制器,利用PID和PWM技术实现对游泳池的水温控制。

该控制系统主要由CPU主控制模块、主电源模块、键盘处理模块、温度采集模块、继电器控制模块及LED显示模块构成。

DS18B20用来采集温度信号,其体积小,精度高,适用电压宽,抗干扰能力强。

继电器控制两台电机的转动,分别对应控制热水阀和冷水阀,从而,实现水温的实时控制。

最后,采用共阳极数码管LG5641A动态显示水温。

关键词: AT89C51单片机,游泳池,温度控制,模糊控制。

Ⅰ目录第1章绪论 3 1.1选题的背景与意义 3 1.1.1自动控控系统可温度控制系统 3 1.2 温度控制系统的设计 3 第2章系统总体设计 4 2.1方案的选择 4 2.2系统总体设计 4 第3章硬件设计 5 3.1硬件选型 5 3.2硬件电路设计 5 3.2.1主电源电路 5 3.2.2温度采集模块 6 3.2.3按键输入电路 6 3.2.4继电器模块 7 3.2.5 显示模块 7 第4章软件设计 8 4.1系统程序设计 8 4.2各部分程序流程图 8 4.2.1. 计算温度子程序 9 4.2.2.按键处理子程序 9 4.2.3.计算温度子程序 10第5章仿真结果 12 5.2仿真结果 12 5.1本系统仿真 13 5.2仿真结果 13 结论 14 参考文献 15 附录 16第1章绪论1.1选题的背景与意义1.1.1自动控控系统可温度控制系统电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么单片机技术的出现则是给现代工业控制测控领域带来了一次新的革命。

室内温度控制系统设计

室内温度控制系统设计

室内温度自动控制系统摘要在现代人类的生活环境中, 温度扮演着极其重要的角色。

在人们的生产生活中, 无论生活在哪里, 从事什么工作,都要时时刻刻与温度打着交道。

尤其是在18 世纪工业革命以来,工业发展与农业生产都与能否掌握温度, 有着密不可分的联系。

因此,温度的监测与控制与人类的生产生活有着十分重要的意义。

我们通过STC12C5A60S2单片机和DALLAS 公司DS18B20温度传感器对室内温度进行实时监测与控制实现温度的相对稳定具有极其重要的现实意义。

通过该系统的设计制作实践对电子系统设计运动控制理论应用,研究新技术学习知识增强动手能力具有重要的现实意义。

关键字:温度控制DS18B20 单片机控制系统设计目录论文共45 页1 引言 (4)1.1项目概述 (4)1.2设计目的 (4)1.3设计任务 (4)1.4 研究思路和方法 (5)2 项目总体方案设计 (6)2.1系统原理框图与工作原理 (6)2.1.1 国内外室温控制技术研究 (6)2.1.2 系统原理框图设计 (6)3.系统硬件设计 (7)3.1电源模块 (7)3.2 控制系统模块 (7)3.3温度检测 (8)3.3.1 常用温度检测传感器 (8)3.3.2 DS18B20 温度传感器电路 (10)3.4驱动模块 (11)3.4.1半桥驱动原理 (11)3.5升温模块 (11)3.6 人机交互模块 (12)3.6.1 1602 液晶显示 (12)3.6.2 红外遥控操作原理 (12)3.6.3 红外接收电路 (13)4.系统软件设计 (14)4.1程序流程图 (14)4.2温度采集 (15)4.2.1DS18B20 软件定义 (15)4.2.2 温度的计算 (15)4.3红外遥控 (15)4.4 电机的PWM 控制 (21)4.5 发热电阻丝的控制 (23)5.调试运行 (24)5.1 温度传感器校准 (24)5.2 温度调节时间 (25)5.3 温度波动范围 (25)5.4系统参数 (26)6.系统优化 (27)6.1 优化控制方式 (27)6.2 美化外形结构 (27)6.3.扩展系统应用 (27)结论 (29)致谢 (30)参考文献 (31)附件一:原理图 (32)附件二:源程序 (33)1引言1.1项目概述我们的项目开发针对的对象是收入水平不高,买不起空调,有希望能不受热受冷舒适的生活。

基于51单片机的温控系统设计

基于51单片机的温控系统设计

基于51单片机的温控系统设计1.引言1.1 概述概述部分的内容可以包括以下几个方面:温控系统是一种广泛应用于各个领域的实时温度控制系统。

随着科技的发展和人们对生活质量的要求提高,温控系统在工业、家居、医疗、农业等领域得到了广泛应用。

温度作为一个重要的物理量,对于许多过程和设备的稳定运行至关重要。

因此,设计一种高效可靠的温控系统对于提高工作效率和产品质量具有重要意义。

本文将基于51单片机设计一个温控系统,通过对系统的整体结构和工作原理的介绍,可以深入了解温控系统在实际应用中的工作机制。

以及本文重点研究的51单片机在温控系统中的应用。

首先,本文将介绍温控系统的原理。

温控系统的核心是温度传感器、控制器和执行器三部分组成。

温度传感器用于实时检测环境温度,通过控制器对温度数据进行处理,并通过执行器对环境温度进行调节。

本文将详细介绍这三个组成部分的工作原理及其在温控系统中的作用。

其次,本文将重点介绍51单片机在温控系统中的应用。

51单片机作为一种经典的微控制器,具有体积小、功耗低、性能稳定等优点,广泛应用于各种嵌入式应用中。

本文将分析51单片机的特点,并介绍其在温控系统中的具体应用,包括温度传感器的数据采集、控制器的数据处理以及执行器的控制等方面。

最后,本文将对设计的可行性进行分析,并总结本文的研究结果。

通过对温控系统的设计和实现,将验证51单片机在温控系统中的应用效果,并对未来的研究方向和发展趋势进行展望。

通过本文的研究,可以为温控系统的设计与应用提供一定的参考和指导,同时也为利用51单片机进行嵌入式系统设计的工程师和研究人员提供一定的技术支持。

1.2文章结构文章结构部分的内容可以包含以下内容:文章结构部分旨在介绍整篇文章的组织结构和各个部分的内容。

本篇文章基于51单片机的温控系统设计,总共分为引言、正文和结论三部分。

引言部分主要包括概述、文章结构和目的三个小节。

首先,概述部分介绍了本文的主题,即基于51单片机的温控系统设计。

环境温度监测与控制系统设计方案

环境温度监测与控制系统设计方案

环境温度监测与控制系统设计方案随着人们对环境舒适度的要求越来越高,环境温度监测与控制系统的设计变得越来越重要。

本文将探讨一种可行的设计方案,以实现对环境温度的准确监测和精确控制。

一、背景介绍环境温度是影响人们工作和生活舒适度的重要因素之一。

过高或过低的温度都会对人体健康和工作效率产生不良影响。

因此,设计一套可靠的环境温度监测与控制系统对于提高生活质量和工作效率至关重要。

二、监测系统设计1. 传感器选择环境温度监测的关键是选择合适的传感器。

常见的温度传感器有热电偶、热敏电阻和红外线传感器等。

根据实际需求和成本考虑,我们选择热敏电阻作为温度传感器。

热敏电阻具有价格低廉、响应速度快等优点,适合用于大范围的温度监测。

2. 数据采集与处理传感器采集到的温度数据需要通过数据采集模块进行处理。

采集模块可以选择单片机或者嵌入式系统。

单片机具有体积小、功耗低等优点,适合用于小规模的监测系统。

而嵌入式系统则适用于大规模的温度监测系统,它可以实现更复杂的数据处理和分析功能。

3. 数据传输与存储采集到的温度数据需要及时传输和存储,以便后续的分析和控制。

传输方式可以选择有线或者无线传输。

有线传输稳定可靠,但受到布线限制;无线传输则可以克服布线的限制,但需要考虑信号干扰和传输距离等问题。

数据存储可以选择使用云存储或者本地存储,根据实际需求进行选择。

三、控制系统设计1. 控制算法选择环境温度控制的关键是选择合适的控制算法。

常见的控制算法有PID控制、模糊控制和神经网络控制等。

PID控制是一种经典的控制算法,具有简单易实现、稳定性好等优点,适用于大多数环境温度控制场景。

2. 控制器选择根据控制算法的选择,我们可以选择合适的控制器。

常见的控制器有单片机控制器和PLC控制器等。

单片机控制器适用于小规模的控制系统,而PLC控制器适用于大规模的控制系统,具有更强大的控制能力和可靠性。

3. 执行器选择根据控制器的输出信号,我们需要选择合适的执行器来实现温度的调节。

pid温度控制系统课程设计

pid温度控制系统课程设计

pid温度控制系统课程设计一、教学目标本课程的教学目标是使学生掌握PID温度控制系统的基本原理、组成及应用,培养学生运用PID控制理论分析和解决实际问题的能力。

具体目标如下:1.知识目标:–了解PID控制器的原理、结构和参数调整方法;–掌握PID控制系统的稳定性、快速性和精确性评价指标;–熟悉PID控制器在不同工业过程中的应用。

2.技能目标:–能够运用PID控制理论分析和解决实际控制系统问题;–能够运用编程软件(如C、Python等)实现PID控制器;–具备对PID控制系统进行调试和优化能力。

3.情感态度价值观目标:–培养学生动手实践能力和团队合作精神;–培养学生对自动控制领域的兴趣,提高其学术素养;–使学生认识到PID控制系统在现代工业中的重要地位,增强其责任感。

二、教学内容根据课程目标,教学内容主要包括以下三个方面:1.PID控制器原理:介绍PID控制器的基本概念、结构和工作原理,使学生了解PID控制器在控制系统中的作用。

2.PID控制系统分析:讲解PID控制系统的稳定性、快速性和精确性评价指标,培养学生运用这些指标分析和评价PID控制系统的性能。

3.PID控制器应用:介绍PID控制器在不同工业过程中的应用,如温度控制、流量控制、液位控制等,使学生学会运用PID控制理论解决实际问题。

三、教学方法为实现课程目标,本课程采用以下教学方法:1.讲授法:讲解PID控制器原理、分析和应用,使学生掌握基本概念和理论知识。

2.案例分析法:分析实际工业过程中的PID控制系统,培养学生运用PID控制理论解决实际问题。

3.实验法:学生进行PID控制系统实验,使学生动手实践,加深对PID控制理论的理解。

4.讨论法:学生分组讨论,培养学生的团队合作精神和沟通能力。

四、教学资源为实现课程目标,本课程需准备以下教学资源:1.教材:选用《自动控制原理》等权威教材,为学生提供系统、科学的理论知识学习。

2.参考书:提供相关领域的经典著作和论文,拓展学生的知识视野。

温度监测控制系统设计方案

温度监测控制系统设计方案

温度监测控制系统设计方案第一章总体设计方案1.1计设要求(1)基本围-50°C-110°C(2)精度误差小于0.5°C(3)LED数码直读显示(4)可以任意设定温度的上下限报警功能1・2系统基本设计方案方案一:采用热电阻温度传感器。

热电阻是利用导体的电阻随温度变化的特性制成的测温元件。

现应用较多的有钳、铜、镰等热电阻。

其主要的特点为精度高、测量围大、便于远距离测量。

苗的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好, 工业性好,电阻率较高,因此,钳电阻用于工业检测中高精密测温和温度标准。

缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。

按IEC标准测温围-200〜650°C,百度电阻比W (100) =1.3850时,R0为100Q和10 Q,其允许的测量误差A级为± (0. 15°C+0. 002 |t| ), B 级为土(0. 3°C+0. 005 |t| )o铜电阻的温度系数比苗电阻大,价格低,也易于提纯和加工;但其电阻率小,在腐蚀性介质中使用稳定性差。

在工业中用于-50〜180°C测温。

方案二:采用DS18B20温度传感器,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。

数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。

现在, 新一代的DS18B20温度传感器体积更小、更经济、更灵活。

DS18B20 温度传感器测量温度围为-55£〜+125°Co在-1(TC〜+859围,精度为土0.5°C o现场温度直接以“一线总线"的数字方式传输,大大提高了系统的抗干扰性。

综合比较方案一与方案二,方案二更为适合于本设计系统对于模拟量输入的要求,比较其框图,方案二更具备硬件简单的突出优点,所以选择方案二作为信号的输入通道。

高精度温度控制设计方案

高精度温度控制设计方案
节能环保是未来发展的重要趋势,高精度温度控制系统应 关注降低能耗、减少排放、提高能源利用效率等方面的研 究与应用,推动可持续发展。
跨领域融合与创新
鼓励高精度温度控制技术与其他领域融合,拓展应用场景 。例如,在医疗、航空航天、新能源等领域,高精度温度 控制技术具有广泛的应用前景。
THANK YOU
感谢观看
分模块调试
按照功能模块对硬件电路进行分块调试,确保各模块工作正常。
整体联调
将所有模块连接在一起,进行整体联调,观察系统工作情况,及时 发现问题并解决。
软件功能测试验证结果展示
测试环境搭建
01
配置测试所需的硬件设备、传感器等,确保测试环境与实际工
作环境一致。
测试用例设计
02
根据功能需求,设计覆盖所有功能的测试用例,包括正常情况
稳定性保障
采取一系列稳定性保障措施,如硬件 看门狗、软件容错处理等,提高系统 的抗干扰能力和稳定性。
04
软件算法研究与实现
温度控制算法原理及优缺点分析
01 02
PID控制算法
通过比例、积分、微分三个环节对温度进行闭环控制,具有结构简单、 稳定性好、调节精度高等优点,但在参数整定和应对复杂环境变化时存 在挑战。
指标
控制精度:±0.1℃以内。
稳定性:在24小时内,温度 波动范围不超过±0.2℃。
实时性:系统响应时间不超 过1秒。
可扩展性:系统应具备良好 的扩展性,以适应不同应用 场景的需求。
02
温度传感器选择与信号处 理
温度传感器类型及特点
01
02
03
热电偶
测量范围广,精度高,但 输出信号小,需放大处理 。
• PID控制算法实现流程图:设定目标温度→采集实际温度→ 计算温度偏差→根据PID公式计算输出值→调节加热器功率 →返回采集实际温度。

电加热炉温度控制系统设计方案

电加热炉温度控制系统设计方案

电加热炉温度控制系统设计方案1.系统概述2.系统组成2.1温度传感器:用于实时感知炉内温度,并将温度信号转换成电信号进行采集。

2.2控制器:负责对温度信号进行处理和判断,并生成相应的控制信号。

2.3加热功率调节器:根据控制信号调整电加热炉的加热功率。

2.4人机界面:为操作人员提供温度设定、显示和报警等功能。

2.5电源和电路保护装置:为电加热炉提供稳定的电源和安全的电路保护。

3.控制原理电加热炉温度控制系统采用了闭环控制的原理,即通过与实际温度进行比较,调整加热功率来实现温度的控制。

控制器根据实际温度和设定温度之间的偏差,产生相应的控制信号,通过加热功率调节器对电加热炉的加热功率进行调整,使实际温度逐渐接近设定温度,并保持在一定范围内。

4.系统算法4.1温度传感器采集到的温度信号经过模数转换,转换成数字信号输入到控制器。

4.2控制器对传感器采集到的温度信号进行处理和判断,计算出温度偏差。

4.3控制器根据温度偏差通过PID控制算法产生相应的控制信号,控制信号的大小决定了加热功率的调整幅度。

4.4控制信号经过加热功率调节器进行放大和整流,并驱动电加热炉进行相应的加热功率调整。

4.5加热功率调整会导致炉内温度变化,温度变化会反过来影响温度传感器采集到的温度信号,形成一个闭环控制的循环过程。

5.人机界面5.1人机界面通过触摸屏或按钮等形式,提供温度设定、显示和报警等功能。

5.2操作人员可以通过人机界面设置所需的温度设定值。

5.3人机界面会显示当前的实际温度,并根据温度偏差的大小显示相应的报警信号。

5.4人机界面可以设定温度上下限,当温度超出设定范围时自动报警。

6.电源和电路保护装置6.1在电加热炉温度控制系统中,电源提供稳定的电压和电流给电路运行。

6.2为了确保系统的安全运行,在电路中设置过流保护、过压保护、欠压保护等电路保护装置。

6.3当发生过流、过压或欠压等异常情况时,电路保护装置会立即切断电源,以保护电路和设备的安全。

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计

目录摘要 (1)第一章前言 (3)1.1课题背景与意义 (3)1.2温度控制系统的应用 (3)第二章系统方案 (5)2。

1水温控制系统设计任务和要求 (5)2.2水温控制系统部分 (5)2。

3控制方式 (7)第三章系统硬件设计 (8)3。

1总体设计框图及说明 (8)3.2外部电路设计 (8)3。

3 单片机系统电路设计 (9)第四章结论 (1)参考文献 (21)基于单片机的水温控制系统【摘要】温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。

为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。

该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。

【关键词】单片机AT89C51;温度控制;温度传感器PT1000;PID调节算法第一章前言1.1课题背景与意义在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制.采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

目前,温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距.现在,我国在这方面总体技术水平处于20世纪80年代中后期水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度控制系统项目设计方案1 EWB简介EWB软件,全称为ELECTRONICS WORKBENCH EDA,是交互图像技术在九十年代初推出的EDA软件,用于模拟电路和数字电路的混合仿真,利用它可以直接从屏幕上看到各种电路的输出波形。

EWB是一款小巧,但是仿真功能十分强大的软件。

相对其它EDA软件而言,它是个较小巧的软件,只有16M,功能也比较单一,就是进行模拟电路和数字电路的混合仿真,但你绝对不可小瞧它,它的仿真功能十分强大,可以几乎100%地仿真出真实电路的结果,而且它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器等工具,它的器件库中则包含了许多大公司的晶体管元器件、集成电路和数字门电路芯片,器件库中没有的元器件,还可以由外部模块导入,在众多的电路仿真软件中,EWB是最容易上手的,它的工作界面非常直观,原理图和各种工具都在同一个窗口,未接触过它的人稍加学习就可以很熟练地使用该软件,对于电子设计工作者来说,它是个极好的EDA工具,许多电路你无需动用烙铁就可得知它的结果,而且若想更换元器件或改变元器件参数,只需点点鼠标即可,它也可以作为电学知识的辅助教学软件使用。

图1-1 EWB启动页面2 设计的技术指标及要求2.1设计任务及要求2.1.1设计任务根据技术要求和所给条件,完成对温度控制系统的设计,装配与调试。

2.1.2 设计要求一、设计任务利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler,即半导体致冷器)等设计一个温度控制器。

二、要求(1)控制密闭容器空气温度(2)容器容积>5cm*5cm*5cm(3)测温和控温围: 0℃~室温(4)控温精度±1℃三、发挥部分(1)测温和控温围: 0℃~(室温+30℃)2.2设计思想本次设计使用温度传感器收集当前密室的温度,然后经过各部分电路处理,与所要控制的电路进行比较。

电路根据比较的结果决定是否对密室空气进行降温,如果需要制冷会自动开启半导体制冷片。

当温度低于所控制的温度后,控制部分要断开制冷电路。

在不制冷的情况下,密室会自动升温,当温度上升到控制温度以下的时候电路就会依照以前的步骤重新来一遍,然后对密室进行降温,然后循环往复执行这样一个周期性的动作,从而达到把温度控制在一定围的目的。

3 选定方案的论证及整体电路的工作原理3.1设计方案选择3.1.1可行方案:方案一:通过集成运放构成的比例器,把温度传感器获得的信号放大,再将信号传输给功放,带动半导体制冷片工作,从而实现对温度的控制。

功放采用乙类双电源互补对称功率放大电路。

测温部分通过测温度传感器输出端与基准端的电压,在转化为相应的温度值。

其中,基准端的电压有事先调试好。

方案二:利用集成运放在非线性工作区(即饱和区)的输出端电压为正负电源电压的特性,构造温度比较器,将温度信号离散成为高电平和低电平,高电平时制冷,低电平时加热,从而实现对温度的控制。

其中功放采用乙类双电源互补对称功率放大电路。

测温部分方案同方案一。

方案三:用温度传感器将采集到的温度转换成电压信号,通过集成运放构成放大器,将微弱的电压信号放大成所需要的电压信号,再通过电压比较器将温度信号离散成为高电平和低电平,高电平时制冷,低电平时加热,从而实现对温度的控制,并用LED指示灯指示半导体的工作状态。

3.1.2方案的讨论与选择:方案一可行,可是存在着许多缺点,如反应慢,且温度相近时,灵敏度也降低了。

方案二可行,它将变化的温度信息转变为离散的高电平和低电平,通过功放的作用,从而实现对温度的控制。

但是半导体制冷片一直工作在较大功率条件下,耗能较多,且加热器和制冷器始终有其一在工作中,所以会造成资源浪费,电路也相对复杂。

方案三可以很好得实现对温度的控制和测量,虽然方案三使用的电子器件较多且繁杂,电路也较复杂,但是对于控制电路来说更加准确,迅速,因为不需要对电路进行加热,则这个电路是不错的。

综合考虑之后,采用方案三作为具体实现方案。

3.2 选定方案的论证3.2.1选定温度传感器的论证根据设计要求,可以测量并控制0到室温的温度,精度要达到±1℃。

也就是说基本要求为传感器可以测量0到室温的温度,并且具有很好的稳定性。

再结合性能以及价格方面的原因,选择了集成温度传感器LM35。

LM35温度传感器在-55~150摄氏度以是非常稳定的。

当它的工作电压在4到20v之间是可以在每摄氏度变化的时候输出变化10mv。

它的线性度也可以在高温的时候保持得非常好。

因此LM35完全符合设计要求。

3.2.2选定继电器的论证继电器是低压控制高压的部分,它的开启电压以及稳定性相当重要。

因为选用的电源电压是12V的,所以继电器的开启电压应当适当低于12V当接近它,因此选用开启电压为9V的比较适合。

另外,由于加热部分的电流比较大,所以继电器的承受电流要大,一般1000W的加热装置电流为4.5A,选择4.5A×2=9A以上的比较适合。

3.2.3选定运算放大器的论证本设计对放大器的要求只是有较好的虚短和虚断特性,作为比较器时输出可以接近电源电压。

因此通用型的运算放大器便可满足要求。

因此选用通用型的ua741.3.3 整体电路的工作原理电路设计的总体思想是测温——比较——控温如图3.1所示图3.1 电路设计的整体框图4单元电路的设计计算、元器件选择及电路图4.1 测温单元图4.1.1 测温单元电路图温度传感器需要放入水中,所以应该在电路中引出一个出口来接温度传感器。

LM35有三个引脚,其中0接正电源,2接地,这样在1脚就会输出随温度而现行变化的电压。

具体是每变化1摄氏度,输出电压变化10mV 。

信号采集单元电路如图4.1.1所示。

4.2 信号处理单元LM35输出端的电压因温度改变1摄氏度而改变10mv ,很难检测。

所以必须经过一定的处理方可成为测量以及控制部分所使用的信号。

处理方法也就是将它无损的放大一定的倍数。

因控制或测量温度在30摄氏度的时候,LM35输出电压为300mv 。

温度在0摄氏度的时候输出为0mv 。

经下面计算:max v ×A 12V V ≤min v ×A 0V V ≥得max120V VV A V ≤≤ 即0< Av < 40考虑计算的方便,以及最后输出测量的方便,放大倍数为20 为宜。

电路如图4.2.1图4.2.1 信号处理单元电路4.3 温度比较单元知道了所输出的电压的大小,然后与所给的电压进行比较,从而知道电压是偏高还是偏低,即温度是偏高还是偏低。

当控制温度为30度时,V=300mv*20=6V,所以,比较电压就选择6V。

图4.3.1 比较单元电路图4.4 控制单元控制单元的作用是通过接收来自传感器处理后的信号,判别是否需要对当前的水体进行加热。

因此控制电路处的比较基准电压应该从负电源中索取。

电位器选择计算:为了使电位器在阻值最小的时候电路中电流在1.5mA以下,选择固定电阻R 为2k。

控制温度需要达到30摄氏度,而温度传感器是将1°的温度装换为10mV 的电压,而经过放大器后,又电压放大20倍,所以最后输出电压值为6V,比较器比较的电压也为-6V。

Vo =300mV × 20= 6 V因此电位器选择10k为宜。

具体电路图如图4.4.1图4.4.1 控制单元控制电路是一个比较器,如图4.4.1所示。

输出为6V,而继电器没有正负,所以必须使比较器输出负电压的时候继电器截止,因此把继电器和一个二极管串联,这样当电压为负的时候继电器就会很快地断开了。

继电器部是一个磁线圈,在断电的时候会有很大的电流,为了保护电路需要在继电器两端并联一个二极管,以使继电器断电后它的保留电流可以在二极管和电阻中快速消完。

5 单元电路的仿真及结果5.1 信号放大电路图5.1.1 信号放大电路仿真图在输入电压为0.1V时,输出电压为2.035V,在输入电压为0.4V时,输出电压为8.062V,如图5.1.2所示图5.1.2 输入电压为0.1V和0.4V时,输出电压的值所以,放大电路实现了放大20倍的功能。

5.2 控制电路控温为30度,所以比较电压为-6V,与放大器输出的电压相加,放大器输出大于6V,就输出负电压,负电压的大小由稳压管两端的电压大小决定,放大器输出的电压小于6V,就输出正电压。

图5.2.1正式放大器输出电压小于6V时,比较器输出电压为19.98V。

图5.2.1 控制电路仿真图仿真时,输入电压为0.1V时,输出值为20.79V;输入电压为0.4V时,输出值为-20.97V。

结果如图5.2.3所示。

图5.2.3 输入电压为0.1v和0.4V时的输出结果仿真结果与实际值相符5.3 隔离及指示电路隔离电路是一个射极跟随器,输入阻抗很大,能将前后级电路分开,以免后面的指示电路影响控制电路的输出电压。

由于发光二级管的只有在 1.1-1.3V 电压和0.5mA电流下才能正常工作,所以需要一个保护电阻。

总体电路如图5.3.1所示,电压表测得是二极管两段的电压,达到了预定值。

输入电压为0.1V时,表示室温为10°,低于30°,此时要控制加热装置发热,并且加热时指示灯发光,由仿真图5.3.1可以看出,此时二极管发光,复合预期结果。

输入电压为0.4V时,表示室温为40°,高于30°,此时要控制加热装置制冷,并且制冷时指示灯不发光,由仿真图5.3.1可以看出,此时二极管不发光,复合预期结果。

时电路仿真图图5.3.1 输入电压为0.1V6 整体电路图、元件及器件明细6.1 整体电路图电路如图6.1.1所示图6.1.1 温度控制系统整体电路图6.2元件及器件明细元件及器件明细如表6.2.1所示元件器件明细继电器1个,9V 开启,28A二极管1N4007 4个LM35 1个,每1摄氏度输出变化10mV LED 3个,2个黄,1个红uA741 3个电位器1个,10k普通开关1个若干,有的需要串并联得到电阻(10kΩ,100kΩ,5kΩ,1kΩ,2kΩ……)7 设计小结7.1 成果的评价在电路的设计和制作中,使我无形中加深了对模拟电子技术基础的理解和运用能力,对课本及以前学过的知识有了一个更好的总结。

在电路的实物连接中出现了一些问题,需要不断的解决,所以这几周下来,我对问题的排查能力有了很大的提高;再次,通过此次课程设计,我对设计所用到的集成块有了更加深刻地了解,这对我们以后的工作和学习的帮助都很有用处。

7.2 本设计的特点本设计中采用的是价格便宜且又有较好的线性度的温度传感器LM35,并采用运算放大器几乎无损放大,非常准群反映了所测量的温度。

另外由于比较器比较好的开关特性。

相关文档
最新文档