ANSYS热应力分析实例
Ansys 热分析实例(多芯片组件加散热器(热沉)的冷却分析)
三.MCM温度场稳态分析多芯片组件加散热器(热沉)的冷却分析图1(a) 、图1(b) 所示分别为大功率球栅阵列MCM的截面图和俯视图,五个芯片采用倒装焊方式置于有机基板上,为了增加模块的散热能力,在芯片背面上加一热扩展面。
表1所示为各材料的物理属性。
周围的环境温度设为250 o C,其中大芯片的功率为25W,热流密度为60×106W/m3;周围四个小芯片的功率为10W,热流密度为61.54×106W/m3;对流换热系数为10W/(m·K)。
MCM结构参数和材料属性模型组件材料尺寸(mm)导热系数(W/(m﹒k))芯片硅8*8*0.65,5*5*0.65 82芯片凸点5Sn/98Pb 10*10*,6*6,Ø0.3,Height:0.2,Pitch:0.7536 基板聚酰亚胺40*40*1.5 0.2焊料球96.5Sn3.5Ag 26*26,Ø0.6, Height:0.4,Pitch:1.2750PCB FR4 100*100*1.5 8.37,8.37,0.32 热介质材料导热脂Thick:0.15 1粘接剂粘接剂Thick:0.15 1.1热扩展面铜40*40*1.5 390热沉铝Base:46.5*45.6*1.5,Pin number:16,Pinheight:8240分析从而导致器件性能变化和可靠性的下降。
热场分析和设计是MCM设计中一个重要的环节[3]。
MCM器件中的热应力来自两个方面,即来自MCM模块内部和MCM模块所处的外部环境所形成的热应力,这些热应力都会影响到器件的电性能、工作频率、机械强度和可靠性。
随着MCM集成度的提高和体积的缩小,尤其是对于集成了大功率芯片的MCM ,其内部具有多个热源,热源之间的热耦合作用较强,单位体积内的功耗很大,由此带来的芯片热失效和热退化现象突出。
有资料表明,器件的工作温度每升高10o C,其失效率增加1倍[4]。
ANSYS热应力分析经典例题
ANSYS热应力分析例题实例1——圆简内部热应力分折:有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。
该问题属于轴对称问题。
由于圆筒无限长,忽略圆筒端部的热损失。
沿圆筒纵截面取宽度为10M的如图1 3—2所示的矩形截面作为几何模型。
在求解过程中采用间接求解法和直接求解法两种方法进行求解。
间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。
/filname,exercise1-jianjie/title,thermal stresses in a long/prep7 $Et,1,plane55Keyopt,1,3,1 $Mp,kxx,1,70Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2Lesize, all,,,20 $Lsel,s,,,2,4,2Lesize,all,,,5 $Amesh,1 $Finish/solu $Antype,staticLsel,s,,,4 $Nsll,s,1 $d,all,temp,200lsel,s,,,2 $nsll,s,1 $d,all,temp,20allsel $outpr,basic,allsolve $finish/post1 $Set,last/plopts,info,onPlnsol,temp $Finish/prep7 $Etchg,ttsKeyopt,1,3,1 $Keyopt,1,6,1Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,allLsel,s,,,2 $Nsll,s,1 $Cp,9,ux,allAllsel $Finish/solu $Antype,staticD,all,uy,0 $Ldread,temp,,,,,,rthAllsel $Solve $Finish/post1/title,radial stress contoursPlnsol,s,x/title,axial stress contoursPlnsol,s,y/title,circular stress contoursPlnsol,s,z/title,equvialent stress contoursPlnsol,s,eqv $finish/filname,exercise1-zhijie/title,thermal stresses in a long/prep7 $Et,1,plane13Keyopt,1,1,4 $Keyopt,1,3,1Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28MP,KXX,1,70Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2Lesize, all,,,20 $Lsel,s,,,2,4,2Lesize,all,,,5 $Amesh,1Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,allLsel,s,,,2 $Nsll,s,1 $Cp,9,ux,allALLSEL $Finish/solu $Antype,staticLsel,s,,,4 $Nsll,s,1 $d,all,temp,200lsel,s,,,2 $nsll,s,1 $d,all,temp,20allsel $outpr,basic,allsolve $finish/post1 $Set,last/plopts,info,onPlnsol,temp/title,radial stress contoursPlnsol,s,x/title,axial stress contoursPlnsol,s,y/title,circular stress contoursPlnsol,s,z/title,equvialent stress contoursPlnsol,s,eqv $finish318页实例2——冷却栅管的热应力分析图中为一冷却栅管的轴对称结构示意图,其中管内为热流体,温度为200℃,压力为10Mp,对流系数为11 0W/(m2•℃);管外为空气,温度为25℃,对流系数为30w/(mz.℃)。
ANSYS热应力分析实例
6
设置材料属性
1.给定材料的导热系数40W/(m·℃) 。
Main Menu> Preprocessor> Material Props> Material Models
7
建立实体模型(国际单位制)
1. 创建矩形A1:x1,y1(0,0)、x2,y2(0.01,0.07) MainMenu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimensions 2. 创建矩形A2:x1,y1(0,0.05)、x2,y2(0.08,0.07) 3.显示面的编号 Utility Menu>PlotCtrls>Numbering 4. 对面A1和A2进行overlap操作 Main Menu>Preprocessor>Modeling>Operate>Booleans> Overlap>Areas
12
13
求解
Main Menu>Solution>Solve>Current LS
14
查看温度场分布
Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu
15
16
保存
稳态温度场计算完毕,下面修改分析文件名称,进行热应力计算。
注:S标志表示对称约束。
28
求解
Main Menu>Solution>Solve>Current LS
29
查看计算结果
Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu
8-2传热及温度应力分析ANSYS算例
(13) 定义材料参数 Main Menu → Preprocessor → Material Props → Material Models → Material Models Available: Structural(双击打开子菜单) → Linear(双击) → Elastic (双击)→ Isotropic(双击) → EX: 2.0e5 (弹性模量) ,PRXY:0.3 (泊松比)→ OK →转到Material Models Available: Thermal Expansion(双击) →Secant Coefficient (双击)→ Isotropic(双击) →ALPX:1.2E-5(平均线膨胀系数) → OK →关闭材料 定义菜单(点击菜单的右上角X)
(3) 设置计算类型 Main Menu: Preferences… → select Thermal, steady → OK
(4) 选择单元类型 Main Menu: Preprocessor → Element Type → Add/Edit/Delete → Add → Thermal Solid,
【ANSYS 应用实例 2.1】 焊接接头稳态传热过程的数值模拟
如图 2-1 所示,圆形的冷凝管通过法兰接头进行对接。接头的制作方法如下:先把法兰 移动到圆管接头位置,然后沿圆周焊接两道次,把法兰连接到圆管上。用螺栓把两个法兰接 头拉紧,法兰之间压上一块垫片。圆管内的液体温度为 0℃,蒸汽冷凝在圆管的外表面上, 蒸汽温度为 100℃。圆管内表面换热系数为 5000W/m2K,外表面换热系数为 20000 W/m2K。
UNIT2-2
TH-FEA(应用实例-UNIT2)
清华大学 曾攀
(6) 生成几何模型 Main Menu: Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT
四个ANSYS热分析经典例子
实例1:某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。
几何参数:筒外径30 feet总壁厚2 inch不锈钢层壁厚0.75inch玻纤层壁厚 1 inch铝层壁厚0.25i nch筒长200 feet导热系数不锈钢8.27BTU/hr.ft. o F玻纤0.028 BTU/hr.ft. o F铝117.4 BTU/hr.ft. o F边界条件空气温度70 o F海水温度44.5 o F空气对流系数2.5 BTU/hr.ft 2.0F海水对流系数80 BTU/hr.ft 2.o F沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。
空气'玻璃纤维、1*:不锈钢:3/+M海水R15 feet/filename ,Steady1 /title ,Steady-state thermal analysis of submarine /units ,BFT Ro=15 !外径(ft)Rss=15-(0.75/12) ! 不锈钢层内径ft) Rins=15-(1.75/12) ! 玻璃纤维层内径(ft) Ral=15-(2/12) ! 铝层内径(ft) Tair=70 ! 潜水艇内空气温度Tsea=44.5 !海水温度Kss=8.27 ! 不锈钢的导热系数(BTU/hr.ft.oF) Kins=0.028 ! 玻璃纤维的导热系数(BTU/hr.ft.oF)Kal=117.4 ! 铝的导热系数(BTU/hr.ft.oF) Hair=2.5 ! 空气的对流系数(BTU/hr.ft2.oF) Hsea=80 ! 海水的对流系数(BTU/hr.ft2.oF) prep7et,1,plane55 !定义二维热单元mp,kxx ,1,Kss !设定不锈钢的导热系数mp,kxx ,2,Kins !设定玻璃纤维的导热系数mp,kxx ,3,Kal !设定铝的导热系数pcirc,Ro,Rss,-0.5,0.5 !创建几何模型pcirc ,Rss,Rins ,-0.5 ,0.5 pcirc ,Rins,Ral,-0.5 ,0.5 aglue,all numcmp,area lesize,1,,,16 !设定划分网格密度lesize,4,,,4 lesize,14,,,5 lesize,16,,,2 Mshape,2 ! 设定为映射网格划分mat,1 amesh,1 mat,2 amesh,2 mat,3 amesh,3 /SOLUSFL,11,CONV ,HAIR ,,TAIR ! 施加空气对流边界SFL,1,CONV ,HSEA ,,TSEA !施加海水对流边界SOLVE /POST1PLNSOL !输出温度彩色云图finish实例2一圆筒形的罐有一接管,罐外径为 3英尺,壁厚为0.2英尺,接管外径为0.5英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端部。
ANSYS热应力分析实例
热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。
管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。
管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。
求温度及应力分布。
7.3.2菜单操作过程7.3.2.1设置分析标题1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。
2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。
7.3.2.2进入热分析,定义热单元和热材料属性1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。
2、设定导热系数:选择“Main Menu>Preprocessor>Material Porps>Ma terial Models”,点击Thermal,Conductivity,Isotropic,输入1.25。
7.3.2.3创建模型1、创建八个关键点,选择“Main Menu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:3、设定单元尺寸,并划分网格:“Main Menu>Preprocessor>Meshtool”,设定global size为0.125,选择AREA,Mapped,Mesh,点击Pick all。
7.3.2.4施加荷载1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK,选择管内壁节点;2、在管内壁节点上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数1,流体环境温度450。
《有限元教程》20例ANSYS经典实例
《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。
其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。
下面将介绍《有限元教程》中的20个ANSYS经典实例。
1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。
2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。
3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。
4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。
5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。
6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。
7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。
8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。
9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。
10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。
11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。
12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。
13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。
14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。
15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。
16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。
17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。
18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。
19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。
ANSYS热应力分析实例解析
23
双击“Thermal Expansion、Secant Coefficient、Isotropic”。
24
输入热膨胀系数为15e-6,参考温度20。
25
施加载荷
1.施加温度载荷。 Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Temperature>From Therm Analy
3
重点学习内容
1.间接法热应力分析步骤。 2.掌握平面应变的解决方案。 3.掌握对称结构分析方案。 4. 掌握稳态温度场计算方法。
4
更改文件名
更改文件名:Utility Menu> File> Change Jobname
5
选择单元
选择55号单元
Main Menu> Preprocessor> Element Type> Add/Edit/Delete
6
设置材料属性
1.给定材料的导热系数40W/(m·℃) 。
Main Menu> Preprocessor> Material Props> Material Models
7
建立实体模型(国际单位制)
1. 创建矩形A1:x1,y1(0,0)、x2,y2(0.01,0.07) MainMenu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimensions 2. 创建矩形A2:x1,y1(0,0.05)、x2,y2(0.08,0.07) 3.显示面的编号 Utility Menu>PlotCtrls>Numbering 4. 对面A1和A2进行overlap操作 Main Menu>Preprocessor>Modeling>Operate>Booleans> Overlap>Areas
热应力数值模拟分析实例详解
热应力数值模拟分析实例详解实例1——圆筒热应力分析1、问题描述有一短圆筒,其横截面结构如图7.24所示,筒内避温度为200℃,外壁温度为20℃,圆筒材料参数如表7.4所示,求圆筒内的温度场、应力场分布。
表7.4 材料性能参数弹性模量EGPa 泊松比ν线膨胀系数α℃-1导热系数KW/(m•℃)220 0.28 1.3e-6 70图8.24 圆筒横截面结果示意图2、三维建模应用Pro-E软件对固体计算域进行三维建模,实体如图7.25所示:图7.25 短圆筒三维实体图3、网格划分采用采用ANSYS有限元分析软件对计算域进行网格划分,得到如图7.26所示的六面体网格单元。
流场的网格单元数为5760,节点数为7392。
图7.26 短圆筒网格图4、模拟计算结果及分析采用ANSYS有限元分析软件稳态计算,设置短圆筒导热系数为70W/(m•℃),弹性模量为220Gpa,泊松比为0.28ν,线膨胀系数为1.3e-6℃-1。
筒内壁加载温度载荷为200K,筒外壁加载温度载荷为20K。
求解时选取Thermal Energy传热模型。
求解方法采用高精度求解,计算收敛残差为10-4。
图7.27为圆筒内的温度场分布等值线图;图7.28为圆筒轴截面上的温度场分布等值线图;图7.29为圆筒轴截面上的径向应力场分布等值线图;图7.30为圆筒轴截面上的轴向应力场分布等值线图;图7.31为圆筒轴截面上的周向应力场分布等值线图;图7.32为圆筒轴截面上的等效应力场分布等值线图。
数据文件及结果文件在heat stress文件夹内。
图7.27 圆筒内的温度场分布等值线图图7.28 圆筒轴截面上的温度场分布等值线图图7.29 圆筒轴截面上的径向应力场分布等值线图图7.30 圆筒轴截面上的轴向应力场分布等值线图图7.31 圆筒轴截面上的周向应力场分布等值线图图7.32 圆筒轴截面上的等效应力场分布等值线图。
ansys热分析实例教程
Temperature distribution in a CylinderWe wish to compute the temperature distribution in a long steel cylinder with inner radius 5 inches and outer radius 10 inches. The interior of the cylinder is kept at 75 deg F, and heatis lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F and the thermal conductivity for steel is 0.69 BTU/hr-in-F.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. Recognize symmetry of the problem, and a quadrant of a section through the cylinder is created using ANSYS area creation tools. Preprocessor -> Modeling -> Create -> Areas -> Circle -> Partial annulusThe following geometry is created.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Thermal Solid -> Solid 8 node 77 -> OK -> Close5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area and refine using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the convection coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesTo account for symmetry, select the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperaturesThe temperature on the interior is 75 F and on the outside wall it is found to be 45. These results can be checked using results from heat transfer theory.BackThermal Stress of a Cylinder using Axisymmetric ElementsA steel cylinder with inner radius 5 inches and outer radius 10 inches is 40 inches long and has spherical end caps. The interior of the cylinder is kept at 75 deg F, and heat is lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F. Calculate the stresses in the cylinder caused by the temperature distribution.The problem is solved in two steps. First, the geometry is created, the preference set to'thermal', and the heat transfer problem is modeled and solved. The results of the heat transfer analysis are saved in a file 'jobname.RTH' (Results THermal analysis) when you issue a save jobname.db command.Next the heat transfer boundary conditions and loads are removed from the mesh, the preference is changed to 'structural', the element type is changed from 'thermal' to 'structural', and the temperatures saved in 'jobname.RTH' are recalled and applied as loads.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. A quadrant of a section through the cylinder is created using ANSYS area creation tools.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Solid 8 node 77 -> OK ->Options -> K3 Axisymmetric -> OK5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesSelect the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperatureThe temperature on the interior is 75 F and on the outside wall it is found to be 43.12. File -> Save Jobname.db13. Preprocessor -> Loads -> Delete -> Delete All -> Delete All Opts.14. Preferences -> Structural will show, Thermal will NOT show.15. Preprocessor -> Element Type -> Switch Element Type -> OK (This changes the element to structural)16. Preprocessor -> Loads -> Apply -> Displacements -> Nodes(Fix nodes on vertical and horizontal lines of symmetry from crossing the lines of symmetry.)17. Preprocessor -> Loads -> Apply -> Temperature -> From Thermal AnalysisSelect Jobname.RTH (If it isn't present, look for the default 'file.RTH' in the root directory)18. Solution -> Solve Current LS19. General Postprocessor -> Plot Results -> Element Solution - von Mises StressThe von Mises stress is seen to be a maximum in the end cap on the interior of the cylinder and would govern a yield-based design decision.Back。
【ANSYS算例】8.4(1)及8.4(2) 升温条件下杆件支撑结构的热应力分析(GUI)及命令流
【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI)一个由两根铜杆以及一根钢杆组成的支撑结构,见图8-8(a);三杆的横截面积都为A=0.1 in2,三杆的端头由一个刚性梁连接,整个支撑结构在装配后承受一个力载荷以及升温的作用,分析构件的受力状况。
模型中的各项参数如表8-5所示,为与文献结果进行比较,这里采用了英制单位。
(a)三杆支撑结构(b)计算模型图8-8 三杆支撑结构的受力以及计算模型表8-5 三杆结构的模型参数材料参数载荷铜的弹性模量:16×106 psiQ = 4000 lb 铜的热膨胀系数:92×10-7 in/in·°F钢的弹性模量:30×106 psiΔT = 10°F 钢的热膨胀系数:70×10-7 in/in·°F解答:计算模型如图8-8(b)所示。
采用2D的计算模型,使用杆单元2-D Spar (or Truss) Elements (LINK1)来进行建模,假设杆的长度为20in,杆的间距为10in,设定一个参考温度(700F),三杆连接的刚性梁采用约束方程来进行等效。
建模的要点:⑴首先定义分析类型并选取单元,输入实常数;⑵建立对应几何模型,并赋予相应的单元类型所对应的编号值,采用耦合方程来进行刚性梁连接的等效⑶在后处理中,用命令<*GET >来提取其计算分析结果(频率);⑷通过命令<*GET >来提取构件的应力值。
最后将计算结果与参考文献所给出的解析结果进行比较,见表8-6。
表8-6 ANSYS模型与文献的解析结果的比较构件的应力/ psi Reference 8.4(1)的结果ANSYS结果两种结果之比钢杆的应力19 695. 19 695. 1.000铜杆的应力10 152. 10 152. 1.000Reference 8.4(1):Timoshenko S. Strength of Material, Part I, Elementary Theory and Problems!3rd Edition! New York: D. Van Nostrand Co., Inc., 1955, 30给出的基于图形界面的交互式操作(step by step)过程如下。
ANSYS Example07热-结构耦合分析算例 (ANSYS)
k,4,8,
k,0,6
k,5,0,8
larc,2,3,1,5
larc,4,5,1,8
l,2,4
l,3,5
al,1,2,3,4
esize,0.5
amesh,all
!!!!!!!!!!!!!
FINISH
/SOL
!*
ANTYPE,0
DL,1, ,TEMP,1000,0
DL,2, ,TEMP,20,0
(6)下面首先进入热分析,进入ANSYS主菜单Solution->Analysis Type->New Analysis,设置分析类型为稳态分析Steady-state
(7)输入热边界条件,进入ANSYS主菜单Solution-> Define Loads-> Apply-> Thermal-> Temperature-> On Lines,在直线1上加上1000度的温度荷载,如图所示,在直线2上加上20度的温度荷载。
(5)下面划分网格,由于本模型只有一种单元一种材料,所以不必复杂的设置属性。进入ANSYS主菜单Preprocessor->Meshing->Size Cntrls->ManualSize->Global->Size,在Global Element Size窗口中设置单元尺寸为0.5。在ANSYS主菜单Preprocessor->Meshing->Mesh->Areas,点选圆环进行网格划分
solve
!!!!!!!!!!!!
FINISH
/POST1
!*
/EFACET,1
PLNSOL, TEMP,, 0
FINISH
ANSYS_热分析报告(两个实例)有限元热分析报告上机指导书
第四讲 热分析上机指导书CAD/CAM 实验室,USTC实验要求:1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进展稳态热分析的根本过程,熟悉用直接耦合法、间接耦合法进展热应力分析的根本过程。
2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进展瞬态热分析的根本过程。
容1:冷却栅管问题问题描述:本实例确定一个冷却栅管〔图a 〕的温度场分布与位移和应力分布。
一个轴对称的冷却栅结构管为热流体,管外流体为空气。
冷却栅材料为不锈钢,特性如下:W/m ℃×109 MPa×10-5/℃边界条件:〔1〕管:压力:6.89 MPa流体温度:250 ℃对流系数249.23 W/m 2℃〔2〕管外:空气温度39℃对流系数:62.3 W/m 2℃假定冷却栅管无限长,根据冷却栅结构的对称性特点可以构造出的有限元模型如图b 。
其上下边界承受边界约束,管部承受均布压力。
练习1-1:冷却栅管的稳态热分析步骤:1. 定义工作文件名与工作标题1) 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【ChangeJobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。
2) 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。
3) 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> WindowOptions ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。
ANSYS热应力分析实例
ANSYS热应力分析实例ANSYS是一款广泛应用于工程领域的有限元分析软件,可以对复杂的物理系统进行分析。
其中之一的热应力分析可以用于评估材料在温度变化下的变形和应力分布情况。
下面将给出一个ANSYS热应力分析实例进行详细说明。
实例场景描述:假设我们有一个高温容器,容器由一种特定材料制成,在加热的过程中,容器内的温度会达到1500°C,我们希望了解容器在这种高温下的变形和应力情况。
实例步骤:1.创建几何模型首先,我们需要在ANSYS中创建几何模型。
可以通过几何建模软件(如SolidWorks)创建一个容器的3D模型,然后将该模型导入ANSYS中。
确保在导入模型时尽量保留几何体的完整性。
2.定义材料属性在进行热应力分析之前,需要提前定义材料的热力学性质。
对于我们的实例中的容器材料,需要知道其热导率、热膨胀系数、Young弹性模量和泊松比等参数。
这些参数可通过材料手册或实验测试获得。
3.设置边界条件在ANSYS中,我们需要设置边界条件以模拟实际工作环境。
对于本实例,我们需要设置容器表面的边界条件为1500°C,同时设置容器底部为固定边界,以防止其在分析过程中移动。
4.进行热传导分析在进行热应力分析之前,需要进行热传导分析。
在这一步骤中,我们需要使用热传导方程计算材料内部的温度分布情况。
这些结果将作为后续热应力分析的输入。
5.进行热应力分析在得到热传导分析的温度分布结果后,我们可以开始进行热应力分析。
在这一步骤中,ANSYS会根据材料的热膨胀系数计算出由温度变化引起的应变,并进一步计算出引起的应力分布。
通过这些结果,我们可以了解容器在高温下产生的变形和应力情况。
6.结果分析与后处理最后,我们需要对热应力分析的结果进行分析和后处理。
ANSYS提供了丰富的后处理工具,可以对应力分布、应变分布、变形分布等进行可视化和统计分析。
我们可以通过这些工具来评估容器在高温下的耐受性和结构完整性。
总结:以上是一个ANSYS热应力分析的简单实例,通过分析容器在高温下的变形和应力情况,我们可以评估容器在实际工作环境中的性能。
ANSYS热应力分析实例
ANSYS热应力分析实例在航天器的火箭发动机喷管系统中,热应力是一个非常重要的考虑因素。
在发动机工作过程中,高温燃烧气体通过喷管流过时,会导致喷管内壁产生高温,并引起温度梯度。
这种温度梯度会导致喷管内壁的膨胀和应力的产生,如果超过喷管材料的承受能力,就会发生破裂和损坏。
为了评估火箭发动机喷管系统的热应力情况,我们可以使用ANSYS进行分析。
首先,我们需要建立一个喷管的几何模型,并定义材料属性和边界条件。
然后,我们可以设置热负荷和温度梯度。
接下来,我们使用ANSYS的热分析功能来模拟燃烧气体通过喷管的过程,从而计算出喷管内壁的温度分布。
通过这个分析,我们可以获得各个点的温度数据。
然后,我们可以将温度数据输入到ANSYS的结构分析模块中,使用热-结构耦合功能来计算喷管内壁的应力分布。
这个分析可以帮助我们判断喷管在工作状态下是否会产生过大的热应力。
最后,我们可以根据得到的结果来评估喷管的安全性,并根据需要进行设计优化。
如果发现有区域的热应力超过了材料的承受能力,我们可以考虑增加材料厚度或者改变材料的性质来提高喷管的耐热性能。
通过使用ANSYS进行热应力分析,我们可以更好地理解喷管的热响应,并提前预测和防范潜在的问题,从而提高火箭发动机系统的可靠性和安全性。
总结起来,ANSYS热应力分析在航天器火箭发动机喷管系统中的应用非常重要。
通过该分析,我们可以评估喷管在工作过程中是否会产生过大的热应力,并提前采取相应的措施来防止潜在的破裂和损坏问题。
这种分析方法可以提高设计的可靠性和安全性,减少后续维修与改进方面的开支和工作量。
ANSYS热应力分析实例
ANSYS热应力分析实例热应力是指由于温度变化引起的材料内部应力。
在工程设计中,热应力分析对于预测材料在实际使用条件下的性能至关重要。
ANSYS是一款领先的有限元分析软件,可以在工程设计和分析中进行热应力分析。
本文将介绍一个简单的热应力分析实例,以帮助读者了解如何使用ANSYS进行该类型的分析。
在这个实例中,我们将使用ANSYS来模拟一个由钢材制成的热板,在其表面施加热流。
我们将分析在不同的热流条件下,热板表面的温度分布及由此产生的热应力。
首先,我们需要在ANSYS中建立模型。
我们选择建立一个二维平面应力模型,模型尺寸为2mx1m。
我们为钢材定义材料属性,包括杨氏模量和泊松比。
接下来,我们为模型施加边界条件,固定模型的下边界,模拟一个定量的热流施加在模型的上边界。
然后,我们需要定义热流的边界条件。
我们选择在模型的上边界施加一个固定的热流密度,例如1000W/m^2、我们还需要定义热板的初始温度,通常可以选择室温或其他合适的温度。
接下来,我们进行热传导分析。
在ANSYS中,我们可以通过定义热传导方程和边界条件来模拟热流的传导行为。
我们将求解热传导方程,得到热板上每个点的温度分布。
一旦我们得到了热板的温度分布,我们可以通过热传导方程计算热应力。
热应力是由于温度变化引起的材料内部应力,可以通过考虑材料的热膨胀系数和热导率来计算。
在ANSYS中,我们可以使用热应力分析模块来计算模型中每个点的热应力。
最后,我们可以通过后处理功能来查看热板表面的温度分布和热应力分布。
我们可以将结果可视化为温度云图和热应力云图,以便更直观地理解热应力的分布情况。
我们还可以提取特定点的温度和热应力数值,以帮助评估热板在不同热流条件下的性能表现。
总的来说,热应力分析是工程设计中非常重要的一部分,能够帮助工程师预测材料的性能并优化设计。
ANSYS作为一款功能强大的有限元分析软件,可以帮助工程师进行精确的热应力分析,并提供丰富的可视化和后处理功能。
Ansys 第36例 热应力分析(间接法)实例—液体管路doc资料
A n s y s第36例热应力分析(间接法)实例—液体管路第36例热应力分析(间接法)实例—液体管路本例介绍了利用间接法进行热应力计算的方法和步骤:首先进行热分析得到结构节点温度分布,然后把温度作为载荷施加到结构上并进行结构分析。
36.1概述利用间接法计算热应力,首先进行热分析,然后进行结构分析。
热分析可以是瞬态的,也可以是稳态的,需要将热分析求得的节点温度作为体载荷施加到结构上。
当热分析是瞬态的时,需要找到温度梯度最大的时间点,并将该时间点的结构温度场作为体载荷施加到结构上。
由于间接法可以使用所有热分析和结构分析的功能,所以对于大多数情况都推荐使用该方法。
间接法进行热应力计算的主要步骤如下。
36.1.1热分析瞬态热分析的过程在前例已经介绍过,下面介绍稳态热分析。
稳态热分析用于研究稳定的热载荷对结构的影响,有时还用于瞬态热分析时计算初始温度场。
稳态热分析主要步骤如下。
1.建模稳态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。
但需注意的是:稳态热分析必须定义材料的导热系数。
2.施加载荷和求解(1)指定分析类型。
Main Menu→Solution→Analysis Type→New Analysis,选择 Static.(2)施加载荷。
可以施加的载荷有恒定的温度、热流率、对流、热流密度、生热率,Main Menu→Solution→Define Loads→Apply→Thermal.(3)设置载荷步选项。
普通选项包括时间(用于定义载荷步和子步)、每一载荷步的子步数,以及阶跃选项等, Main Menu→Solution→Load Step Opts→T ime/Frequenc→Time→Time Step.非线性选项包括:—迭代次数(默认25),Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step等.输出选项包括:控制打印的输出,Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout;控制结果文件的输出,Main Menu→Solution→Load Step Opts→Output Ctrls→DB/Results File o(4)设置分析选项。
一个经典的ansys热分析实例(流程序)
/PREP7/TITLE,Steady-state thermal analysis of pipe junction/UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches)! /SHOW, ! Specify graphics driver for interactive runET,1,90 ! Define 20-node, 3-D thermal solid elementMP,DENS,1,.285 ! Density = .285 lbf/in^3MPTEMP,,70,200,300,400,500 ! Create temperature tableMPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12! 指定与温度相对应的数据材料属性;导热系数;Define conductivity valuesMPDATA,C,1,,.113,.117,.119,.122,.125! Define specific heat values(比热)MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144! Define film coefficient;除144是单位问题,上面的除12也是单元问题! Define parameters for model generationRI1=1.3 ! Inside radius of cylindrical tankRO1=1.5 ! Outside radiusZ1=2 ! LengthRI2=.4 ! Inside radius of pipeRO2=.5 ! Outside pipe radiusZ2=2 ! Pipe lengthCYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tankWPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axisCYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipeWPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default settingBOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warningVOVLAP,1,2 ! 交迭体;Overlap the two cylinders/PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on/VIEW,,-3,-1,1/TYPE,,4 ! 精确面的显示;Precise hidden display/TITLE,Volumes used in building pipe/tank junctionVPLOTVDELE,3,4,,1 ! 修剪一些体与体相关的体的因素都删掉;Trim off excess volumes! Meshing 网格划分ASEL,,LOC,Z,Z1 ! Select area at remote Z edge of tankASEL,A,LOC,Y,0 ! Select area at remote Y edge of tankCM,AREMOTE,AREA ! 为面建立数组;Create area component called AREMOTE/PNUM,AREA,1/PNUM,LINE,1/TITLE,Lines showing the portion being modeledAPLOT/NOERASE ! 预防抹去LPLOT ! Overlay line plot on area plot/ERASEACCAT,ALL ! 连接面和线的准备映射;Concatenate areas and lines at remote tank edgesLCCAT,12,7LCCAT,10,5LESIZE,20,,,4 ! 4 divisions through pipe thicknessLESIZE,40,,,6 ! 6 divisions along pipe lengthLESIZE,6,,,4 ! 4 divisions through tank thicknessALLSEL ! Restore full set of entitiesESIZE,.4 ! Set default element size线的默认划分数MSHAPE,0,3D ! Choose mapped brick meshMSHKEY,1 ! 映射网格SAVE ! Save database before meshingVMESH,ALL ! Generate nodes and elements within volumes/PNUM,DEFA ! 重新安排数字规格/TITLE,Elements in portion being modeledEPLOTFINISH/COM, *** Obtain solution ***/SOLUANTYPE,STATIC ! Steady-state analysis typeNROPT,AUTO ! 自动选择牛顿-拉普森Program-chosenNewton-Raphson optionTUNIF,450 ! 给结点统一的温度;Uniform starting temperature at all nodesCSYS,1 ! 1 —Cylindrical with Z as the axis of rotation NSEL,S,LOC,X,RI1 ! Nodes on inner tank surfaceSF,ALL,CONV,250/144,450 ! 为结点指定表面载荷;对流;Convection(对流);load at all nodesCMSEL,,AREMOTE ! 选择子集组合;Select AREMOTE component NSLA,,1 ! Nodes belonging to AREMOTED,ALL,TEMP,450 ! 设定边界温度条件Temperature constraints at those nodesWPROTA,0,-90 ! Rotate working plane to pipe axisCSWPLA,11,1 ! 在工作区声明本地的圆柱体系;Define local cylindrical c.s at working planeNSEL,S,LOC,X,RI2 ! Nodes on inner pipe surfaceSF,ALL,CONV,-2,100 ! 这里的-2表示材料2;;Temperature-dep. convection load at those nodesALLSEL/PBC,TEMP,,1 ! 边界符号的显示Temperature b.c. symbols on/PSF,CONV,,2 ! Convection symbols on 箭头显示/TITLE,Boundary conditionsNPLOTWPSTYL,DEFACSYS,0AUTOTS,ON ! Automatic time steppingNSUBST,50 ! Number of substepsKBC,0 ! Ramped loading (default)OUTPR,NSOL,LAST ! 显示最后一次的结点约束;Optional command for solution printoutSOLVEFINISH/COM, *** Review results ***/POST1/EDGE,,1 ! Displays only the "edges(刀口, 利刃, 锋, 优势, 边缘, 优势, 尖锐)" of an object;Edge display/PLOPTS,INFO,ON ! Legend column on/PLOPTS,LEG1,OFF ! Legend header off 圆柱数列的头部/WINDOW,1,SQUARE ! SQUA, form largest square window within the current graphics area;Redefine window size/TITLE,Temperature contours at pipe/tank junctionPLNSOL,TEMP ! Plot temperature contoursCSYS,11NSEL,,LOC,X,RO2 ! Nodes and elements at outer radius of pipeESLN ! 选择单元NSLE ! 选择结点/SHOW,,,1 ! 向量显示;Vector mode/TITLE,Thermal flux vectors at pipe/tank junctionPLVECT,TF ! Plot thermal flux(热通量)vectorsFINISH。
ANSYS热应力分析-实例
Workshop Supplement
练习4B 热应力分析 直接耦合场
带翅片的管
4B. 热应力分析 – 直接应力场
带翅片的管
说明 •
Workshop Supplement
在这个练习题中,我们将 用直接应力场的方法重做前面的题目。 这个轴对称的翅片将被用来分析以前施加的热和结构荷载。
4B. 热应力分析 – 直接应力场
Workshop Supplement
4A.热应力分析 –耦合场
带翅片的管
Workshop Supplement
4A.热应力分析 –耦合场
带翅片的管
14e. 画纵向(轴向)的应力图:
– – Main Menu > General Postproc > Plot Results > -Contour Plot- Nodal Solu ... • 拾取 “Stress” 和 “Y-direction SY”, 然后按 [OK] 或用命令: PLNSOL,S,Y
Utility Menu > Select > Everything 或用命令: CP,1,UY,ALL ALLSEL,ALL
4A. 热应力分析 –耦合场
带翅片的轴对称管
11. 将内部压力施加在线上:
– Main Menu > Preprocessor > Loads > -Loads- Apply > Pressure > On Lines + • – 拾取线 9和13, 然后按 [OK] • 将VALUE设为 1000, 然后按 [OK] 或用命令: SFL,9,PRES,1000 SFL,13,PRES,1000
–
9.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。
管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。
管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。
求温度及应力分布。
7.3.2菜单操作过程7.3.2.1设置分析标题1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。
2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。
7.3.2.2进入热分析,定义热单元和热材料属性1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。
2、设定导热系数:选择“Main Menu>Preprocessor>Mate rial Porps>Material Models”,点击Thermal,Conductivity,Isotropic,输入1.25。
7.3.2.3创建模型1、创建八个关键点,选择“Main Menu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:3、设定单元尺寸,并划分网格:“Main Menu>Preprocessor>Meshtool”,设定global size为0.125,选择AREA,Mapped,Mesh,点击Pick all。
7.3.2.4施加荷载1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK,选择管内壁节点;2、在管内壁节点上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数1,流体环境温度450。
3、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入6,12,点击Apply;4、选择“Utili ty Menu>Select>Entities>Nodes>By location>Y coordinates,Reselect”,输入0.25,1,点击Apply;5、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入12,点击OK;6、在管外边界上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数0.25,流体环境温度70。
7.3.2.5求解1、选择“Utility Menu>Select>Select Everything”。
2、选择“Main Menu>Solution>Solve Current LS”。
7.3.2.6后处理1、显示温度分布:选择“Main Menu>General Postproc>Plot Result>Nodal Solution>Temperature”。
7.3.2.7重新进入前处理,改变单元,定义结构材料1、选择“Main Menu>Preprocessor>Element Type>Switch Elem Type”,选择Thermal to Structure。
2、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,点击Option,将结构单元设置为轴对称。
3、选择“Main Menu>Preprocessor>Material Porps>Material Models”,输入材料的EX为28E6,PRXY为0.3,ALPX为0.9E-5。
7.3.2.8定义对称边界条件1、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,From Full”,输入0,点击Apply;2、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入1,点击Apply;3、选择“Main Menu>Solution>Apply>Displacement>Symmetry B.C. On Nodes”,点击Pick All,选择Y axis,点击OK;7.3.2.8施加管内壁压力1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK;2、选择“Main Menu>Solution>Apply>Pressure>On nodes”,点击Pick All,输入1000。
7.3.2.9设置参考温度1、选择“Utility Menu>Select>Select Everything”。
2、选择“Mai n Menu>Solution>-Loads-Setting>Reference Temp”输入70。
7.3.2.10读入热分析结果1、选择“Main Menu>Solution>Apply>Temperature>From Thermal Analysis>”,选择PIPE_FIN.rth。
7.3.2.11求解选择“Main Menu>Solution>Solve Current LS”。
7.3.2.12后处理选择“Main Menu>General Postpro>Plot Result>NodalSolution>Stress>Von Mises”。
显示等效应力。
7.3.3等效的命令流方法/filename,pipe_fin/TITLE,Thermal-Stress Analysis of a cooling fin/prep7!进入前处理et,1,plane55!定义热单元keyopt,1,3,1!定义轴对称mp,kxx,1,1.25!定义导热系数k,1,5!建模k,2,6k,3,12k,4,12,0.25k,5,6,0.25k,6,6,1k,7,5,1k,8,5,0.25a,1,2,5,8a,2,3,4,5a,8,5,6,7esize,0.125!定义网格尺寸amesh,all!划分网格eplotfinish/solu!热分析求解nsel,s,loc,x,5!选择内表面节点sf,all,conv,1,450!施加对流边界条件nsel,s,loc,x,6,12!选择外表面节点nsel,r,loc,y,0.25,1nsel,a,loc,x,12sf,all,conv,0.25,70!施加对流边界条件nsel,all/pse,conv,hcoef,1nplotsolve!求解生成PIPE_FIN.rth文件finish/post1plnsol,temp!得到温度场分布finish/prep7 !重新进入前处理etchg,tts!将热单元转换为结构单元plane42keyopt,1,3,1!定义轴对称特性mp,ex,1,28e6!定义弹性模量mp,nuxy,1,0.3!定义泊松比mp,alpx,1,0.9e-5!定义热膨胀系数finish/solu!进入结构分析求解nsel,s,loc,y,0!选择对称边界nsel,a,loc,y,1dsym,symm,y!定义对称条件nsel,s,loc,x,5!选择内表面sf,all,pres,1000!施加压力边界条件nsel,all/pbc,all,1/psf,pres,,1nplottref,70!设定参考温度ldread,temp,,,,,,rth!读入PIPE_FIN.rth节点温度/pbc,all,0/psf,pres,,0分布/pbf,temp,,1eplotsolve!求解finish/post1,plnsol,s,eqv!得到等效应力finish7.4直接法热应力分析实例7.4.1问题描述两个同心圆管之间有一个小间隙,内管中突然流入一种热流体,求经过3分钟后外管表面的温度。
已知条件:管材弹性模量:2E11N/m2热膨胀系数:5E-41/ oF泊松比:0.3导热系数:10W/m.oC密度:7880Kg/m3比热:500J/Kg.oC外管外半径:0.131 m外管内半径:0.121 m内管外半径:0.12m内管内半径:0.11m流体温度:300oC流体与内管内壁对流系数:300W/m2.oC内、外管接触热导:0.1W/oC7.4.2命令流方法/filename,contact_thermal/title,contact_thermal example/prep7et,1,13,4,,1! 选择直接耦合单元PLANE13,单元自由度为ux,uy,temp! 定义为轴对称et,2,48! 定义结构接触单元keyopt,2,1,1! 设定接触单元的相应选项keyopt,2,2,1keyopt,2,7,1r,2,2e11,0,0.0001,,,0.1! 定义接触单元实常数mp,ex,1,2e11! 定义管材结构及热属性mp,alpx,1,5e-5mp,kxx,1,10mp,dens,1,7880mp,c,1,500rect,0.11,0.12,0,0.02! 建模rect,0.121,0.131,0,0.02amesh,allnsel,s,loc,x,0.11! 将内管内壁的X方向位移及温度耦合cp,1,ux,allcp,2,temp,allnsel,s,loc,x,0.12! 将内管外壁的X方向位移及温度耦合cp,3,ux,allcp,4,temp,allnsel,s.loc,x,0.121! 将外管内壁的X方向位移及温度耦合cp,5,ux,allcp,6,temp,allnsel,s,loc,x,0.131! 将外管外壁的X方向位移及温度耦合cp,7,ux,allcp,8,temp,allnsel,s,loc,y,0.02! 将内管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0,0.12cp,9,uy,allnsel,s,loc,y,0.02! 将外管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0.121,0.131cp,10,uy,allnsel,s,loc,x,0.12! 创建接触单元cm,cont,nodensel,s,loc,x,0.121cm,targ,nodetype,2real,2gcgen,cont,targ,3/soluantype,trans! 瞬态分析tunif,20! 初始平均温度tref,20! 参考温度sfl,4,conv,300,,300! 内管内壁对流边界sfl,6,conv,10,,20! 外管外壁对流边界nsel,s,loc,y,0! 约束所有底边单元的Y向位移d,all,uy,0time,180! 载荷步时间deltime,10,5,15! 定义时间步长outres,all,allkbc,1autots,on! 自动时间步长allselsolve! 求解/post1plnsol,temp! 显示温度分布plnsol,s,eqv! 显示等效应力。