蚀刻液分类及工艺流程

合集下载

碱性蚀刻制程讲义

碱性蚀刻制程讲义

碱性蚀刻制程讲义本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March碱性蚀刻制程讲义目录一、碱性蚀刻流程二、为什么要蚀刻三、碱性蚀刻制程需求四、制程及产品介绍五、特性及优点六、制程控制七、洗槽及配槽程序八、问题及对策九、信赖度测试方法十、药水分析方法一、碱性蚀刻流程剥膜→水洗→蚀刻→子液洗→水洗→剥锡→水洗→烘干二、为什么要蚀刻将基板上不需要的铜,以化学反应方式予以除去,以形成所需要的电路图形三、蚀刻制程需求1.适宜的抗蚀剂类型2.适宜的蚀刻液类型3.可实现自动控制4.蚀刻速度要快5.蚀刻因子要大,侧蚀少6.蚀刻液能连续运转和再生7.溶铜量要大,溶液寿命长四、制程及产品介绍PTL-503B为全溶碱性蚀刻液,适用于图形电镀金属抗蚀层,如镀覆镍.金.锡铅合金.锡镍合金及锡的印制电路板蚀刻1.剥膜成份:NaOH功能:剥除铜面上之干膜,露出底层铜面特性:强碱性,适用于水平及垂直设备2.碱性蚀刻主要成份:NH3H2O NH3Cl Cu(NH3)4Cl2①.Cu(NH3)4Cl2:具有蚀刻能力,与板面Cu反应,生成不具蚀刻能力之Cu(NH3)2Cl,在过量氨水和氯离子存在的情况下,Cu(NH3)2Cl很快被空气氧化生成具有蚀刻能力之Cu(NH3)4Cl2②.:提供蚀刻所需之碱性环境,并与NH4Cl一道完对Cu(NH3)2Cl之氧化再生氧化 氧化氧化 氧化③. NH 4Cl:提供再生时之Cl -反应原理: Cu+Cu(NH 3)4Cl 2→2Cu(NH 3)2Cl2Cu(NH 3)2Cl+2NH 4Cl+2NH 4OH+O 2→2Cu(NH 3)4Cl 2+2H 2O Cu+2NH 4Cl+2NH 4OH+O 2→Cu(NH 3)4Cl 2+2H 2O3. 剥锡铅:PTL-601D/605 PTL-602A/602B 1功能:剥除线路板表面锡金属抗蚀层,露出线路板之铜面,并保持铜面之光泽 主要成份:HNO 3①. 双液型:PTL-602A/602B 1 A. A 液a. 氧化剂:用以将Sn/Pb 氧化成PbO/SnOb. 抗结剂:将PbO/SnO 转成可溶性结构,避免饱和沉淀c. 抑制剂:防止A 液咬蚀锡铜合金 B. B 液a. 氧化剂:用以咬蚀铜锡合金b. 抗结剂:防止金属氧化物沉淀c. 护铜剂:保护铜面,防止氧化 ②. 单液型a. 氧化剂:用以将Sn/Pb 氧化成PbO/SnOb. 抗结剂:将PbO/SnO 转成可溶性结构c. 护铜剂:保持铜面,防止氧化 反应原理: 1. 咬Sn/PbSn/Pb SnO/PbO SnL/PbL H 2SnO 3(H 2O)X (a) 2. 铜锡合金剥除Cu 6Sn 5 Cu 2++Sn 2+(溶解) Cu 3Sn Cu 2++Sn 2+(溶解)五、特性及优点1.操作参数表补充:蚀刻液比重超过或铜含量超过160g/L时,抽出1/5槽液并添加PTL-501B到原液位管理:A.定期检查自动控制之比重和槽液比重是否符合而做适当校正B.定期分析槽液PH值,铜含量,氯含量,并作成管制图C.每日下班时使用子液冲洗蚀铜机前后进出之滚轮,避免干燥氢氧化铜之累积D.长期不使用时,可多添加3-5%子液,避免NH3过量损失E.停机超过45-60日以上时,清洗蚀刻机槽维护如下:a.将槽液排出到预备槽b.用水喷洗5分钟后排放c.用3%(V/V)HCl清洗并喷洗5分钟后排放d.检查喷洒情况是否正常e.用水再清洗一次并检查加热器,冷却水管及滤钢板f.加水与约2%氨水或子液混合后喷洗5分钟后排放g.将槽液抽回F.氯化铵添加时请先在槽外以槽液溶解后,再加入蚀铜机内G.(氯离子标准值-分析值)×NH4Cl/Cl×槽体积(L)×1000=添加氯化铵Kg量H.PH值在50℃时与常温会呈现不同的值,换算公式如下:PH(50)=PH(X)×(50-X)/10例如:24℃时PH=,问50℃时的PH值是多少I.值的误差影响因素:温度越低,PH值越高,50℃与常温有时会差约电极会慢慢老化,而此过程中无法得知不同厂牌或不同电极,会差约校正用标准液会吸收空气中的CO2形成碳酸,若溶入标准液时,则影响准确性用与用做校正,也会不同J.蚀铜液的PH值变数太多,通常只作参考,用滴定碱当量法是比较准确的K.比重在50℃的值与常温时约差,比重差时,铜含量约差10g/L50℃25℃铜(g/L)140150160165七、洗槽及配槽程序1.新线洗槽程序a.以清水清洗所有药水槽及水洗槽,然后排放b.将各水洗槽及药水槽注满清水,加入5-10g/L片碱,开启循环过滤系统,维持四小时以上然后将废液排除c.用清水冲洗各槽体,并排放d.将各槽注满清水,循环30分钟后排放e.将各槽注入1/2槽体积水,加入1-2%槽体积H2SO4,然后注满清水,开启循环过滤系统,维持1-2小时后排放f.用清水冲洗各槽体,并将水排放g.以清水注满各槽,开启循环过滤系统,维持30分钟后排放h.剥膜槽用5-10g/L NaOH,蚀刻槽用1-2% ,剥锡槽用1-2% HNO3再次循环清洗1小时后,即可进行全线配槽2.配槽程序A.剥膜槽a.注入1/2槽体积清水,加入50g/L NaOH(NaOH需预先溶解后再加入槽内,以免堵塞管道)b.补充水至标准液位,循环20-30分钟c.分析调整药水浓度d.升温至50℃B.蚀刻槽a.取蚀刻母液PTL-503A(可由旧蚀刻线接取),加入蚀刻槽内b.分析调整母液浓度c.升温至50℃C.剥锡铅槽a.单液型剥锡铅液:直接将剥锡铅液原液加入槽内(PTL-601D,PTL-605),搅拌均匀b.双液型剥锡铅液:(PTL-602A/PTL-602B1)①.将PTL-602A原液加入剥锡铅线A段②.将95%槽体积PTL-602B1加入剥锡铅线B段,并缓慢加入5%槽体积H2O2(35%)③.将槽液搅拌均匀八、问题与对策:1.蚀铜液常见问题与对策2.剥锡/铅液常见问题及对策1. 蚀刻均匀性测试a. 取1PNL 24”×18”之2/2 OZ 含铜基板,两面至少各分为25个方格b. 测各小方格内铜厚H 1并依次作好记录c. 以正常之蚀板速度,将2/2 OZ 基板进行蚀刻d. 测蚀刻后各小方块内铜厚H 2,并与蚀刻前所测铜厚,相对应作记录e. 以蚀刻前之铜厚H 1,减去蚀刻后之铜厚H 2,即为蚀刻之铜厚hf. 以蚀刻掉铜厚之最小值H min 除去蚀刻掉铜厚之最大值H max ,即为蚀刻之均匀性均匀性>80%g. ,可调整上下喷压,若同一面均匀性差,可调2. 蚀刻速率测定a. 取一2/2 OZ 含铜基板,称重W 1(g)b. 将板放入蚀刻线,按正常之生产速度进行蚀刻后,取出洗净,吹干称重W 2(g),c. 计算:d. 计算:蚀刻速率3. 蚀刻因子测定方法 a. 取一做完电镀铜锡之PCB 板,要求该板具有朝向各个方向之线路,并有不同线宽线距(3/3mil 至10/10mil)在全板纵横分布 b. 将测试板放入蚀刻线,走完蚀刻后出c.d. 蚀刻因子蚀刻因子通常控制在3-54. 蚀刻点测试a.取1/1 OZ之含铜基板数片(宽度与机台同宽,基板数量应能使基板覆盖整个蚀刻段)b.将喷压固定,并将速度调整至正常蚀刻之速度c.将含铜基板逐一放入蚀刻段,板与板之间距须一致,当第一片基板走出蚀刻段后,立即关闭蚀刻之喷淋,待水洗后将蚀刻板逐一按顺序取出d.将蚀刻板逐一按原蚀刻放置顺序摆放好,观察经由喷洒所造成之残铜是否形成均匀之波峰波谷e. 观察残铜之波峰是否落于蚀刻段长度之70-80%内,若在此范围内,则表示蚀刻点正常,蚀刻速度合适,若不在此范围内则需调整速度,使蚀刻点落于蚀刻段长70-80%范围内十、分析方法㈠. 剥膜液NaOH化学分析试剂:酚酞指示剂 HCl方法:a. 取槽液5ml于250ml锥形瓶中b. 加50ml纯水c. 加3-5滴酚酞指示剂d. 用1N HCl滴定,溶液由红色变成无色为终点计算:NaOH=×1N HCl滴定ml数㈡. 蚀刻液PTL-503B化学分析①.铜离子含量分析试剂:PH=10缓冲液 PAN指示剂(1%) EDTA方法:a.取槽液10ml于100ml容量瓶中,加纯水至刻度线b.从上述溶液中取5ml于250ml锥形瓶中c.加入30ml纯水并加入20ml PH=10缓冲液d.加入4-6滴PAN指示剂e.用 EDTA滴定,溶液由蓝色变成草绿色为终点计算:Cu2+(g/L)=× EDTA滴定ml数②.氯离子含量分析试剂:20% 乙酸 20% K2CrO4 AgNO3方法:a.取槽液10ml于100ml容量瓶中,加纯水至刻度线b.从上述溶液中取5ml于250ml锥形瓶中c.加入30ml纯水并加入20ml 20%乙酸,15ml 20% K2CrO4缓冲液d.用 AgNO3滴定,溶液中沉淀细碎并呈粉红色为终点计算:[Cl-](N)=× AgNO3滴定ml数③.剥锡/铅液PTL-601D化学分析试剂:酚酞指示剂(1%) NaOH方法:a. 取槽液2ml于250ml锥形瓶中b. 加入20ml纯水并加入3-5滴酚酞指示剂c. 用 NaOH滴定,溶液由无色变成粉红色为终点计算:[H+](N)=× NaOH滴定ml数④.剥锡/铅液PTL-605化学分析试剂:酚酞指示剂(1%) NaOH方法:a. 取槽液2ml于250ml锥形瓶中b. 加入20ml纯水并加入3-5滴酚酞指示剂c. 用 NaOH滴定,溶液由无色变成粉红色为终点计算:[H+](N)=× NaOH滴定ml数⑤.剥锡/铅液PTL-602A/B1化学分析A. PTL-602A含量分析试剂:甲基红指示剂%) 1N NaOH方法:a.取5ml槽液于250ml锥形瓶中b.加入50ml纯水c.加入3-5滴甲基红指示剂d.用1N NaOH溶液滴定,颜色由红色变成黄色为终点计算:PTL-602A(N)=×1N NaOH含量分析←酸当量分析试剂:甲基红指示剂%) 1N NaOH方法:a. 取5ml槽液于250ml锥形瓶中b. 加入50ml纯水c. 加入3-5滴甲基红指示剂d. 用1N NaOH溶液滴定,颜色由红色变成黄色为终点计算:PTL-602B1(N)=×1N NaOH滴定ml数↑双氧水含量分析试剂:35% H2SO4 KMnO4方法:a.取1ml槽液于250ml锥形瓶中b.加入50ml纯水c.加入20ml 35% H2SO4溶液d.用 KMnO4溶液滴定,颜色由无色变成微红色为终点计算:35% H2O2(%)=× KMnO4滴定ml数。

蚀刻液类别

蚀刻液类别

蚀刻液分类目前已经使用的蚀刻液类型有六种类型:酸性氯化铜碱性氯化铜氯化铁过硫酸铵硫酸/铬酸硫酸/双氧水蚀刻液。

各种蚀刻液特点酸性氯化铜蚀刻液1) 蚀刻机理:Cu+CuCl2→Cu2Cl2Cu2Cl2+4Cl-→2(CuCl3)2-2) 影响蚀刻速率的因素:影响蚀刻速率的主要因素是溶液中Cl-、Cu+、Cu2+的含量及蚀刻液的温度等。

a、Cl-含量的影响:溶液中氯离子浓度与蚀刻速率有着密切的关系,当盐酸浓度升高时,蚀刻时间减少。

在含有6N的HCl溶液中蚀刻时间至少是在水溶液里的1/3,并且能够提高溶铜量。

但是,盐酸浓度不可超过6N,高于6N盐酸的挥发量大且对设备腐蚀,并且随着酸浓度的增加,氯化铜的溶解度迅速降低。

添加Cl-可以提高蚀刻速率的原因是:在氯化铜溶液中发生铜的蚀刻反应时,生成的Cu2Cl2不易溶于水,则在铜的表面形成一层氯化亚铜膜,这种膜能够阻止反应的进一步进行。

过量的Cl-能与Cu2Cl2络合形成可溶性的络离子(CuCl3)2-,从铜表面上溶解下来,从而提高了蚀刻速率。

b、Cu+含量的影响:根据蚀刻反应机理,随着铜的蚀刻就会形成一价铜离子。

较微量的Cu+就会显著的降低蚀刻速率。

所以在蚀刻操作中要保持Cu+的含量在一个低的范围内。

c、Cu2+含量的影响:溶液中的Cu2+含量对蚀刻速率有一定的影响。

一般情况下,溶液中Cu2+浓度低于2mol/L时,蚀刻速率较低;在2mol/L时速率较高。

随着蚀刻反应的不断进行,蚀刻液中铜的含量会逐渐增加。

当铜含量增加到一定浓度时,蚀刻速率就会下降。

为了保持蚀刻液具有恒定的蚀刻速率,必须把溶液中的含铜量控制在一定的范围内。

d、温度对蚀刻速率的影响:随着温度的升高,蚀刻速率加快,但是温度也不宜过高,一般控制在45~55℃范围内。

温度太高会引起HCl过多地挥发,造成溶液组分比例失调。

另外,如果蚀刻液温度过高,某些抗蚀层会被损坏。

碱性氯化铜蚀刻液1) 蚀刻机理:CuCl2+4NH3→Cu(NH3)4Cl2Cu(NH3)4Cl2+Cu→2Cu(NH3)2Cl2) 影响蚀刻速率的因素:蚀刻液中的Cu2+浓度、pH值、氯化铵浓度以及蚀刻液的温度对蚀刻速率均有影响。

蚀刻工艺流程

蚀刻工艺流程

蚀刻工艺的重要性及发展趋势
蚀刻工艺的重要性
• 广泛应用于各种行业 • 对产品的质量和性能起着关键作用
蚀刻工艺的发展趋势
• 蚀刻工艺不断精细化和环保化 • 未来蚀刻工艺的研究将更加注重绿色生产和可持续发展
02
蚀刻工艺的种类与特点
化学蚀刻与电解蚀刻的区别与特点
化学蚀刻
• 通过化学反应使材料溶解 • 蚀刻速度较快,成本低 • 对设备的腐蚀性较大
影响蚀刻效果的因素
• 蚀刻液或蚀刻气的浓度 • 蚀刻温度和时间 • 材料的种类和性质
蚀刻后的处理与质量控制
蚀刻后的处理
• 清洁表面,去除杂质 • 检查蚀刻效果
质量控制
• 对蚀刻后的产品进行检测 • 确保产品符合要求
04
蚀刻设备与材料的选择
蚀刻设备的选择与维护
蚀刻设备的选择
• 根据蚀刻工艺和材料选择合适的设备 • 考虑设备的性能、精度和成本
蚀刻工艺过程中的问题
• 蚀刻不均匀 • 蚀刻速度慢 • 设备腐蚀严重
解决策略
• 优化蚀刻工艺和参数 • 使用高性能的设备 • 采用环保的蚀刻方法和材料
蚀刻工艺的未来发展方向
• 未来发展方向 • 绿色生产 • 精细化蚀刻 • 高精度蚀刻
06
蚀刻工艺的安全与环保问题
蚀刻过程中的安全与 防护措施
• 安全与防护措施 • 佩戴防护装备 • 遵守安全操作规程 • 妥善处理蚀刻废液和废气
蚀刻设备的维护
• 定期检查设备的运行状态 • 及时处理设备故障
蚀刻液与蚀刻气的选择与应用
蚀刻液的选择
• 根据蚀刻材料和工艺选择合适的蚀刻液 • 考虑蚀刻液的浓度、温度和腐蚀性
蚀刻气的选择
• 根据蚀刻材料和工艺选择合适的蚀刻气 • 考虑蚀刻气的浓度、温度和腐蚀性

蚀刻工艺(酸性、碱性、微蚀)

蚀刻工艺(酸性、碱性、微蚀)

PCB外层电路的蚀刻工艺在印制电路加工中﹐氨性蚀刻是一个较为精细和覆杂的化学反应过程, 却又是一项易于进行的工作。

只要工艺上达至调通﹐就可以进行连续性的生产, 但关键是开机以后就必需保持连续的工作状态﹐不适宜断断续续地生产。

蚀刻工艺对设备状态的依赖性极大, 故必需时刻使设备保持在良好的状态。

目前﹐无论使用何种蚀刻液﹐都必须使用高压喷淋﹐而为了获得较整齐的侧边线条和高质量的蚀刻效果﹐对喷嘴的结构和喷淋方式的选择都必须更为严格。

对于优良侧面效果的制造方式﹐外界均有不同的理论、设计方式和设备结构的研究, 而这些理论却往往是人相径庭的。

但是, 有一条最基本的原则已被公认并经化学机理分析证实﹐就是尽速让金属表面不断地接触新鲜的蚀刻液。

在氨性蚀刻中﹐假定所有参数不变﹐那么蚀刻的速率将主要由蚀刻液中的氨(NH3)来决定。

因此, 使用新鲜溶液与蚀刻表面相互作用﹐其主要目的有两个﹕冲掉刚产生的铜离子及不断为进行反应供应所需要的氨(NH3)。

在印制电路工业的传统知识里﹐特别是印制电路原料的供货商们皆认同﹐并得经验证实﹐氨性蚀刻液中的一价铜离子含量越低﹐反应速度就越快。

事实上﹐许多的氨性蚀刻液产品都含有价铜离子的特殊配位基(一些复杂的溶剂)﹐其作用是降低一价铜离子(产品具有高反应能力的技术秘诀)﹐可见一价铜离子的影响是不小的。

将一价铜由5000ppm降至50ppm, 蚀刻速率即提高一倍以上。

由于在蚀刻反应的过程中会生成大量的一价铜离子, 而一价铜离子又总是与氨的络合基紧紧的结合在一起﹐所以要保持其含量近于零是十分困难的。

而采用喷淋的方式却可以达到通过大气中氧的作用将一价铜转换成二价铜, 并去除一价铜, 这就是需要将空气通入蚀刻箱的一个功能性的原因。

但是如果空气太多﹐又会加速溶液中的氨的损失而使PH值下降﹐使蚀刻速率降低。

氨在溶液中的变化量也是需要加以控制的, 有一些用户采用将纯氨通入蚀刻储液槽的做法, 但这样做必须加一套PH计控制系统, 当自动监测的PH结果低于默认值时﹐便会自动进行溶液添加。

蚀刻工艺流程

蚀刻工艺流程

蚀刻工艺流程蚀刻工艺是一种常见的微纳加工技术,广泛应用于集成电路制造、光学器件制造、微机械系统等领域。

蚀刻工艺通过化学溶液或者等离子体对材料表面的刻蚀,实现对微纳结构的加工。

本文将介绍蚀刻工艺的基本流程,以及常见的蚀刻方法和注意事项。

1. 蚀刻工艺流程。

蚀刻工艺的基本流程包括准备工作、蚀刻加工和后处理三个主要环节。

1.1 准备工作。

在进行蚀刻加工之前,首先需要准备好待加工的衬底材料。

通常情况下,衬底材料是硅片、玻璃片或者其他基片材料。

在准备工作中,需要对衬底表面进行清洁处理,以去除表面的杂质和污染物,保证蚀刻加工的质量和精度。

1.2 蚀刻加工。

蚀刻加工是蚀刻工艺的核心环节,通过化学溶液或者等离子体对材料表面进行刻蚀,实现对微纳结构的加工。

蚀刻加工的关键是选择合适的蚀刻溶液或者蚀刻气体,控制加工时间和温度,以及保证加工过程中的稳定性和一致性。

1.3 后处理。

蚀刻加工完成后,需要对加工后的样品进行后处理。

后处理工作包括清洗去除残留的蚀刻溶液或者蚀刻气体,以及对加工表面进行保护处理,防止表面氧化或者其他不良影响。

2. 常见蚀刻方法。

蚀刻工艺根据加工原理和加工方法的不同,可以分为干法蚀刻和湿法蚀刻两种基本方法。

2.1 干法蚀刻。

干法蚀刻是利用等离子体或者化学气相反应进行刻蚀的一种加工方法。

干法蚀刻具有加工速度快、加工精度高、污染少等优点,广泛应用于集成电路制造和光学器件制造等领域。

2.2 湿法蚀刻。

湿法蚀刻是利用化学溶液对材料表面进行刻蚀的一种加工方法。

湿法蚀刻具有操作简单、成本低廉等优点,适用于对材料表面进行精细加工和微纳结构加工。

3. 注意事项。

在进行蚀刻工艺时,需要注意以下几个方面的问题:3.1 安全防护。

蚀刻工艺涉及到化学溶液和气体的使用,操作人员需要做好相应的安全防护工作,避免接触有害物质对人体造成伤害。

3.2 设备维护。

蚀刻设备需要定期进行维护保养,保证设备的稳定性和加工精度。

3.3 加工参数。

化学蚀刻工艺

化学蚀刻工艺

化学蚀刻工艺导言:化学蚀刻工艺是一种通过化学反应来去除材料表面的特定区域的工艺。

它广泛应用于半导体制造、电子元件制造、光学器件制造等领域。

本文将介绍化学蚀刻工艺的基本原理、工艺流程以及应用领域等内容。

一、基本原理化学蚀刻工艺基于材料与特定蚀刻液之间的化学反应。

在蚀刻液中,特定的化学物质可以与材料表面发生反应,使得表面的材料被溶解或转化为其他物质。

通过控制蚀刻液的成分、浓度、温度和蚀刻时间等参数,可以实现对材料表面的精确蚀刻。

二、工艺流程化学蚀刻工艺通常包括以下几个步骤:蚀刻前处理、掩膜制备、蚀刻过程和后处理。

1. 蚀刻前处理:在进行化学蚀刻之前,需要对待蚀刻材料进行预处理,以确保材料表面的纯净度和平整度。

常见的蚀刻前处理方法包括清洗、去除氧化层等。

2. 掩膜制备:在需要保护的区域上制备一层掩膜,以防止蚀刻液对此区域的侵蚀。

掩膜通常采用光刻技术制备,即使用光刻胶和光刻机将图案转移到待蚀刻材料表面。

3. 蚀刻过程:将待蚀刻材料浸泡在预先调配好的蚀刻液中,使其与蚀刻液进行反应。

蚀刻液的选择与待蚀刻材料的性质密切相关,常见的蚀刻液包括酸性、碱性和氧化性溶液等。

蚀刻时间的控制非常重要,过长或过短的蚀刻时间都会导致蚀刻效果不理想。

4. 后处理:蚀刻完成后,需要对样品进行清洗和去除掩膜等后处理工序。

清洗可以去除蚀刻液残留,而去除掩膜可以使得样品的表面完整。

三、应用领域化学蚀刻工艺在各个领域都有广泛的应用。

1. 半导体制造:化学蚀刻工艺是半导体制造中不可或缺的工艺之一。

通过化学蚀刻,可以在晶圆表面形成导电层、绝缘层、衬底等结构,实现电路的功能。

2. 电子元件制造:化学蚀刻工艺可用于制备电子元件的金属线路、电容器等。

通过控制蚀刻液的选择和蚀刻条件,可以实现微米级或纳米级的精确蚀刻。

3. 光学器件制造:光学器件制造中的光栅、反射镜等结构常常需要使用化学蚀刻工艺来实现。

化学蚀刻可以精确控制光学器件的形状和尺寸,提高光学性能。

金属蚀刻液的使用

金属蚀刻液的使用

金属蚀刻液
相关处理有:金属蚀刻液、化学蚀刻液、蚀刻液、线路板蚀刻液、钢铁蚀刻液、钢铁化学蚀刻、模具钢化学蚀刻、不锈钢化学蚀刻。

适用于钢铁、模具钢、不锈钢、钛合金、镁合金、铜合金、铸铝的化学蚀刻加工以及金属板模图纹装饰加工。

蚀刻时间短,不堵版,不烧版,光亮。

基本信息:
1、深黄色透明液体,有轻微气味
2、PH﹤5 (酸性)
3、比重:﹥1.0
使用方法:
1、将印刷好的金属件浸泡在金属蚀刻液(原液)中,要不断地摇晃工件或者用软毛刷来回轻刷金属表面。

大约20min-30min后即可蚀刻成功。

2、蚀刻完毕,取出工件,可以进入其他工序,如:抛光、除膜等。

3、蚀刻液使用一定时间后应补充添加剂使药效恢复。

注意事项:
1、适用于耐酸感光膜。

2、不能同时蚀刻钢和铁的组合件。

蚀刻工艺流程

蚀刻工艺流程

蚀刻工艺流程蚀刻工艺是一种常见的制造工艺,广泛应用于半导体、微电子、光电子、光学和微机械制造等领域。

蚀刻工艺通过化学溶液对材料表面进行腐蚀,从而实现对材料的精细加工和图案形成。

本文将介绍蚀刻工艺的基本流程及其在制造领域中的应用。

首先,蚀刻工艺的基本流程包括准备工作、蚀刻液配制、蚀刻、清洗和检验等步骤。

在准备工作中,需要对待加工材料进行清洗和去除表面氧化物,以保证蚀刻效果。

接下来是蚀刻液的配制,不同的材料需要选择不同的蚀刻液,而且蚀刻液的配制需要精确的配比和搅拌。

然后是蚀刻过程,将待加工材料浸泡在蚀刻液中,控制蚀刻时间和温度,直至达到所需的加工深度和形状。

蚀刻完成后,需要进行清洗,将蚀刻液残留物和产生的废料清洗干净,最后是对加工效果进行检验,确保加工质量符合要求。

蚀刻工艺在半导体制造中有着广泛的应用。

在半导体器件的制造过程中,需要通过蚀刻工艺来形成导电通路和绝缘层,以及定义器件的形状和尺寸。

蚀刻工艺可以实现对半导体材料的精细加工,从而提高器件的性能和可靠性。

此外,在微电子和光电子领域,蚀刻工艺也被广泛应用于制造微米级别的器件和结构,如微型光栅、微型透镜和微型传感器等。

蚀刻工艺的高精度和高可控性,使得微纳加工成为可能,推动了微纳技术的发展和应用。

除了在半导体和光电子领域,蚀刻工艺还在光学和微机械制造中发挥着重要作用。

在光学制造中,蚀刻工艺可以用于制作光学元件的表面结构,如光栅、衍射光栅和微透镜阵列等,以实现光学信号的调制和处理。

而在微机械制造中,蚀刻工艺可以用于制作微型机械结构和器件,如微型泵、微型阀和微型齿轮等,以实现微型机械系统的集成和微型机械运动的控制。

总之,蚀刻工艺是一种重要的制造工艺,通过化学溶液对材料表面进行精细加工和图案形成。

蚀刻工艺的基本流程包括准备工作、蚀刻液配制、蚀刻、清洗和检验等步骤。

在半导体、微电子、光电子、光学和微机械制造等领域中有着广泛的应用,推动了相关领域的发展和技术进步。

环保银蚀刻液工艺操作规范

环保银蚀刻液工艺操作规范

Q/YS.816环保银蚀刻液
Q/YS.816环保银蚀刻液可用于银镍合金、银铜合金以及纯银的砂面处理,处理后板面有均匀而平整的砂面。

本剂对油墨没有影响,可用于花纹蚀刻处理。

使用方法:
1、原液使用,不须加水,操作温度可以是25℃-60℃,温度越高,速度越快。

2、将银板浸泡在银砂面剂中。

搅拌药水,使药水与银充分均匀反应;或者也可以用摇床,使药水来回动运,使银板砂面速度加快。

但不能超声波,以免破坏(感光)油墨。

3、浸泡时间为1-2分钟,随后水洗,烘干。

注意事项:
1、有腐蚀性,不与皮肤接触。

2、要用塑料容器盛装,不能用金属器皿盛装。

蚀刻液生产工艺流程

蚀刻液生产工艺流程

蚀刻液生产工艺流程英文回答:The production process of etching solution involves several steps. Firstly, the raw materials are gathered. These materials typically include acids, such as hydrochloric acid or sulfuric acid, and other chemicalsthat are necessary for the etching process.Next, the raw materials are mixed together in specific proportions to create the etching solution. This mixture is carefully controlled to ensure the desired properties and effectiveness of the solution. The mixing process may involve heating or cooling the solution to achieve the desired temperature.Once the etching solution is prepared, it is then transferred to a suitable container or tank for further processing. The container should be made of a material that is resistant to corrosion by the etching solution.The next step is the preparation of the substrate to be etched. The substrate is usually a metal or a semiconductor material. It is cleaned thoroughly to remove any contaminants or impurities that may interfere with the etching process. This can be done through various cleaning methods, such as chemical cleaning or mechanical cleaning.After the substrate is cleaned, it is then immersed in the etching solution. The etching solution reacts with the surface of the substrate, removing a thin layer of material and creating the desired pattern or structure. The etching time and temperature are carefully controlled to achieve the desired etching depth and precision.Once the etching process is complete, the substrate is removed from the etching solution and rinsed thoroughly to remove any remaining etching solution. This is important to prevent any further etching or damage to the substrate.Finally, the etched substrate is dried and inspectedfor quality control. Any defects or imperfections areidentified and corrected if necessary. The etchedsubstrates are then ready for further processing or use in various applications.中文回答:蚀刻液的生产工艺流程包括几个步骤。

电蚀刻工艺流程

电蚀刻工艺流程

电蚀刻工艺流程电蚀刻是一种常见的金属加工工艺,广泛应用于飞机制造、汽车制造、电子产品制造等行业。

下面我将为大家介绍一下电蚀刻的工艺流程。

电蚀刻工艺流程一般包括以下几个步骤:第一步,准备工作。

首先,需要准备好需要进行电蚀刻的金属材料。

这些金属材料一般是通过铸造、锻造等工艺制成的。

然后,根据产品的要求,制造出相应的模具。

模具一般是由导电材料制成,以确保电蚀刻能够正常进行。

第二步,蚀刻液配制。

根据金属的种类和蚀刻的要求,选择合适的蚀刻液进行配制。

蚀刻液一般由溶液、化学试剂、稀释剂等组成,不同的金属需要不同的蚀刻液配制方法。

第三步,浸泡腐蚀。

将准备好的金属材料浸泡在蚀刻液中。

这时,蚀刻液中的金属离子会与金属材料中的金属原子发生反应,形成气体、溶液或生成新的物质,从而使金属材料表面发生腐蚀。

根据需要,可以调整浸泡时间来控制蚀刻的深度。

第四步,清洗处理。

浸泡腐蚀后,需要将金属材料从蚀刻液中取出,并进行清洗处理,以去除蚀刻液残留以及金属表面的氧化物、污垢等。

清洗处理一般通过水洗、酸洗、超声波清洗等方法进行。

第五步,表面处理。

清洗处理后,需要对金属材料进行表面处理,以提高其光洁度、防腐性等。

表面处理一般包括抛光、喷砂、电镀等工艺,根据需要选择合适的方法进行。

最后,完成产品。

经过以上工艺步骤后,金属材料就完成了电蚀刻。

根据需要,可以对产品进行检测、整理、包装等工序,最终交付给客户使用。

总结来说,电蚀刻工艺流程包括准备工作、蚀刻液配制、浸泡腐蚀、清洗处理、表面处理等步骤。

通过这些步骤,可以对金属材料进行腐蚀加工,以满足不同产品对金属表面的要求。

电蚀刻工艺具有精度高、效率高、加工质量好等优点,在现代工业生产中得到广泛的应用。

蚀刻液生产工艺流程

蚀刻液生产工艺流程

蚀刻液生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!蚀刻液生产工艺流程一、前期准备阶段。

在开始蚀刻液生产之前,有一系列的准备工作必不可少。

蚀刻液分类及工艺流程

蚀刻液分类及工艺流程

蚀刻液分类及工艺流程蚀刻液分类及工艺流程一、目前PCB业界使用的蚀刻液类型有六种类型:酸性氯化铜碱性氯化铜氯化铁过硫酸铵硫酸/铬酸硫酸/双氧水蚀刻液前三种常用。

二、各种蚀刻液特点酸性氯化铜蚀刻液1) 蚀刻机理:Cu+CuCl2→Cu2Cl2 Cu2Cl2+4Cl-→2(CuCl3)2-2) 影响蚀刻速率的因素:影响蚀刻速率的主要因素是溶液中Cl-、Cu+、Cu2+的含量及蚀刻液的温度等。

a、Cl-含量的影响:溶液中氯离子浓度与蚀刻速率有着密切的关系,当盐酸浓度升高时,蚀刻时间减少。

在含有6N的HCl溶液中蚀刻时间至少是在水溶液里的1/3,并且能够提高溶铜量。

但是,盐酸浓度不可超过6N,高于6N盐酸的挥发量大且对设备腐蚀,并且随着酸浓度的增加,氯化铜的溶解度迅速降低。

添加Cl-可以提高蚀刻速率,原因是:在氯化铜溶液中发生铜的蚀刻反应时,生成的Cu2Cl2不易溶于水,则在铜的表面形成一层氯化亚铜膜,这种膜能够阻止反应的进一步进行。

过量的Cl-能与Cu2Cl2络合形成可溶性的络离子(CuCl3)2-,从铜表面上溶解下来,从而提高了蚀刻速率。

b、Cu+含量的影响:根据蚀刻反应机理,随着铜的蚀刻就会形成一价铜离子。

较微量的Cu+就会显著的降低蚀刻速率。

所以在蚀刻操作中要保持Cu+的含量在一个低的范围内。

c、Cu2+含量的影响:溶液中的Cu2+含量对蚀刻速率有一定的影响。

一般情况下,溶液中Cu2+浓度低于2mol/L时,蚀刻速率较低;在2mol/L时速率较高。

随着蚀刻反应的不断进行,蚀刻液中铜的含量会逐渐增加。

当铜含量增加到一定浓度时,蚀刻速率就会下降。

为了保持蚀刻液具有恒定的蚀刻速率,必须把溶液中的含铜量控制在一定的范围内。

d、温度对蚀刻速率的影响:随着温度的升高,蚀刻速率加快,但是温度也不宜过高,一般控制在45~55℃范围内。

温度太高会引起HCl过多地挥发,造成溶液组分比例失调。

另外,如果蚀刻液温度过高,某些抗蚀层会被损坏。

PCB碱性蚀刻液

PCB碱性蚀刻液

均匀性
总结词
均匀性指的是蚀刻液对材料表面蚀刻的均匀程度。
详细描述
良好的均匀性可以确保PCB上的铜层被均匀地蚀刻掉,从而使电路线条宽度一致,提高产品的可靠性 。均匀性差的蚀刻液会导致线路边缘不清晰或者出现锯齿状,影响产品质量。
选择性
总结词
选择性是指蚀刻液对不同材料的选择性 蚀刻能力。
VS
详细描述
在PCB制造过程中,除了铜之外,还有其 他金属材料如镍、锡等。良好的选择性可 以确保蚀刻液只对铜进行蚀刻,而对其他 金属材料不产生影响,从而保护非蚀刻部 分的完整性。这有助于减少废液处理和降 低生产成本。
应用领域
电子产品制造
用于制造各类电子产品 中的印刷电路板,如手
机、电脑、电视等。
汽车电子
航空航天
通讯设备
用于汽车电子控制系统 中的PCB制造。
用于制造高性能航空航 天器材中的印刷电路板。
用于生产各种通讯设备 中的印刷电路板,如路
由器、交换机等。
02 碱性蚀刻液的组成
氢氧化物
01
氢氧化物是碱性蚀刻液的主要成 分,提供足够的碱度以溶解铜箔 。常见的氢氧化物有氢氧化钠、 氢氧化钾等。
பைடு நூலகம்
05 碱性蚀刻液的回收与处理
回收方法
沉淀法
通过加入沉淀剂,使蚀刻液中的 重金属离子形成沉淀物,然后分 离沉淀物与溶液,达到回收重金
属的目的。
电解法
利用电解原理,使蚀刻液中的重金 属离子在电极上析出,然后收集电 极上的重金属,实现回收。
吸附法
利用活性炭、树脂等吸附剂吸附蚀 刻液中的重金属离子,然后对吸附 剂进行再生或处理,实现重金属的 回收。
市场竞争加剧
随着越来越多的企业进入碱性蚀 刻液市场,竞争将更加激烈,企 业需要加强技术创新和品牌建设 以提升竞争力。

酸性氯化铜蚀刻液

酸性氯化铜蚀刻液

酸性氯化铜蚀刻液1.特性 <1.适用于生产多层板的内层和印刷-蚀刻板。

所采用的抗蚀剂是网印抗蚀印料、干膜、液体光致抗蚀剂等;也适用于图形电镀金抗蚀层印制板的蚀刻,但不适于锡-铅合金和锡抗蚀剂。

2.蚀刻速率容易控制,蚀刻液在稳定状态下能达到高的蚀刻质量。

3.溶铜量大4.蚀刻液容易再生与回收,减少污染。

2. 蚀刻过程的主要化学反应在蚀刻过程中,氯化铜中的Cu2+具有氧化性,能将板面上的铜氧化成Cu1+,其反应如下:蚀刻反应:Cu+CuCl2→Cu2Cl2形成的Cu2Cl2是不易溶于水的,在有过量Cl-存在下,能形成可溶性的络离子,其反应如下:络合反应:Cu2Cl2+4Cl-→2[CuCl3]2-随着铜的蚀刻,溶液中的Cu1+越来越多,蚀刻能力很快就会下降,以至最后失去效能。

为了保持蚀刻能力,可以通过各种方式对蚀刻液进行再生,使Cu1+重新转变成Cu2+,继续进行正常蚀刻。

应用酸性蚀刻液进行蚀刻的典型工艺流程如下:印制正相图象的印制板→检查修版→碱性清洗(可选择)→水洗→表面微蚀刻(可选择)→水洗→检查→酸性蚀刻→水洗→酸性清洗例如:5-10%HCl)→水洗→吹干→检查→去膜→|再生水洗→吹干3. 蚀刻液配方蚀刻液配方有多种,1979年版的印制电路手册(Printed Circuits Handbook)中介绍的配方见表10-2。

表10-2 国外介绍的酸性蚀刻液配方组份 1 2 3 4CuCl 2·2H 2O HCl(200Be’)NaCl NH 4Cl H 2O1.42磅 0.6加仑- -2.2M 30ml/加仑4M -2.2M 0.5N 3M-0.5~2.5M 0.2~0.6 M -2.4~0.5 M添加到1加仑注:1磅=454克 1加仑(美制)=3.785升我国采用的蚀刻液配方也有多种,现摘录如下表10-3表10-3 我国采用的酸性蚀刻液配方组份 123CuCl2·2H2O 130-190g/l 200g/l 150-450g/lHCl 150-180ml/l100ml/l- NaCl - 100g/l -NH4Cl - - 饱和H2O蚀刻 液中所采用的氯化物种类不同。

玻璃蚀刻液的配方及使用方法

玻璃蚀刻液的配方及使用方法
只有PVC、PE、PP、PB及PS等树脂的耐酸、碱及水性都很好。
(3)溶剂介质的腐蚀 当树脂的极性亏环境介质的极性相一致或接近时,树脂易受环境介质的腐蚀。例如,大分子主链或支链含有-H、-CH3、-C6 Hs等基团的非极性材料如PE、PP、PS及PB等树脂,虽能耐酸、碱、盐水溶液和水、醇等极性物质,但不耐如汽油、苯、甲苯、丙酮及四氯化碳等非极性溶剂。而大分子中含有羟基、羧基、羰基及氨基的PVA、PA及PF等虽不耐酸、碱及水等极乏性介质,但可耐上述非极性溶剂。
2.塑料的防腐机理
为增加塑料的防腐性能,可从以下几个方面考虑。
①防止可导致塑料腐蚀的介质侵入塑料制品内部,具体方法为在塑料制品表面涂层和复合。
②在塑料制品中加人防腐物质,它侵入塑料制品中并与侵入的介质作用,降低介质的腐蚀能力。例如,在POM树脂中加入碱性物质,可有效的抑止POM的酸性降解。
璃表面形成不同的效果。抛光酸的配方是:
软水 3份
硫酸(95%) 2份
氢氟酸(60%) 2份
用酸抛光可以节省手工和机器抛光耗费的时间,在现今的工厂中普遍使用,而艺术家也用酸来缓和喷砂后的玻璃表面,产生比喷砂更加细腻、精美的效果。在英国,工业上经常用强酸对玻璃进行短暂的浸泡,而在欧洲大陆工业上则用稍弱的酸对玻璃进行较长时间的浸泡。在至少40摄氏度的温度下抛光酸能够最为有效的发挥作用。
喷绘机的清洗液含那些成分: 主要胶成分为乙酸乙酯(醋酸乙酯)
环己酮是重要化工原料,是制造尼龙、己内酰胺和己二酸的主要中间体。也是重要的工业溶剂,如用于油漆,特别是用于那些含有硝化纤维、氯乙烯聚合物及其共聚物或甲基丙烯酸酯聚合物油漆等。
天拿水
即“天那水”、“香蕉水”、“信纳水”,是由多种有机溶剂按一定比例混合而成的,常温下为易挥发,有浓烈香蕉气味的液体,有毒,多用于漆类、胶类溶解。

蚀刻工艺之酸性氯化铜蚀刻液

蚀刻工艺之酸性氯化铜蚀刻液

蚀刻⼯艺之酸性氯化铜蚀刻液⽬录摘要 (1)1设计任务书 (2)1.1项⽬ (2)1.2设计内容 (2)1.3设计规模 (2)1.4设计依据 (2)1.5产品⽅案 (2)1.6原料⽅案 (2)1.7⽣产⽅式 (3)2 ⼯艺路线及流程图设计 (3)2.1⼯艺路线选择 (3)2.2内层车间⼯艺流程简述 (4)3.车间主要物料危害及防护措施 (6)3.1职业危害 (6)3.2预防措施 (6)4.氯酸钠/盐酸型蚀刻液的反应原理 (7)4.1蚀刻机理 (7)4.2蚀刻机理的说明 (8)4.3蚀刻中相关化学反应的计算 (8)5.影响蚀刻的因素 (6)5.1影响蚀刻速率的主要因素 (10)5.2蚀刻线参数设计 (10)6 主要设备⼀览表 (12)7车间装置定员表 (13)8投资表 (13)9安全、环保、⽣产要求 (14)致谢 (15)参考⽂献 (16)蚀刻⼯艺之酸性氯化铜蚀刻液摘要:本⽂介绍了印制电路板制造过程中的酸性氯化铜蚀刻液,并对其蚀刻原理和影响蚀刻的因素进⾏了阐述。

关键词:印制电路板;酸性氯化铜;蚀刻;分类号:F407.7Brief principies to acid chlorination copperetching and factors analysisChen yongzhou (Tutor:Pi-yan)(Department of Chemistry and Environmental Engineering,Hubei NormalUniversity , Huangshi ,Hubei, 435002)Abstract: In this paper acid chlorination etching solution was introduced. Meanwhile the etching principle and the factors affecting the etching rate been explain.Keywords: PCB;acid chlorination copper solution;etching蚀刻⼯艺之酸性氯化铜蚀刻液1设计任务书1.1项⽬氯酸钠/盐酸蚀刻型蚀刻液及其蚀刻⼯艺(初步1.2设计内容车间⼯艺参数设计1.3设计规模1年产:106万FT22年⽣产⽇:4000FT23⽇⽣产能⼒:500000/280=3800 FT2/天1.4设计依据依据有关部门下达的实设计任务书或可⾏性报告的批⽂,环境影响报告书的批⽂,资源评价报告的批⽂, 技术引进合同,设计合同,其他⽂件等1.5蚀刻液主要成分氯酸纳,盐酸,⽔,其他辅助添加剂。

蚀刻液

蚀刻液
碱性氯化铜蚀刻液
1)蚀刻机理:CuCl2+4NH3→Cu(NH3)4Cl2Cu(NH3)4Cl2+Cu→2Cu(NH3)2Cl2)影响蚀刻速率的因素:蚀刻液中的Cu2+浓度、pH值、氯化铵浓度以及蚀刻液的温度对蚀刻速率均有影响。a、Cu2+离子浓度的影响:Cu2+是氧化剂,所以Cu2+的浓度是影响蚀刻速率的主要因素。研究铜浓度与蚀刻速率的关系表明:在0~82g/L时,蚀刻时间长;在82~120g/L时,蚀刻速率较低,且溶液控制困难;在135~165g/L时,蚀刻速率高且溶液稳定;在165~225g/L时,溶液不稳定,趋向于产生沉淀。b、溶液pH值的影响:蚀刻液的pH值应保持在8.0~8.8之间,当pH值降到8.0以下时,一方面对金属抗蚀层不利;另一方面,蚀刻液中的铜不能被完全络合成铜氨络离子,溶液要出现沉淀,并在槽底形成泥状沉淀,这些泥状沉淀能在加热器上结成硬皮,可能损坏加热器,还会堵塞泵和喷嘴,给蚀刻造成困难。如果溶液pH值过高,蚀刻液中氨过饱和,游离氨释放到大气中,导致环境污染;同时,溶液的pH值增大也会增大侧蚀的程度,从而影响蚀刻的精度。c、氯化铵含量的影响:通过蚀刻再生的化学反应可以看出:[Cu(NH3)2]+的再生需要有过量的NH3和NH4Cl存在,如果溶液中缺乏NH4Cl,大量的[Cu(NH3)2]+得不到再生,蚀刻速率就会降低,以致失去蚀刻能力。所以,氯化铵的含量对蚀刻速率影响很大。随着蚀刻的进行,要不断补加氯化铵。d、温度的影响:蚀刻速率与温度有很大关系,蚀刻速率随着温度的升高而加快。蚀刻液温度低于40℃,蚀刻速率很慢,而蚀刻速率过慢会增大侧蚀量,影响蚀刻质量;温度高于60℃,蚀刻速率明显增大,但NH3的挥发量也大大增加,导致污染环境并使蚀刻液中化学组分比例失调。故温度一般控制在45~55℃为宜。

硫酸铜溶液蚀刻工艺流程

硫酸铜溶液蚀刻工艺流程

硫酸铜溶液蚀刻工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。

并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!硫酸铜溶液作为一种常用的蚀刻剂,在多种金属材料的加工中扮演着重要角色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蚀刻液分类及工艺流程
一、目前PCB业界使用的蚀刻液类型有六种类型:
酸性氯化铜碱性氯化铜氯化铁过硫酸铵硫酸/铬酸硫酸/双氧水蚀刻液前三种常用。

二、各种蚀刻液特点
酸性氯化铜蚀刻液
1) 蚀刻机理:Cu+CuCl2→Cu2Cl2 Cu2Cl2+4Cl-→2(CuCl3)2-
2) 影响蚀刻速率的因素:影响蚀刻速率的主要因素是溶液中Cl-、Cu+、Cu2+的含量及蚀刻液的温度等。

a、Cl-含量的影响:溶液中氯离子浓度与蚀刻速率有着密切的关系,当盐酸浓度升高时,蚀刻时间减少。

在含有6N的HCl溶液中蚀刻时间至少是在水溶液里的1/3,并且能够提高溶铜量。

但是,盐酸浓度不可超过6N,高于6N盐酸的挥发量大且对设备腐蚀,并且随着酸浓度的增加,氯化铜的溶解度迅速降低。

添加Cl-可以提高蚀刻速率,原因是:在氯化铜溶液中发生铜的蚀刻反应时,生成的Cu2Cl2不易溶于水,则在铜的表面形成一层氯化亚铜膜,这种膜能够阻止反应的进一步进行。

过量的Cl-能与Cu2Cl2络合形成可溶性的络离子(CuCl3)2-,从铜表面上溶解下来,从而提高了蚀刻速率。

b、Cu+含量的影响:根据蚀刻反应机理,随着铜的蚀刻就会形成一价铜离子。

较微量的Cu+就会显著的降低蚀刻速率。

所以在蚀刻操作中要保持Cu+的含量在一个低的范围内。

c、Cu2+含量的影响:溶液中的Cu2+含量对蚀刻速率有一定的影响。

一般情况下,溶液中Cu2+浓度低于2mol/L时,蚀刻速率较低;在2mol/L时速率较高。

随着蚀刻反应的不断进行,蚀刻液中铜的含量会逐渐增加。

当铜含量增加到一定浓度时,蚀刻速率就会下降。

为了保持蚀刻液具有恒定的蚀刻速率,必须把溶液中的含铜量控制在一定的范围内。

d、温度对蚀刻速率的影响:随着温度的升高,蚀刻速率加快,但是温度也不宜过高,一般控制在45~55℃范围内。

温度太高会引起HCl过多地挥发,造成溶液组分比例失调。

另外,如果蚀刻液温度过高,某些抗蚀层会被损坏。

碱性氯化铜蚀刻液
1) 蚀刻机理:CuCl2+4NH3→Cu(NH3)4Cl2
Cu(NH3)4Cl2+Cu→2Cu(NH3)2Cl
2) 影响蚀刻速率的因素:蚀刻液中的Cu2+浓度、pH值、氯化铵浓度以及蚀刻液的温度对蚀刻速率均有影响。

a、Cu2+离子浓度的影响:Cu2+是氧化剂,所以Cu2+的浓度是影响蚀刻速率的主要因素。

研究铜浓度与蚀刻速率的关系表明:在0~82g/L时,蚀刻时间长;在82~120g/L时,蚀刻速率较低,且溶液控制困难;在135~165g/L时,蚀刻速率高且溶液稳定;在165~225g/L时,溶液不稳定,趋向于产生沉淀。

b、溶液pH值的影响:蚀刻液的pH值应保持在8.0~8.8之间,当pH值降到8.0以下时,一方面对金属抗蚀层不利;另一方面,蚀刻液中的铜不能被完全
络合成铜氨络离子,溶液要出现沉淀,并在槽底形成泥状沉淀,这些泥状沉淀能在加热器上结成硬皮,可能损坏加热器,还会堵塞泵和喷嘴,给蚀刻造成困难。

如果溶液pH值过高,蚀刻液中氨过饱和,游离氨释放到大气中,导致环境污染;同时,溶液的pH值增大也会增大侧蚀的程度,从而影响蚀刻的精度。

c、氯化铵含量的影响:通过蚀刻再生的化学反应可以看出:[Cu(NH3)2]+的再生需要有过量的NH3和NH4Cl存在,如果溶液中缺乏NH4Cl,大量的[Cu(NH3)2]+得不到再生,蚀刻速率就会降低,以致失去蚀刻能力。

所以,氯化铵的含量对蚀刻速率影响很大。

随着蚀刻的进行,要不断补加氯化铵。

d、温度的影响:蚀刻速率与温度有很大关系,蚀刻速率随着温度的升高而加快。

蚀刻液温度低于40℃,蚀刻速率很慢,而蚀刻速率过慢会增大侧蚀量,影响蚀刻质量;温度高于60℃,蚀刻速率明显增大,但NH3的挥发量也大大增加,导致污染环境并使蚀刻液中化学组分比例失调。

故温度一般控制在45~55℃为宜。

氯化铁蚀刻液
1) 蚀刻机理:FeCl3+Cu→FeCl2+CuCl FeCl3+CuCl→FeCl2+CuCl2 CuCl2+Cu→2 CuCl
2) 影响蚀刻速率的因素:
a、Fe3+浓度的影响:Fe3+的浓度对蚀刻速率有很大的影响。

蚀刻液中Fe3+浓度逐渐增加,对铜的蚀刻速率相应加快。

当所含超过某一浓度时,由于溶液粘度增加,蚀刻速率反而有所降低。

b、蚀刻液温度的影响:蚀刻液温度越高,蚀刻速率越快,温度的选择应以不损坏抗蚀层为原则,一般在40~50℃为宜。

c、盐酸添加量的影响:在蚀刻液中加入盐酸,可以抑制FeCl3水解,并可提高蚀刻速率,尤其是当溶铜量达到37.4g/L后,盐酸的作用更明显。

但是盐酸的添加量要适当,酸度太高,会导致液态光致抗蚀剂涂层的破坏。

d、蚀刻液的搅拌:静止蚀刻的效率和质量都是很差的,原因是在蚀刻过程中在板面和溶液里会有沉淀生成,而使溶液呈暗绿色,这些沉淀会影响进一步的蚀刻。

过硫酸铵蚀刻液
蚀刻机理:Cu+(NH4)2S2O8→CuSO4+(NH4)2SO4
(NH4)2S2O8+H2O→H2SO4+(NH4)2SO4+(O) Cu+(O) +
H2SO4→CuSO4+H2O 若添加银作为催化剂,Ag++ S2O82-→2SO42-+ Ag3+ Ag3++Cu→Cu2++ Ag+
硫酸/铬酸蚀刻液
蚀刻机理:CrO3+H2O→H2CrO4
2H2CrO4+3Cu→Cr2O3+3CuO+2H2O
Cr2O3+3CuO+6H2SO4→Cr2(SO4)3+3CuSO4+6H2O 总反应式为:
2CrO3+3Cu+6H2SO4→Cr2(SO4)3+3CuSO4+6H2O
硫酸/双氧水蚀刻液
蚀刻机理:H2O2→H2O+(O) Cu+(O) →CuO CuO+H2SO4→H2O+CuSO4
总反应式为:Cu+H2O2+H2SO4→2H2O+CuSO4
蚀刻工艺流程
应用酸性蚀刻液进行蚀刻的典型工艺流程如下:
印制正图像的印制板→检查修版→碱性清洗(可选择)→水洗→表面微蚀刻(可选择)→水洗→检查→酸性蚀刻→水洗→酸性清洗例如5%~10%HCl→水洗→吹干→检查→去膜↑ 再生
单面板和减成法及内层芯板蚀刻大多采用酸性蚀刻。

应用碱性蚀刻液进行蚀刻的典型工艺流程如下:
镀覆金属抗蚀层的印制板→去膜→水洗→吹干→检查修版→碱性蚀刻→用不含Cu2+的补加液二次蚀刻→水洗→吹干→检查
对于酸性蚀刻无法制作的板,采用碱性蚀刻,例如封孔能力超过了制程能力等。

一般的抗蚀层采用的是镀上一层锡。

相关文档
最新文档