电子电路-第三章
电子电路基础习题册参考答案-第三章
2、串联负反馈都是电流负反馈,并联负反馈都是电压反馈。
(错)3、将负反馈放大器的输出端短路,则反馈信号也随之消失。
(错)4、在瞬时极性法判断中,+表示对地电压为正,—表示对地电压为负。
(错)5、在串联反馈中,反馈信号在输入端是以电压形式出现,在并联反馈中,反馈信号在输入端是以电流形式出现。
(对)三、选择题1、反馈放大短路的含义是(C )。
A.输入与输出之间有信号通路 B.电路中存在反向传输的信号通路C.除放大电路外,还有反向传输的信号通路2.图3-1-1所示为某负反馈放大电路的一部分,Re1引入(C ),Re2引入(B )。
A.交流反馈B.直流反馈C.交直流反馈3、判断是串联反馈还是并联反馈的方法是(C )。
A.输出端短路法B.瞬时极性法C.输入端短路法4、将放反馈放大器的输出端短路,若反馈信号仍存在则属(B )。
A.电压负反馈B.电流负反馈C.串联负反馈D.并联负反馈5.电路如图3-1-2a所示,反馈类型为(D )。
A.电压并联直流负反馈B.电压并联交直流负反馈C.电流串联交直流负反馈D.电流并联交直流负反馈6、电路如图3-1-2b所示,反馈类型为(C )。
A.电流串联负反馈B.电压并联正反馈C.电压串联负反馈D.电流并联正反馈四、简答题1、什么是正反馈?什么是负反馈?主要用途是什么?略2、图3-1-3所示电路中,所引入的分别是直流单奎还是交流反馈?是正反馈还是负反馈?3、图2-1-4所示电路中,在不增加电路元件的情况下,如何改变接线方式,可达到稳定静态工作点,减小失真的目的?4、在图3-1-5所示各电路中,指出哪些是反馈元件?判断个电路的反馈类型(如系多级放大器,只判断级间反馈类型)。
设图中所有电容对交流信号均可视为短路。
§3-2负反馈对放大器性能影响一、填空题1、放大器引入负反馈使得放大器的放大倍数下降,放大倍数的稳定性提高,非线性失真减小,同频带展宽,改变了放大器的输入输出电阻。
电力电子技术第3章 三相可控整流电路
第二节 时
三相全控桥式整流电路
整流电压为三相半波时的两倍,在大电感负载
20
图 3.9 三相桥式全控整流电路
21
图 3.10 三相全控桥大电感负载 α =0°时的波形
22
图 3.11 三相全控桥大电感负载 α =30°时的电压波形
23
图 3.12 三相全控桥大电感负载 α =60°时的电压波形
3
图 3.2是 α =30°时的波形。设 VT3 已导通, 当经过自然换流点 ωt0 时,因为 VT1的触发脉冲 ug1还没来到,因而不能导通,而 uc 仍大于零,所 以 VT3 不能关断,直到ωt1 所处时刻 ug1触发 VT1 导通,VT3 承受反压关断,负载电流从 c相换到 a 相。
4
图 3.2 三相半波电路电阻负载 α =30°时的波形
32
一、双反星形中点带平衡电抗器的可控整流电路 在低电压大电流直流供电系统中,如果要采用 三相半波可控整流电路,每相要多个晶闸管并联, 这就带来均流、保护等一系列问题。如前所述三相 半波电路还存在直流磁化和变压器利用率不高的问 题。
33
图 3.15 带平衡电抗器双反星形可控整流电路
34
图 3.16 带平衡电抗器双反星形可控整流 ud 和 uP 波形
26
图 3.14 三相桥式半控整流电路及波形 (a)电路图 (b)α =30° (c)α =120°
27
一、电阻性负载 控制角 α =0时,电路工作情况基本与三相全 控桥 α =0时一样,输出电压 ud波形完全一样。输 出直流平均电压最大为 2.34U2Φ。
28
由图 3.14( b),通过积分运算可得Ud 的计 算公式
12
当 α >30°时,晶闸管导通角 θV=150°- α。 因为在一个周期内有 3次续流,所以续流管的导通 角 θVD=3( α -30°)。晶闸管平均电流为
徐淑华电工电子技术ppt第三章
u
Um
wt
u U m sin( w t )
有效值:
与交流热效应相等的直流 定义为交流电的有效值
10
热效应相当
有 效 值 概 念
T 0
i R dt I RT
2
2
交流
直流
I
1 T
T
i dt
2
(方均根值)
0
当 i I m sin
w
t 时, 可得,
I
Im 2
11
w t
i
相量图 相量式
.
I
I
I I
瞬时值 -- 小写 u, i, e; 最大值 --大写+下标m;
有效值 – 大写 U, I, E; 复数、相量 --- 大写 + ―.‖
34
例6
判断下列各式的正误:
u 100 sin w t 10000
瞬时值 复数
U 50 e
复数
j15 °
2. 正弦波的相量表示方法
1) 正弦量的相量表示
在线性正弦交流电路中的电源频率单一时,电路中所有 的电压电流为同频率正弦量,此时,w 可不考虑,主要 研究正弦量的幅度与初相位的变化 可用一个有向线段(矢量)表示正弦量: 其长度表示正弦量的有效值; 其与横轴的夹角表示正弦量的初相位。
描述正弦量的有向线段称为相量 (phasor ):
3.2 单一参数的正弦交流电路
3.2.1. 电阻元件的正弦交流电路
u iR
设
u
i
R
i 2 I sinw t Im sinw t
R R u i · = 2I · sinw t
电工电子学第三章
第三章电路的暂态分析1、研究暂态过程的意义暂态过程是一种自然现象暂态过程是一种自然现象,,对它的研究很重要对它的研究很重要。
暂态过程的存在有利有弊暂态过程的存在有利有弊。
有利的方面有利的方面,,如电子技术中常用它来产生各种波形术中常用它来产生各种波形;;不利的方面不利的方面,,如在暂态过程发生的瞬间态过程发生的瞬间,,可能出现过压或过流可能出现过压或过流,,致使设备损坏备损坏,,必须采取防范措施必须采取防范措施。
设:t =0 时换路---旧稳态的终了瞬间---换路后的初始瞬间0+0-C(4) 由t=0+时的等效电路求所需的u(0+)、i(0+)。
(0+)、C L Ci L(0+)、i R(0+) 、i S(0+) 。
mA 522210)0(=+×=−L imA155)10(0105)0()0(10)0(=−−−−=−+−+−=+C R S i i i mA10V10S断开=−+U u u C R SR+U 0_CC u i21R u U _++_+_合在1,1合到2,根据换路定则)0()0(U u u C C =−=+SR+U 0_CC u i21Ru +_+_SR+U 0_CC u i21Ru +_+_,和工程上工程上,,t =(3~5)τ认为暂态过程结束,电路到达新的稳态新的稳态。
的物理意义: 决定电路暂态过程变化的快慢。
τ的物理意义 决定电路暂态过程变化的快慢。
U0uCτ1 τ 2τ3τ1 < τ 2 < τ3t36.8%U0τ1 τ2 τ321结论: 暂态过程曲线变化越慢, 结论:τ 越大,暂态过程曲线变化越慢,uc 新的稳态所需要的时间越长。
达到 新的稳态所需要的时间越长。
1 SRi+ U0 _2+ uR _uc ( t ) = U 0 eC−t RC+ uC _电路中的电流, 电路中的电流,电阻两 端的电压变化的规律? 端的电压变化的规律?uR = − uC = −U 0 eU0 uR i= e =− R R−t RCt duC U 0 − RC i=C e =− dt Rt − RC或电路中各量的暂态过程同时发生,也同时结束; 电路中各量的暂态过程同时发生,也同时结束; 并且具有相同的时间常数。
电工电子学第三章习题答案 (2)
第三章交流电路3-1 试写出表示u A =)120314sin(2220,314sin 22200-==t u tV u B A 和V t u C )120314sin(22200+=的,并画出相量图。
解:V U V U V U C B A 0.00120220,120220,0220∠=-∠=∠=•••3-2 如图所示的是时间t=0时电压和电流的相量图,并已知U=220V ,I 1=10A ,I 2=52A ,试分别用三角函数式和复数式表示各正弦量。
3-3已知正弦电流i 1=22sin(100πt+60°)A, i 2=32sin(100πt+30°)A,试用相量法求i=i 1+i 2。
解A tg j j j j I I I 010000210.4284.4)598.3232.3(3914.23232.3598.3)213232(23321230sin 330cos 360sin 260cos 2∠=∠=+=⨯+⨯+⨯+⨯=+++=+=-•••i= 4.842 sin (100πt+42.00) A3-4在图示电路中,已知R=100Ω,L=31.8mH ,C=318uF 。
求电源的频率和电压分别为50Hz 、100V 和1000Hz 、100V 的两种情况下,开关S 合向a 、b 、c 位置时电流表的读数,并计算各元件中的有功功率和 无功功率.解:当F=50HZ 、U=100V 时,S 接到a ,Ia=)(1100100A =;有功功率为:P=UIa=100WS 接到b ,Ib=)(1099.9100108.312501003A LV ==⨯⨯⨯=-πω 无功功率为:Q=UIb=1000Var S 接到c ,)(10100103182506A C V Ic =⨯⨯⨯⨯==-πω。
无功功率为:q=UIc=-1000Var当F=1000HZ 、U=100V 时S 接到a ,Ia=)(1100100A =;有功功率为:P=UIa=100WS 接到b ,Ib=)(5.08.199100108.31210001003A L V ==⨯⨯⨯=-πω 无功功率为:Qb=UIb=50Var S 接到c ,)(8.19910010318210006A C V Ic=⨯⨯⨯⨯==-πω。
电子技术 数字电路 第3章 组合逻辑电路
是F,多数赞成时是“1”, 否则是“0”。
0111 1000 1011
2. 根据题意列出真值表。
1101 1111
(3-13)
真值表
ABCF 0000 0010 0100 0111 1000 1011 1101 1111
3. 画出卡诺图,并用卡 诺图化简:
BC A 00
00
BC 01 11 10
010
3.4.1 编码器
所谓编码就是赋予选定的一系列二进制代码以 固定的含义。
一、二进制编码器
二进制编码器的作用:将一系列信号状态编制成 二进制代码。
n个二进制代码(n位二进制数)有2n种 不同的组合,可以表示2n个信号。
(3-17)
例:用与非门组成三位二进制编码器。 ---八线-三线编码器 设八个输入端为I1I8,八种状态,
全加器SN74LS183的管脚图
14 Ucc 2an 2bn2cn-1 2cn
2sn
SN74LS183
1 1an 1bn 1cn-11cn 1sn GND
(3-39)
例:用一片SN74LS183构成两位串行进位全加器。
D2
C
D1
串行进位
sn
cn
全加器
an bn cn-1
sn
cn
全加器
an bn cn-1
1 0 1 1 1 AB
AC
F AB BC CA
(3-14)
4. 根据逻辑表达式画出逻辑图。 (1) 若用与或门实现
F AB BC CA
A
&
B
C
&
1 F
&
(3-15)
(2) 若用与非门实现
数字电子电路技术 第三章 SSI组合逻辑电路的分析与设计 课件
表3-1 例3-1真值表
第四步:确定电路的逻 辑功能。
由真值表可知,三个变
量输入A,B,C,只有两
个及两个以上变量取值为1 时,输出才为1。可见电路 可实现多数表决逻辑功能。
A BC F 0 00 0 0 01 0 0 10 0 0 11 1 1 00 0 1 01 1
1 10 1
21.10.2020
h
11
2. 组合逻辑电路设计方法举例。
例3-3 一火灾报警系统,设有烟感、温感和 紫外光感三种类型的火灾探测器。为了防止误报警, 只有当其中有两种或两种以上类型的探测器发出火 灾检测信号时,报警系统产生报警控制信号。设计 一个产生报警控制信号的电路。
解:(1)分析设计要求,设输入输出变量并逻辑赋值;
用方法和应用举例。
21.10.2020
h
4
3.1 SSI组合逻辑电路的分析和设计
小规模集成电路是指每片在十个门以下的集成芯片。
3.1.1 组合逻辑电路的分析方法
所谓组合逻辑电路的分析,就是根据给定的逻辑 电路图,求出电路的逻辑功能。
1. 分析的主要步骤如下: (1)由逻辑图写表达式; (2)化简表达式; (3)列真值表; (4)描述逻辑功能。
21.10.2020
h
18
对M个信号编码时,应如何确定位数N?
N位二进制代码可以表示多少个信号?
例:对101键盘编码时,采用几位二进制代码? 编码原则:N位二进制代码可以表示2N个信号, 则对M个信号编码时,应由2N ≥M来确定位数N。
例:对101键盘编码时,采用了7位二进制代码 ASCⅡ码。27=128>101。
0111
1000
1011
1101
1 1 1 1 21.10.2020
(完整版)高频电子线路第三章习题解答
3—1 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么?解:否。
因为满足起振与平衡条件后,振荡由小到大并达到平衡。
但当外界因素(T 、V CC )变化时,平衡条件受到破坏,若不满足稳定条件,振荡器不能回到平衡状态,导致停振。
3—2 一反馈振荡器,欲减小因温度变化而使平衡条件受到破坏,从而引起振荡振幅和振荡频率的变化,应增大i osc )(V T ∂∂ω和ωωϕ∂∂)(T ,为什么?试描述如何通过自身调节建立新平衡状态的过程(振幅和相位)。
解:由振荡稳定条件知:振幅稳定条件:0)(iAiosc <∂∂V V T ω相位稳定条件:0)(oscT <∂∂=ωωωωϕ若满足振幅稳定条件,当外界温度变化引起V i 增大时,T(osc )减小,V i 增大减缓,最终回到新的平衡点。
若在新平衡点上负斜率越大,则到达新平衡点所需V i 的变化就越小,振荡振幅就越稳定。
若满足相位稳定条件,外界因素变化oscT()最终回到新平衡点。
这时,若负斜率越大,则到达新平衡点所需osc的变化就越小,振荡频率就越稳定。
3-3 并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率的相频特性?解:并联谐振回路在电流激励下,回路端电压V的频率特性才会产生负斜率的相频特性,如图(a )所示。
串联谐振回路在电压激励下,回路电流I的频率特性才会产生负斜率的相频特性,如图(b)所示。
3—5 试判断下图所示交流通路中,哪些可能产生振荡,哪些不能产生振荡。
若能产生振荡,则说明属于哪种振荡电路。
osc阻止osc 增大,解:(a)不振.同名端接反,不满足正反馈;(b)能振.变压器耦合反馈振荡器;(c)不振.不满足三点式振荡电路的组成法则;(d)能振。
但L2C2回路呈感性,osc 〈2,L1C1回路呈容性,osc >1,组成电感三点式振荡电路。
(e)能振。
计入结电容C b e,组成电容三点式振荡电路。
高频电子线路第三章习题答案
习题3.1 高频功率放大器的主要作用是什么?应对它提出哪些主要要求?答:高频功率放大器的主要作用是放大高频信号或高频已调波信号,将直流电能转换成交流输出功率。
要求具有高效率和高功率输出。
3.2 为什么丙类谐振功率放大器要采用谐振回路作负载?若回路失谐将产生什么结果?若采用纯电阻负载又将产生什么结果?答:因为丙类谐振功率放大器的集电极电流i c为电流脉冲,负载必须具有滤波功能,否则不能获得正弦波输出。
若回路失谐集电极管耗增大,功率管有损坏的危险。
若采用纯电阻负载则没有连续的正弦波输出。
3.3 高频功放的欠压、临界和过压状态是如何区分的?各有什么特点?答:根据集电极是否进入饱和区来区分,当集电极最大点电流在临界线右方时高频功放工作于欠压状态,在临界线上时高频功放工作临界状态,在临界线左方时高频功放工作于过压状态。
欠压状态的功率和效率都比较低,集电极耗散功率也较大,输出电压随负载阻抗变化而变化,较少使用,但基极调幅时要使用欠压状态。
临界状态输出功率大,管子损耗小,放大器的效率也较高。
过压状态下,负载阻抗变化时,输出电压比较平稳且幅值较大,在弱过压时,效率可达最高,但输出功率有所下降,发射机的中间级、集电极调幅级常采用过压状态。
3.4 分析下列各种功放的工作状态应如何选择?(1) 利用功放进行振幅调制时,当调制的音频信号加到基极或集电极时,如何选择功放的工作状态?(2) 利用功放放大振幅调制信号时,应如何选择功放的工作状态?(3) 利用功放放大等幅度信号时,应如何选择功放的工作状态?答:(1) 当调制的音频信号加到基极时,选择欠压状态;加到集电极时,选择过压状态。
(2) 放大振幅调制信号时,选择欠压状态。
、(3) 放大等幅度信号时,选择临界状态。
3.5 两个参数完全相同的谐振功放,输出功率P o分别为1W和0.6W,为了增大输出功率,将V CC提高。
结果发现前者输出功率无明显加大,后者输出功率明显增大,试分析原因。
数字电子技术基础:第三章 逻辑门电路
逻辑符号
C
vI /vO
TG
vO /vI
C
C
υo/ υI
2. CMOS传输门电路的工作原理
vI /vO
5V到+5V
C
+5V
TP +5V vO /vI
5V TN
5V
C
设TP:|VTP|=2V, TN:VTN=2V
I的变化范围为-5V到+5V。
c=0=-5V, c =1=+5V
1)当c=0, c =1时 GSN= -5V (-5V到+5V)=(0到-10)V
在由于电路具有互补对称的性质,它的开通时间与关 闭时间是相等的。平均延迟时间:<10 ns。
动态功耗
CMOS反相器的PD与f和 2 VDD
CMOS反相器从一个稳定状态转变到另一个稳定状态时所产生的功耗
PD=PC+PT
分布电容CL充放电引起的功耗: PC CL fVD2D
CMOS管瞬时交替导通引起的功耗:PT CPD fVD2D
74标准系列 74LS系列
74AS系列
74LVC 74VAUC 低(超低)电压 速度更加快 与TTL兼容 负载能力强 抗干扰 功耗低
74ALS
3.1 概述
门电路:实现基本逻辑/复合逻辑运算的单元电路
逻辑状态的描述—— 正逻辑:高电平→1,低电平→0 负逻辑:高电平→0,低电平→1
缺点:功耗较大/速度较慢
VDD VIH(min) I OH(total) I IH(total)
… …
I0H(total) &1
+V DD RP
&
&1
IIH(total) &
电工电子技术第3章电路的暂态分析
电流通过N匝线圈产生 ψNΦ(磁链) 电感: L ψ NΦ ( H、mH)
ii
线性电感: L为常数; 非线性电感: L不为常数 线圈的电感与线圈的尺寸、匝数以及附近的介质
的导磁性能等有关。 L μ S N 2 l
L μS N2 (H)
i
l
S — 线圈横截面积(m2)
+
-
l —线圈长度(m)
3 .3 .1 RC电路的零输入响应
零输入响应: 无电源激励, 输 入信号为零, 仅由电容元件的 + 初实始质储:能RC所电产路生的的放电电路过的程响应。U -
2 t 0 R
1
S
+
iC
u
–
R
u
+ C–
c
图示电路
uC(0)U
换t =路0时前开电关路S已 处1稳, 电态容uCC(经0电)阻UR 放电
由于物体所具有的能量不能跃变而造成
在换路瞬间储能元件的能量也不能跃变
∵ C 储能:
WC
1 2
CuC2
∵ L储能:
WL
1 2
L iL2
\ u C 不能突变
iL不能突变
2. 换路定则
设:t=0 — 表示换路瞬间 (定为计时起点) t=0-— 表示换路前的终了瞬间 t=0+—表示换路后的初始瞬间(初始值)
1) 由t =0+的电路求其它电量的初始值; 2) 在 t =0+时的电压方程中 uC = uC( 0+)、
t =0+时的电流方程中 iL = iL ( 0+)。
例1.暂态过程初始值的确定
S C R2
已知:换路前电路处稳态,
电子技术基础——电路与模拟电子(第3章)
du(t ) p(t ) = u (t )i (t ) = Cu(t ) dt
(3―6)
对上式从-∞到 进行积分 可得t时刻电容上的储能为 进行积分, 对上式从 到t进行积分,可得 时刻电容上的储能为 计算过程中认为u(-∞)=0。 。 计算过程中认为
ωC (t ) = ∫
t
−∞
p (ξ )d ξ
(3-7)
1 1 1 = + C C1 C2
或写为
C1C2 C= C1 + C2
(3―18)
上式中C为电容 相串联时的等效电容。由式(3―17)画出 上式中 为电容C1与C2相串联时的等效电容。由式 为电容 画出 其等效电路如图3.6(b)所示。同理可得,若有 个电容 k(k=1,2,…,n) 所示。同理可得,若有n个电容 个电容C 其等效电路如图 所示 相串联, 相串联,其等效电容为
第3章 动态电路分析
电容元件及电容电流波形分别如图3.2( )、 例3-1 电容元件及电容电流波形分别如图 (a)、 (b)所示,已知 )所示,已知u(0)=0,试求 ,试求t=1s、t=2s、t=4s时的电 、 、 时的电 容电压u以及 以及t=2s时电容的储能。 时电容的储能。 容电压 以及 时电容的储能
第3章 动态电路分析
电感串并联: 电感串并联:
是电感L 相串联的电路, 图 3.8(a)是电感 1 与 L2 相串联的电路 , 流过两电感的电流是同一电 是电感 的微分形式和KVL,有 流i。根据电感 。根据电感VAR的微分形式和 的微分形式和 ,
L = L1 + L2
(3―25)
称为电感L1与 L2串联时的等效 称为电感 与 串联时的等效 电感。 由式(3―26)画出相应的等效 电感 。 由式 画出相应的等效 电路如图3.8(b)所示 。 同理 , 若有 所示。 同理, 若有n 电路如图 所示 个 电感 Lk(k=1,2,…,n) 相 串联 , 可 推 导其等效电感为
(完整版)高频电子线路教案第三章高频功率放大器
三极管四种工作状态根据正弦信号整个周期内三极管的导通情况划分甲类:一个周期内均导通晶体管在输入信号的整个周期都导通静态I C较大,波形好, 管耗大效率低。
乙类:导通角等于180°晶体管只在输入信号的半个周期内导通,静态I C=0,波形严重失真, 管耗小效率高。
甲乙类:导通角大于180°晶体管导通的时间大于半个周期,静态I C 0,一般功放常采用。
丙类:导通角小于180°图3-4 各级电压和电流波形丙类(C类)高频功率放大器的折线分析法图3-5 3DA21静态特性曲线及其理想化cos cnm I +()cd t θωcos θ出电路 。
宽频带功率放大器没有选频作用。
因此谐波的抑制成了一个重要的问题。
为此,放大管的工作状态就只能选在非线性畸变比较小的甲类或甲乙类状态,效率较低,也就是说宽频带放大器是以牺牲效率作为代价来换取宽频带输出的 。
传输线变压器是将两根等长的导线紧靠在一起,并绕在高导磁率低损耗的磁芯上构成的。
最高工作频率可扩展到几百兆赫甚至上千兆赫。
传输线变压器与普通变压器在传输能量的方式上是不相同的,传输线变压器负载两端的电压不是次级感应电压,而是传输线的终端电压。
两根导线紧靠在一起,所以导线任意长度处的线间电容很大,且在整个线上均匀分布。
其次,两根等长导线同时绕在高μ磁芯上,所以导线上均匀分布的电感量也很大,这种电路通常又叫分布参数电路。
在传输线变压器中,线间的分布电容不影响高频能量的传输,电磁波以电磁能交换的形式在导线间介质中传播的。
u su su sR LR LR LR s R sR s (a) 结构示意图(c) 普通变压器的原理电路(b) 原理电路图u 1u 2u 1u 2u 1u 2。
电力电子技术-第三章--单相整流讲解
3.1.1 单相半波可控整流电路
(Single Phase Half Wave Controlled Rectifier)
1. 电阻负载的工作情况
在工业生产中,某些负载基本上是电阻性的, 如电阻加热炉、电解和电镀等。
电阻性负载的特点是电压与电流成正比,波形 相同并且同相位,电流可以突变。 • 1. 工作原理 • 首先假设以下几点: • (1) 开关元件是理想的,即开关元件(晶闸管)导通 时,通态压降为零,关断时电阻为无穷大; • 一般认为晶闸管的开通与关断过程瞬时完成。 • (2) 变压器是理想的,即变压器漏抗为零,绕组的 电阻为零、励磁电流为零。
id 的连续波形每周期分为两 段:u2过零前一段流经SCR, 时宽为π-α;之后一段流经 VDR ,时宽为π+α。由两器 件电流拼合而成。
若近似认为id为一条水平线,恒为Id,则有
SCR 平均值: I a I
dVT
2 d
(2-5)
SCR 有效值:
IVT
1
2
a
I
d2d
(t
在ωt=0到α期间,晶闸管uAK大于零, 但门极没有触发信号,处于正向关断状
态,输出电压、电流都等于零。
在ωt=α时,门极有触发信号,晶闸管 被触发导通,负载电压ud= u2。 在ωt1时刻,触发VT使其开通,u2加 于负载两端,id从0开始增加。这时,交 流电源一方面供给电阻R消耗的能量, 另一方面供给电感L吸收的磁场能量。
)
a 2
I
(2-6)
d
VDR 平均值: VDR 有效值:
a IdVDR 2 Id
(2-7)
IVDR
1
2
2 a
电工与电子技术基础课件第三章正弦交流电
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui
电子技术第三章集成电路-107页精品文档
3.1 集成运放的简介
集成电路简介
*集成电路:是把整个电路的各个元件以及相互之间的联接 同时制造在一块半导体芯片上, 组成一个不可分的整体。 *集成运算放大器:是一种具有很高放大倍数的多级直接耦 合放大电路。是发展最早、应用最广泛的一种模拟集成电 路。 *集成电路优点:工作稳定、使用方便、体积小、重量轻、 功耗小,可靠性高、价格低。 *集成电路分类:模拟集成电路、数字集成电路;小、中、 大、超大规模集成电路;
A u d u i1 1 u o u i2 d 2 u u o 1 i1 2 i i b b R R b c / R r b / L e 2 R R b c /r R b / Le
输入和输出方式
1. 双端输入、双端输出:输入输出端没有接地.
(1)差模电压放大倍数 :
Aud1
(Rc
//
RL 2
Rb rbe
)
+ V CC
Rc + uo - Rc
(2)共模电压放大倍数
Rb T1
+
u-o 1
RL
+
u-o 2
T2 Rb
Auc 0
+
(3)差模输入电阻
u i1
R i d 2R brbe
3.3 差动放大电路
典型结构与原理
*原理分析要点:(1)差分放大电路的静态和动态计算方法与
基本放大电路基本相同。为了使差分放大电路在静态时,其
输入端基本上是零电位,将Re从接地改为接负电源-VEE。 (2)分析方法要注意2个等效关系:①对每个三极管Re等效2
倍Re,②差模输入的虚地问题.
+ V CC
线性电子线路第三章课后题答案
Ro 6.2
题 3.26 图 P3.26 为自举式射极跟随器,已知晶体管的 50 、rb 300 以及
RL 12k 。
(1) 若要求VE 10V ,确定 RB 的值; (2) 计算交流 Ri 和 AV ; (3) 若不接电容 C,则 Ri 为多大? 解:(1)
RB 274.3k
5V 1k
RB
VBB
其中 V1 1.105V ~ 3.205V
题 3.10 图 P3.10 电路中晶体管的 100 ,问
(1) 若 RE 0.5k ,晶体管处于何种工作状态; (2) 求使晶体管工作在放大区的最小 RE 值。
由此求得 RE min 0.89k 。 由于 RE 0.5k 0.89k ,因此晶体管工作于饱和状态。
IE 1.47mA IC
VCE 7.71V
(2)求交流 AV、AI、AIS 及 Ri、Ro 共基极放大电路
re
VT IE
26mV 1.47mA
17.69 hie
rb 1 re
200 12617.69 2.43k
Ri 19.2
题 3.38
解:
fh 4.67kHz 主极点法: fh 4.82103 rad / s f fh fh 0.15kHz
VT IE
26mV 2.81mA
9.25
hie rb 1 re 200 1819.25 1874.25
(注:题目中未给 rb 的值,这里取 rb 200 ,若忽略 rb 则 hie 1674.25 ) (3) AVs、Ri 和 Ro
Ri 0.7k
Ro RC 1k AVs 45.73
电子技术基础课件第3章 集成运算放大器及正弦波振荡电路
图中VT3组成分压式工作点稳定电路,该电路当温度发生变 化时,Ie3基本不变,且
从而阻止了Ic1、Ic2随温度升高而增大,起到抑制零漂的作用。
*3.1.4 差动放大电路的4种接法
1.单端输入、双端输出式 单端输入、双端输出式差动放大电路如图3.3所示。
2.双端输入、单端输出式 双端输入、单端输出式差动放大电路如图3.4所示。
② 中间级。其作用是提供较高的电压放大倍数,一般由共发射 极放大电路组成。
③ 输出级。输出级的作用是提供一定的电压变化,通常采用互 补对称放大电路。
④ 辅助环节。使各级放大电路有稳定的直流偏置。
2.集成运放符号
集成运放是高电压放大倍数、高输入电阻、低输出电阻的直 接耦合放大电路,由于直接耦合放大电路存在零点漂移问题,所 以对零漂影响最大的第一级电路往往采用差动放大器。
(a)新符号
(b)旧符号
图3.9 集成运放的图形符号
3.主要参数 集成运放的性能可以用各种参数来反映,为了合理正确地
选择和使用集成运放,下面介绍集成运放的主要性能指标。 ① 开环电压放大倍数Auo:指无反馈时集成运放的差模电压放大 倍数。 ② 差模输入电阻rid:指差模输入时运放无外加反馈回路时的输 入电阻。
集成电路按电路功能可分为模拟集成电路和数字集成电路, 模拟集成电路主要有集成功率放大器、集成运算放大器、集成 稳压器等。由于集成电路体积小、稳定性好,因而在各种电子 设备及仪器中得到了广泛的应用。
3.2.1 集成电路的特点
与分立元件电路相比,集成电路具有以下突出特点。 1.可靠性高、寿命长 2.体积小、重量轻 3.速度高、功耗低 4.成本低
3.抑制零点漂移的措施 ① 选用稳定性能好的高质量的硅管。
② 采用高稳定度的稳压电源可以抑制电源电压波动引起的零漂。
电子线路第三章答案
《模拟电子线路》课程教案内容:第三章习题解答3-1放大器功率放大倍数为100,问功率增益是多少分贝?答:由G P=10lgA P,得G P=10lg100=10×2=20dB。
3-2 假如输入电压为20mV,输出电压为2V,问放大器的电压增益是多少分贝?答:因为A V=V O/V i=2V÷20mV=2000÷20=100,而G V=20lgA V所以G V=20lg100=40 dB。
3-3 假如输入信号电压为V i=0.02V,电流I i=1.0mA;输出电压V O=2V,电流I O=0.1A。
问放大器的电压、电流增益和功率增益各为多少分贝?答:因为A V=2V÷0.02V=100,A i=0.1A÷1mA=100÷1=100,Ap=A V×A i=104所以G V=20lgA V=20lg100=40 dBG i=20lgA i=20lg100=40 dBG P=10lgA P=10lg104=40 dB3-4 电压增益是-60dB,试问它的电压放大倍数是多少?该电路是放大器吗?答:由G V=20lgA V得A V=10(GV/20)=10(-60/20)=10-3=0.001。
该电路不是放大器而是衰减器。
3-5 画出由PNP型管接成的共发射极交流放大电路,并标出静态电流方向和静态管压降(V CEQ)的极性。
答:PNP型管接成的共发射极交流放大电路如右图所示。
静态管压降(V CEQ)的极性为上负下正。
3-6 什么是“非线性失真”?放大电路为什么要设置适宜的静态工作点?答:因为放大电路本身的非线性所造成的输出信号波形失真称为非线性失真。
放大电路假如不设置适宜的静态工作点,信号放大时就可能使晶体三极管进入饱和区或截止区,产生非线性失真。
所以放大电路必须设置适宜的静态工作点。
3-7 用图3.0.1所示方法调整静态工作点有什么错误?应如何改正?画出准确的电路图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
arctan
U1 sin 1 U 2 sin 2 U1 cos 1 U 2 cos 2
U1 cos 1 U 2 cos 2 j U1 sin 1 U 2 sin 2
目录 前一页 返回 下一页 结束
3.2正弦量的相量表示法及相量图(续3)
1.电路符号:
i + R u -
2.时域特性:
u (t ) R i(t )
第一象限 0<<90º
第四象限-90º <<0
<<180º u 5 2 sin( t 126 9) 第二象限 90º
u 5 2 sin( t 126 9)
第三象限-180º <<-90º
目录 前一页 返回 下一页 结束
3.3正弦稳态电路的相量模型
元件的相量模型 一、电阻元件
波形
Im
正弦信号的表示方法
函数表达式
i
t
i(t ) I m sin(t i )
正弦信号的三要素
(1)振幅 Im (2)频率 f、周期 T、角频率 (3)初相位
目录 前一页 返回 下一页 结束
3.1 正弦量的基本概念(续1)
振幅和有效值
正弦电压或电流的最大值,又叫峰值。记作 Um、Im
在工程应用中常用有效值表示幅度,有效值表示与正弦电 压或电流平均热效应相当的直流值。数学上表示为方-均根(r-m-s)值:
对于正弦电压、电流: u(t ) U m sin(t u )
有效值与振幅之间的关系为:
Um 2 U , Im 2 I
1 T t0 2 U u (t )dt t T 0
矢量与横轴夹角 = 初相位 旋转因子 矢量以角速度ω 按逆时针方向旋转
在复平面上,旋转矢量可以表示为
U m e j e jt
目录 前一页 返回 下一页 结束
3.2正弦量的相量表示法及相量图(续1)
由于同频率的正弦量(正弦稳态电路中的所有电压电流具 有相同频率)旋转速度相同,因此只需要确定它们的初始矢量。 称这个初始矢量为正弦量的相量。记作
目录 前一页 返回 下一页 结束
3.1 正弦量的基本概念(续3)
初相位
对于正弦量 i(t ) I m sin(t )
(t )正弦波在时刻 t 的相位角或相位,它以2为周期。
t = 0 时的相位,称为初相位或初相角。-<<
相位差
相位差
两个同频率的正弦量可以比较相位,
振幅相量 有效值相量
U m U m e j U m
U Ue j U
目录 前一页 返回 下一页 结束
3.2正弦量的相量表示法及相量图(续2)
把相量作为矢量画在复平面上,称为相量图,利用相量图的 矢量叠加方法,可以方便地进行同频率正弦量的加、减运算。 函数表示:u1 (t ) 2U1 sin(t 1 ), u2 (t ) 2U 2 sin(t 2 ) 相量表示: U1 U11 , U 2 U 2 两个正弦电压叠加:
小结:正弦波的四种表示法
波形图
u
2U
相量图
t
U
相量
U U e j U
2 函数式
u U m sin t
计算相量的相位角时,要注意所在象限。如:
U 3 j4
U 3 j4 U 3 j4
U 3 j4
u 5 2 sin( t 53 1) u 5 2 sin( t 53 1)
本章目录
3.1 正弦量的基本概念
3.2正弦量的相量表示法及相量图
3.3正弦稳态电路的相量模型
3.4阻抗和导纳
3.5阻抗的串联和并联
3.6正弦稳态电路的分析
3.8电路中的谐振
目录 前一页 返回 下一页 结束
3.1 正弦量的基本概念
正弦稳态电路
电路处于单一频率正弦电源(信号)的激励下。
电路已经处于稳定状态,作为线性电路,电路中各处电 压电流都表现为与激励电源同频率的正弦量。
? 2U sin( t )
相量图:
U2 U1
U
u1 (t ) u2 (t ) 2U1 sin(t 1 ) 2U 2 sin(t 2 )
相量叠加:
U U1 U 2 U11 U 2 U
U
U1 cos 1 U 2 cos 2 U1 sin 1 U 2 sin 2
1 T t0 2 I i (t )dt T t0
i(t ) I m sin(t i )
目录 前一页 返回 下一页 结束
3.1 正弦量的基本概念(续2)
频率 f、周需的时间,单位:秒(s),毫秒 (ms), 微秒(s)… 频率 f :每秒波形变化的次数 单位:赫兹(Hz),千赫兹 (kHz), 兆赫兹(MHz) ... 电网频率(工频):中国、欧洲 50 Hz; 美国 、日本 60 Hz; 有线通讯频率:300 ~ 5000 Hz 无线通讯频率: 30 kHz ~ 3×104 MHz 声波频率:20 ~ 20kHz 角频率ω: 每秒函数相位角变化的弧度数 单位:弧度/ 秒(rad/s) 1 2πf f T
u1 (t ) U1m sin(t 1 ), u2 (t ) U 2m sin(t 2 )
12 (t 1 ) (t 2 ) 1 2
u1、 u2 同相位
π 12 π
u1、 u2 正交 u1、 u2 反相
12 0, 1 2 12 0, 1 2 12 0, 1 2
u1 超前 u2
u1滞后 u2
12 90 12 180
目录 前一页 返回 下一页 结束
3.2正弦量的相量表示法及相量图
一个正弦量的瞬时值可以用一个旋转的有向线段在纵轴上 的投影值来表示。
+j
u U m sin t
ω
Um
+1
t
初始矢量 矢量长度= 振幅