中考复习之 二次函数的应用
中考复习必备-二次函数总复习
字母符号
a>0 a
a<0 b=0 b b与a同号 b与a异号 c=0
c>0
c c<0 b2 b2-4ac=0 - b2-4ac>0 4a c b2-4ac<0
图象的特征 开口向上 开口向下 对称轴为y轴 对称轴在y轴左侧 对称轴在y轴右侧 经过原点
与y轴正半轴相交 与y轴负半轴相交 与x轴有唯一交点(顶点) 与x轴有两个交点 与x轴没有交点
⑤解析式的求法: 确定二次函数的解析式,一般用待定系数法,由于二次函数解析式有三 个待定系数a,b,c(或a,h,k或a,x1,x2),因而确定二次函数解析式需要 已知三个独立的条件: a.已知抛物线上任意三个点的坐标时,选用一般式比较方便. b.已知抛物线的顶点坐标时,选用顶点式比较方便. c.已知抛物线与x轴两个交点的坐标(或横坐标x1,x2)时,选用交点式比 较方便.
命题点4 二次函数的实际应用
3.(2016·丹东24题10分)某片果园有果树80棵,现准备多种一些果树提高果 园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单 棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们 之间的函数关系如图所示.
(1)求y与x之间的函数关系式; (2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750 千克? (3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
命题点1 二次函数的图象与性质 1.(2015·锦州5题3分)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a 的图象可能是( C )
2.(2016·阜新10题3分)二次函数y=ax2+bx+c的图象如图所示,下列选项中正 确的是( B ) A.a>0 B.b>0 C.c<0 D.关于x的一元二次方程ax2+bx+c=0没有实数根
2025年中考数学复习专题+ 二次函数的实际应用课件
本题主要考查商品利润的计算方法,把实际问题转化为二次
函数,列出二次函数解析式,根据题意分情况建立二次函数模型并利用
最值问题是解决问题的关键.
1.(2024·贵州第24题12分)某超市购入一批进价为10元/盒的糖果进行销售,
经市场调查发现:销售单价不低于进价时,日销售量y (单位:盒)与销售单
价x(单位:元)是一次函数关系,下表是y与x的几组对应值.
∴当x=25时,w有最大值为450,
∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元.
(3)设日销售利润为w元,根据题意,得
w=(x-10-m)·y=(x-10-m)(-2x+80)
=-2x2+(100+2m)x-800-80m,
100+2 50+
∴当x=-
=
2× −2
2
w有最大值为-2
问题:
Ⅰ)修建一个“”型栅栏,如图②,点P2,P3在抛物线AED上.设点P1的横坐标
为m(0<m≤6),求栅栏总长l与m之间的函数解析式和l的最大值;
Ⅱ)现修建一个总长为18 m的栅栏,有如图③所示的“
”型和“
”型两种
设计方案,请从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及
取最大值时点P1的横坐标的取值范围(点P1在点P4右侧).
【分层分析】用含x的代数式表示矩形的长、宽,根据矩形的面积公式列
方程求解即可.
解:Ⅰ)由题知EF=14-2x-(x-1)=(15-3x)m.
∵AB=3,∴EF≤3,即15-3x≤3,解得x≥4.
Ⅱ)根据题意,得x(15-3x)=12,
解得x1=4,x2=1(不符合题意,舍去).
答:此时DF的长为4 m.
中考数学专题复习之 二次函数的应用 课件
二次函数的应用
考点精讲·导析探究
B
( 1 )设 y = kx + b ,
把( 22 , 36 )与( 24 , 32 )代入得:
则 y =- 2x + 80 ;
( 2 )设当文具店每周销售这种纪念册获得 150元的利润时,每本纪念册的销售单价是
x 元,根据题意得:( x - 20 ) y = 150 ,
润是 192 元.
(1)∵ B ( 4 , m )在直线 y = x + 2 上
∴ m = 4 + 2 = ቤተ መጻሕፍቲ ባይዱ ,∴ B ( 4 , 6 )
∵抛物线 y =
ax2+
1 5
bx+ 6经过 A ( , ),B ( 4 , 6 )
2 2
∴抛物线的解析式为 y = 2x2 - 8x + 6 .
( 2 )设 P ( m , m + 2 ),则 D ( m , 2m2- 8m + 6 ).
整理得 w =-( x - 25 ) 2 + 225
∵- 1 < 0
∴当 x = 25 时, w 取得最大值,最大值为 225 元.
1
( 1 )根据题意得, y =- x + 50 ;
2
1
( 2 )根据题意得,( 40 + x )(- x + 50 )= 2 250 ,
2
解得: x 1 = 50 , x 2= 10 ,
=- 2 ( x - 30 ) 2 + 200 ,
此时当 x = 30 时, w 最大,
又∵售价不低于 20 元且不高于 28 元,
∴ x < 30 时, y 随 x 的增大而增大,即当 x = 28时, w 最大 =- 2 ( 28 - 30 ) 2 + 200 =
中考数学总复习《二次函数的实际应用与几何问题》练习题及答案
中考数学总复习《二次函数的实际应用与几何问题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则图中阴影部分的面积为()A.πB.2πC.3πD.4π2.如图,已知抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,以AB为直径的⊙P经过该抛物线的顶点C,直线l⊙x轴,交该抛物线于M、N两点,交⊙P与E、F两点,若EF=2√3,则MN的长为()A.2√6B.4√2C.5D.63.如图,已知⊙ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣24.如图,在⊙ABC中,⊙C=90°,AC=BC=3cm.动点P从点A出发,以√2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC →CB方向运动到点B.设⊙APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.5.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=(12﹣x2)C.y=(12﹣x)•x D.y=2(12﹣x)6.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门。
已知计划中的建筑材料可建围墙(不包括门)的总长度为50m。
设饲养室长为x(m),占地面积为y(m²),则y关于x的函数表达式是()A.y=-x²+50x B.y= −12x²+24xC.y= −12x2+25x D.y= −12x2+26x7.如图,四边形ABCD中,AB=AD,CE⊙BD,CE= 12BD.若⊙ABD的周长为20cm,则⊙BCD的面积S(cm2)与AB的长x(cm)之间的函数关系式可以是()2−10x+100B.S=2x2−40x+200A.S=14xC.S=x2−20x+100D.S=x2+20x+1008.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是()A.12B.18C.24D.369.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若⊙ABC与⊙ABD的面积比为1:4,则k值为()A.1B.12C.43D.4510.半径是3的圆,如果半径增加2x,那么面积S和x之间的函数关系式是()A.S=2π(x+3)2B.S=9π+xC.S=4πx2+12x+9D.S=4πx2+12πx+9π11.设抛物线y=ax2+bx+c(ab≠0)的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 () A.y=−3(x−1)2+1B.y=2(x−0.5)(x+1.5)C.y=13x 2−43x+1D.y=(a2+1)x2−4x+2(a为任意常数)12.已知坐标平面上有两个二次函数y=a(x+1)(x−7),y=b(x+1)(x−15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x−15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位二、填空题13.如图,点A(0,1),平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE⊙AC,交y2于点E,则DE =.14.用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是cm2.15.如图,在平面直角坐标系中,菱形OABC的边长为2,⊙AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊙AB时,CE的长为。
初三中考数学 二次函数的应用
第21课时二次函数的应用【复习要点】1、二次函数的应用常用于求解析式、交点坐标等。
(1)求解析式的一般方法:①已知图象上三点或三对的对应值,通常选择一般式。
②已知图象的顶点坐标、对称轴、最值或最高(低)点等,通常选择顶点式。
③已知图象与x轴的两个交点的横坐标为x1、x2,通常选择交点式(不能做结果,要化成一般式或顶点式)。
(2)求交点坐标的一般方法:①求与x轴的交点坐标,当y=代入解析式即可;求与y轴的交点坐标,当x=代入解析式即可。
②两个函数图像的交点,将两个函数解析式联立成方程组解出即可。
2、二次函数常用来解决最优化问题,即对于二次函数2(0)=++≠,当x=时,y ax bx c a函数有最值y=。
最值问题也可以通过配方解决,即将2(0)y a x h k a=-+≠,当x=时,函数()(0)=++≠配方成2y ax bx c a有最值y=。
3、二次函数的实际应用包括以下方面:(1)分析和表示不同背景下实际问题,如利润、面积、动态、数形结合等问题中变量之间的二次函数关系。
(2)运用二次函数的知识解决实际问题中的最值问题。
4、二次函数主要是利用现实情景或者纯数学情景,考查学生的数学建模能力和应用意识。
从客观事实的原型出发,具体构造数学模型的过程叫做数学建模,它的基本思路是:【例题解析】例1:如图1所示,一位运动员在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.求抛物线的表达式.解析:因为抛物线的对称轴为y轴,故可设篮球运行的路线所对应的函数表达式为2y ax k=+(a≠0,k≠0).代入A,B两点坐标为(1.5,3.05),(0,3.5).可得:21.5 3.053.5a kk⎧+=⎨=⎩,.解得0.2a=-,所以,抛物线对应的函数表达式为20.2 3.5y x =-+.反思:将实际问题转化为数学问题,建立适当的平面直角坐标系是解决问题的关键。
2023年中考复习大串讲初中数学之 二次函数与位置关系的综合应用 课件
已知条件
分析
直线l:y=kx+1-k与抛物线 解析式联立求出点B,C的坐标
交于点B,C
直线BD垂直于直线y=-1, 得到点D的坐标
垂足为点D
【变式练习】已知抛物线y=ax2+bx+c(a≠0)过点A(0,2). (1)若点(- 2 ,0)也在该抛物线上,求a,b满足的关系式.
解:∵抛物线y=ax2+bx+c过点A(0,2),∴c=2. 又∵点(- 2 ,0)也在该抛物线上, ∴(- 2 )2a+(- 2 )b+2=0, ∴2a- 2 b+2=0(a≠0).
垂足分别为P,Q,
∴∠MPE=∠EQN=90°,PxM,-74,QxN,-74, ∴MP=yM+74,PE=52-xM,EQ=xN-52,QN=yN+74, ∠ENQ+∠NEQ=90°,
∴tan∠MEP=MPEP=52yM-+xM74=(xM52--1x)M 2-94=-xM+12,
tan∠ENQ=QEQN=xyNN+-7452=(xNx-N-1)522-94=xN+1 12,
证明:设B(x1,y1),C(x2,y2),则D(x1,-1), y=x2-2x+1,
联立 y=kx+1-k,
消去y,得x2-(2+k)x+k=0,
∵Δ=[-(2+k)]2-4k=k2+4>0,
∴该方程有两个不等的实数根.
设x1<x2,则x1=
k+2- 2
k2+4,x2=k+2+2
k2+4 .
∵直线l过定点(1,1),∴x1<1<x2.
∵x1≠x2,∴x1x2=-2,即 x2=-x21,
∴点N的坐标为 (-x21,-x421+2). 如答图2,作点N关于y轴对称的点N′, ∴点N′也在抛物线上,点N′的坐标为 x21,-x421+2. ∵点P是点O关于点A的对称点,
中考专项复习:二次函数的应用---题型总结解析版
即 W 与 x 之间的函数表达式是 w=﹣2x2+280x—8000
(3) W=﹣2x2+280x—8000=—2(x—70)2+1800,其中40≤x≤80 ,∵﹣2<0,
∴当40≤x≤70时,W 随 x 的增大而增大,当70≤x≤80时,w 随 x 的增大而减小,当售价为 70元时,获得最大利润,这时最大利润为1800元.
【答案】2(x﹣8)(x+2)
【解析】50−x
试题分析:(1)∵y=x·⋅
=−1/2(x−25)2+625/2,
∴当 x=25 时,占地面积最大, 即饲养室长 x 为 25m 时,占地面积 y 最大;
(2)∵y=x·
=−12(x−26)2+338,
∴当 x=26 时,占地面积最大, 即饲养室长 x 为 26m 时,占地面积 y 最大;
考点:A:应用二次函数求最大利润 ,B:求一次函数的解析式 例3.(2017山东潍坊)工人师傅用一块长为10dm,宽为6dm 的矩形铁皮制作一个无盖的长方 体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折 痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
当 4<x≤14 时,设 P=kx+b,
4k+b=40
k=1
将(4,40)、(14,50)代入, 可得: 14k+b=50 ,解得: b=36 ,
∴P=x+36;
①当 0≤x≤4 时,W=(60−40)·7.5x=150x,
∵W 随 x 的增大而增大, ∴当 x=4 时,W 最大=600 元; ②当 4<x≤14 时,W=(60−x−36)(5x+10)=−5x2+110x+240=−5(x−11)2+845,
初中数学二次函数应用场景详解
初中数学二次函数应用场景详解在初中数学的学习中,二次函数是一个非常重要的知识点。
它不仅在数学领域有着广泛的应用,还与我们的实际生活息息相关。
接下来,让我们一起深入探讨二次函数的各种应用场景。
一、抛物线形状的物体运动轨迹在体育项目中,很多物体的运动轨迹都可以用二次函数来描述。
比如,篮球投篮时,篮球在空中划过的轨迹;铅球被抛出后,其运动路径等。
以投篮为例,篮球出手时的速度、角度和高度等因素决定了其运动轨迹。
通过建立二次函数模型,可以预测篮球是否能够准确进入篮筐,从而帮助运动员调整投篮技巧。
二、桥梁和拱门的设计在建筑领域,二次函数也发挥着重要作用。
许多桥梁和拱门的形状都是抛物线。
这是因为抛物线具有良好的力学性能,能够承受较大的压力和重量。
设计师们通过运用二次函数的知识,可以精确计算出桥梁和拱门的形状和尺寸,确保其结构的稳定性和安全性。
三、利润最大化问题对于商家来说,如何实现利润最大化是一个关键问题。
假设一家商店销售某种商品,其成本为固定值,而销售价格和销售量之间存在一定的关系。
我们可以建立一个二次函数来表示利润与销售价格或销售量之间的关系。
通过求函数的最大值,就能找到最优的销售价格或销售量,从而实现利润的最大化。
例如,某商品的成本为每件 50 元,销售价格为每件 x 元,销售量为 y 件,且销售量与销售价格之间满足关系 y =-10x + 500。
那么利润 P 可以表示为:P =(x 50) (-10x + 500)通过对这个二次函数进行整理和求最值,可以得出当销售价格为多少时,利润最大。
四、资源分配问题在资源分配方面,二次函数也能提供有效的解决方案。
比如,一个农场有一定面积的土地,要种植两种农作物 A 和 B。
已知种植农作物A 每公顷的收益和成本,以及种植农作物 B 每公顷的收益和成本。
设种植农作物 A 的面积为 x 公顷,种植农作物 B 的面积为 y 公顷,总收益为 z。
在土地面积有限的条件下,可以建立一个二次函数来表示总收益与种植面积之间的关系,然后通过求解函数的最大值来确定最优的种植方案。
2025年中考数学总复习+题型7 二次函数的综合应用++++课件+
将点B的坐标代入上式得2 =3 (2-m),
解得m= ,
则点F'( ,3
),点D( ,0),则BD+BF最小值为DF'=
+ ( ) =2 .
30
6.(2024·德阳中考)如图,抛物线y=x2-x+c与x轴交于点A(-1,0)和点B,与y轴交于点C.
15
【针对训练】
3.(2024·广元中考)在平面直角坐标系xOy中,已知抛物线F:y=-x2+bx+c经过点
A(-3,-1),与y轴交于点B(0,2).
(1)求抛物线的函数解析式;
(2)在直线AB上方抛物线上有一动点C,连接OC交
AB于点D,求 的最大值及此时点C的坐标;
(3)作抛物线F关于直线y=-1上一点的对称图象F',抛物线F与F'只有一个公共点E(点
(2)如图2,在BC上方的抛物线上有一动点P(不与B,C重合),过点P作PD∥AC,交BC
于点D,过点P作PE∥y轴,交BC于点E.在点P运动的过程中,请求出△PDE周长的最
大值及此时点P的坐标.
10
【解析】(1)将点A(-1,0),B(3,0)代入y=ax2+bx+3,
= −
−+=
2
(3)如图②,M是点B关于抛物线的对称轴的对称点,Q是抛物线上的动点,它的横坐
标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E,设△BEQ和△BEM的面积分别为
1
S1和S2,求 的最大值.
中考数学专题复习 第十三讲二次函数的应用(共69张PPT)
t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4
…
下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?
中考复习函数专题25 利用二次函数解决实际问题(学生版)
专题25 利用二次函数解决实际问题知识对接考点一、怎样解二次函数的最值在实际问题中的应用问题 二次函数的最值在现实生活中应用广泛,通常是先列出二次函数关系式,然后利用ab ac y 442-=最值或将二次函数的解析式化成项点式进行求解. 考点二、怎样解生活中的“抛物线型”问题抛物线是人们最为熟悉的曲线之一,诸如抛出球的运动路线、抛物线型大门、抛物线型隧道、抛物线型拱桥、抛物线型栏杆等,都: 是抛物线型. 解此类问题,主要是建立适当的平面直角坐标系,求出其解析式,然后利用其有关性质解决相关问题.一、单选题1.如图,小明以抛物线y =x 2-2x +4为灵感设计了一款杯子,若AB =4,DE =2,则杯子的高CE 为( )A .4B .5C .6D .72.汽车在刹车后,由于惯性作用还要继续向前滑行一段距离才能停下,我们称这段距离为“刹车距离”,刹车距离往往跟行驶速度有关,在一个限速35km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不妙,同时刹车,最后还是相撞了事发后,交警现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车型的刹车距离s (m )与车速x (km/h )的关系大致如下:S 甲21110010x =+,S 乙21120020x x =+.由此可以推测( ) A .甲车超速B .乙车超速C .两车都超速D .两车都未超速3.如图,平面图形ABD 由直角边长为1的等腰直角AOD △和扇形BOD 组成,点P 在线段AB 上,PQ AB ⊥,且PQ 交AD 或交DB 于点Q .设()02AP x x =<<,图中阴影部分表示的平面图形APQ (或APQD )的面积为y ,则函数y 关于x 的大致图象是( )A .B .C .D . 4.把一个距离地面1米的小球竖直向上抛出,该小球距离地面的高度h (米)与所经过的时间t (秒)之间的关系为21(4)2h t m =--+,若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围( )A .08a ≤≤B .18a ≤≤C .09a ≤<D .19a ≤< 5.设圆锥的底面圆半径为r ,圆锥的母线长为l ,满足2r +l =6,这样的圆锥的侧面积( )A .有最大值94πB .有最小值94πC .有最大值92πD .有最小值92π 6.如图,ABC 是等边三角形,6cm AB =,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动到点B ,同时点N 从点C 出发沿射线CA 方向以2cm/s 的速度匀速运动,当点M 停止运动时,点N 也随之停止.过点M 作//MP CA 交AB 于点P ,连接MN ,NP ,作MNP △关于直线MP 对称的MN P ',设运动时间为ts ,MN P '与BMP 重叠部分的面积为2cm S ,则能表示S 与t 之间函数关系的大致图象为( )A .B .C .D .7.用一段长为20m 的篱笆围成一个矩形菜园,设菜园的对角线长为x m ,面积为y m 2,则y 与x 的函数图象大致是( )A .B .C .D .8.如图1,正方形ABCD 的边长和等腰直角FGH 的边AD 与FG 重合,边AB 与FH 在一条直线上,FGH 以1cm/s 的速度向右移动,直到点H 与点B 重合才停止移动,两个图形重叠部分的面积为S (2cm ),图2所示的是FGH 向右移动时,面积S (2cm )与随时间t (s )的变化的关系图象,则a 的值是( )A .16B .8C .2D .49.设O 为坐标原点,点A 、B 为抛物线2y x 上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( )A .12B .2CD .110.定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点()0,2A ,点()2,0C ,则互异二次函数()2y x m m =--与正方形OABC 有交点时m 的最大值和最小值分别是( )A.4,-1B-1C.4,0D,-1二、填空题11.某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为__________元时,才能使每天所获销售利润最大.12.如图,用一段长为10米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为______.(不要求写出自变量x的取值范围)13.二次函数22=-++(m,n是常数)的图象与x轴的两个交点及顶点构成直角三y x mx nk≥),图象与x轴的两个交点及顶点恰好构角形,若将这条抛物线向上平移k个单位后(0成等边三角形,则k的值为________.14.某抛物线型拱桥的示意图如图,桥长AB=48 米,拱桥最高处点C到水面AB的距离为12 米,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称),警示灯F距水面AB的高度是9米,则这两盏灯的水平距离EF是___米.15.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.三、解答题16.已知抛物线y =ax 2+bx 过点A (4,0)和B (-12,-94). (1)求抛物线的解析式;(2) C 、D 为第一象限抛物线上的两点,CE ⊥x 轴于E ,DF ⊥x 轴于F ,直线BC 、BD 交y 轴于M 、N .求证:ME ⊥NF ;(3)将抛物线向左平移3个单位,新的抛物线交y 轴于Q ,直线y =kx (k <0)交新抛物线于G 、H .当⊥GQH =90°时,求k 的值.17.如图1,已知直线6y kx =+,交x 轴于点A ,交y 轴于点B ,且:4:3OA OB =.(1)求直线AB 的解析式;(2)如图2,动点C 以1个单位/秒的速度从点O 出发沿OA 向A 运动,动点D 以2个单位/秒的速度从点A 出发沿AB 向B 运动,当一个点停止运动时,另一个点也随之停止运动,两点同时出发,设运动的时间为t ,ACD ∆的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,当S 取最大值时,将ACD ∆向右平移得到EFG ∆,FG 交AB 于点H ,若EFG ∆的面积被直线AB 分成1:2两部分,求线段HF 的长度.18.某矩形工艺品长60cm ,宽40cm ,中间镶有宽度相同的三条丝绸花边.。
2024年河北省中考数学一轮复习课件:二次函数的应用
解得
∴ 函数的表达式为 y=5x-200(80<x≤90),∴y 与 x 的函数关系式为
(2)设获得的利润为 w 元, ①当 50≤x≤80 时,w=(x-50)(-10x+1 000)=-10(x-75)2+6 250, ∵-10<0, ∴ 当 x=75 时,w 有最大值,最大值为6 250 元; ②当 80<x≤90 时, w=(x-50)(5x-200)-400(x-80)=5(x-85)2+5875, ∵5>0,∴ 当 x=90 时,w 有最大值,最大值为 6 000 元, 综上,当售价为75元/件时,该商家获得的利润最大,最大利润为6250元.
练习二 [2023·武汉]某课外科技活动小组研制了一种航模飞机,通过实验 ,收集了飞机相对于出发点的飞行水平距离 x(单位:m)、飞行高度 y(单位 :m)随飞行时间 t(单位:s)变化的数据如下表.
探究发现 x 与 t,y 与 t 之间的数量关系可以用我们已学过的函数来描述 .直接写出 x 关于 t 的函数解析式和 y 关于 t 的函数解析式(不要求写出自 变量的取值范围);
问题解决 如图,活动小组在水平安全线上 A 处设置一个高度可以变化的发 射平台试飞该航模飞机.根据上面的探究发现解决下列问题.
(1)若发射平台相对于安全线的高度为 0 m,求飞机落到安全线时飞行的水 平距离;
(2)在安全线上设置回收区域 MN,AM=125 m,MN=5 m.若飞机落到 MN 内( 不包括端点 M,N),求发射平台相对于安全线的高度的变化范围.
∴4a2p=4a,∵a≠0,∴p= , ∴ 放大 a 倍后,抛物线 L1 的解析式为y= (x-a)2+3a, 把 K(10,5)坐标代入,得 5= (10-a)2+3a,方程无实数解, ∴K 不可能在放大 a 倍后的抛物线 L1 上; 同理设放大 a 倍后,抛物线 L2 的解析式为 y=q(x-6a)2-2a, 将(3a,7a)坐标代入,得 7a=9a2q-2a, ∴9a2q=9a,∵a≠0,∴q= , ∴ 放大 a 倍后,抛物线 L2 的解析式为 y= (x-6a)2-2a, 把 K(10,5)坐标代入,得 5= (10-6a)2-2a,解得 a= 或a= , 综上所述,a 的值为 或 .
2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)
2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。
2025中考复习数学考点突破课件:第三章 函数 考点16 二次函数的实际应用
射平台试飞该航模飞机.根据上面的探究发现解决下列问题.
(1)若发射平台相对于安全线的高度为0 m,求飞机落到安全线时飞行的水平
距离;
问题解决
2
(1)依题意,得- t +12 t =0,解得
t1=0(舍去), t2=24,当 t =24时, x =5×24=
120.
答:飞机落到安全线时飞行的水平距离为120 m.
∵-3<0,∴当 x =20时, S 取得最大值1 200,
∴120-3 x =120-3×20=60,
∴花园面积最大时,垂直于墙的边长为20米,平行于墙的边长为60
米,花园面积最大为1 200平方米.
1
2
3
4
5
回到目录
考点16
二次函数的实际应用
(2)在花园面积最大的条件下, A , B 两块内分别种植牡丹和芍药,每平方米
1
2
3
4
5
回到目录
考点16
二次函数的实际应用
要在拱门设置高为3 m的矩形框架,其面积越大越好(框架的粗细忽略不
计).方案一中,矩形框架 ABCD 的面积记为 S1,点 A , D 在抛物线上,边 BC
在 ON 上;方案二中,矩形框架A'B'C'D'的面积记为 S2,点A',D'在抛物线
上,边B'C'在ON'上.
两个方案中的拱门图形放入平面直角坐标系中,如图所示:
方案一,抛物线型拱门的跨度 ON =12 m,拱高 PE =4 m.其中,点 N 在 x 轴
上, PE ⊥ ON , OE = EN .
方案二,抛物线型拱门的跨度ON'=8 m,拱高P'E'=6 m.其中,点N'在 x 轴
中考数学专题复习:二次函数图象综合应用
图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: 开口方向 00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小. 对称轴 2bx a=-(或x h =). 顶点坐标(2ba-,24)4ac b a -或(h ,)k . 单调性当0a >时,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大(如图1);知识互联网思路导航题型一:二次函数图象与其解析式系数的关系二次函数图象综合应用当0a <时,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小(如图2)与坐标轴的交点① 与y 轴的交点:()0c ,; ② 与x 轴的交点:()()1200x x ,,,,其中12x x ,是方程()200ax bx c a ++=≠的两根.图象与x 轴的交点个数① 当240b ac ∆=->时,图象与x 轴有两个交点. ② 当0∆=时,图象与x 轴只有一个交点. ③ 当0∆<时,图象与x 轴没有交点.Ⅰ当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; Ⅱ当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.【引例】 二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】 由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<; 1x =-所对应的函数值大于0,所以0a b c -+>【例1】 ⑴ 二次函数2y ax bx c =++的图象如图所示,则点()a c ,在( )A .第一象限B .第二象限C .第三象限D .第四象限⑵ 二次函数c bx ax y ++=2的图象如图所示,则一次函数b ax y +=与反比例函数xcy =在同一平面直角坐标系中的大致图象为( ) 例题精讲典题精练A .B .C .D .⑶ 一次函数()0≠+=a b ax y 、二次函数bx ax y +=2和反比例函数()0≠=k xky 在同一直角坐标系中的图象如图所示,A 点的坐标为()02,-,则下列结论中,正确的是( )A .k a b +=2B .k b a +=C .0>>b aD .0>>k a【解析】 ⑴ B. ⑵ B .⑶D.【例2】 ⑴ 如图,抛物线2y ax bx c =++,OA OC =,下列关系中正确的是()A .1ac b +=B .1ab c +=C .1bc a +=D .1ac b+= )⑵ 如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为 .【解析】 ⑴ A .提示:把()0c -,代入2y ax bx c =++即可.⑵ 12-.提示:先把B ()0c ,代入2y ax bx c =++,得1ac b =--,再把()0c ,代入()()2y a x c x c =+-即可.【例3】 ⑴ 函数2y ax bx c =++与x y =的图象如图所示,有以下结论:①ac b 42->0;②01=++c b ;③063=++c b ;④当1<x<3时,()012<c x b x +-+.其中正确的为.⑵ 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8 个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b += ;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有( )A .2个B .3个C .4个D .5个【解析】 ⑴ ③④⑵ C .对称轴在y 轴的右边得0ab <(由开口向下得0a <,故0b >),抛物线与y 轴交于正半轴得0c >,∴0abc <,①不正确;当1x =-时,函数值为0a b c -+<,②不正确; 当2x =时,函数值420a b c ++>,③正确;其实0x =和2x =到对称轴1x =的距离相等,函数值相等得42a b c c ++=,∴2b a =-代入0a b c -+<,32bc <,即23c b <,④正确;当1x =,∵1m ≠,2max y a b c am bm c =++>++,可知⑤正确;由对称轴12ba-=得20a b +=,故⑥正确;抛物线与x 轴有两个交点,故240b ac ->,故⑦不正确;0a b c ++>,0a b c -+<,故()220a c b +-<,故⑧不正确.对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴ 若自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最值. ⑵ 若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =. ⑶ 若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =. ⑷ 若m x n ≤≤,且2b m n a -≤≤,22b b n m a a +>--,如图④,当2bx a=-,min y y =; 当x n =,max y y =.【引例】 ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值;b 思路导航例题精讲题型二:二次函数的最值⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值; ⑸ 若x 为整数,求函数221y x x =-+的最小值.【解析】 ⑴ 套用求最值公式(建议教师讲配方法):当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=. ⑵ 由图象可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.⑶ 由图象可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=;当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.⑷ 由函数图象开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1.⑸ ∵112224b x a -=-=-=⨯,当0x =时,y 取最小值为1.【点评】 由此题我们可以得到:求二次函数2(0)y ax bx c a =++≠在给定区域内的最值,得看抛物线顶点横坐标2bx a=-是否在给定区域内.若在,则在顶点处取到一个最值,若不在,则在端点处取得最大值和最小值(其实求出端点值和顶点值,这三个值中最大的为最大值,最小的为最小值).【例4】 ⑴ 已知m 、n 、k 为非负实数,且121=+=+-n k k m ,则代数式6822+-k k 的最小值 为 .⑵ 已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 .⑶当12x ≤时,二次函数223y x x =--的最小值为( ) A .4- B .154- C .12- D .12【解析】 ⑴∵m 、n 、k 为非负实数,且121=+=+-n k k m ,∴m 、n 、k 最小为0,当n =0时,k 最大为:21;∴210≤≤k ,故最小值为2.5.⑵ 4.提示:233y x x =--+,令()222314q x y x x x =+=--+=-++,当1x =-,q的最大值为4.本题属于x 为全体实数,求二次函数的最值,配方法要熟练掌握.⑶ B .提示:二次函数的对称轴为1122b x a =-=>,且抛物线的开口向上,故12x =时,y 的最小值为154-.【例5】 如图,抛物线211y ax ax =--+经过点1928P ⎛⎫- ⎪⎝⎭,,且与抛物线221y ax ax =--相交于典题精练A B ,两点.⑴ 求a 值; ⑵ 设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;⑶ 设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点()0Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C D ,两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?【解析】 ⑴ ∵点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,∴1191428a a -++=,解得12a =.⑵ 由⑴知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =.∵点M 在点N 的左边,∴2M x =-,1N x =. 当2111022x x --=时,解得31x =-,42x =. ∵点E 在点F 的左边,∴1E x =-,2F x =.∵0M F x x +=,0N E x x +=,∴点M 与点F 关于y 轴对称,点N 与点E 关于y 轴对称. ⑶ ∵102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.又21221112211122y x x y x x ⎧=--+⎪⎪⎨⎪=--⎪⎩,消y可解得12x x ==,则当0x =时,CD 的最大值为2.【例6】 ⑴ 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围⑵ 二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.【解析】 ⑴ 根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01), 则有0a b c ++=,1c =,得(1)b a =-+,∵0a <,据图象得对称轴在y 轴左侧,∴0b <∴()10a -+<,∴1a >-于是有10a -<<. ⑵ 由图象可知0a >.又顶点在y 轴的右侧,在x 轴的下方,则:02ba->,2404ac b a -<,∴0b <. 又∵当0x =时,1y c =-=当0y =时,1x =-,∴0a b c -+= ∴10a b =+> ∴10b -<<.∴202a b c a b c b b ++=-++=+ ∴220b -<<,即20a b c -<++<.精讲:数形结合思想在二次函数中的应用探究【探究对象】数形结合思想在二次函数中的应用 【探究过程】【探究1】数形结合思想在含参二次函数中求参数的取值范围的应用;二次函数的图像信息:⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴的位置判断a 与b 之间的关系. ⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性.⑸ 根据抛物线所经过的特殊点的坐标,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a-的大小.例. 2y ax bx c =++的图象如图所示.设|||||2||2|M a b c a b c a b a b =++--+++--, 则( )A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0分析:依题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>,故()()(2)(2)2()0M a b c a b c a b a b a b c =-++--+++--=--+<,故选C .☆【探究2】数形结合思想在求解二次函数的区间最值中的应用;(区间最值问题为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲) 区间最值分三种类型: “轴定区间定”、“轴动区间定”、“轴定区间动”;1、轴定区间定:2、轴动区间定:例.求2()22f x x ax =-+在[24],上的最大值和最小值. 分析: 先求最小值.因为()f x 的对称轴是x a =,可分以下三种情况:⑴ 当2a <时,()f x 在[24],上为增函数,所以min ()(2)64f x f a ==-; ⑵ 当24a ≤≤时,()f a 为最小值,2min ()2f x a =-;⑶ 当4a >时,()f x 在[24],上为减函数,所以min ()(4)188f x f a ==-.综上所述:2min 64, (2)()2, (24)188, (4)a a f x a a a a -<⎧⎪=-⎨⎪->⎩≤≤最大值为(2)f 与(4)f 中较大者:(2)(4)(64)(188)124f f a a a -=---=-+,(1)当3a ≥时,(2)(4)f f ≥,则max ()(2)64f x f a ==-; (2)当3a <时,(2)(4)f f <,则max ()(4)188f x f a ==-.故max 64, (3)()88, (3)a a f x a a -⎧=⎨-<⎩≥ 点评:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x a = 与区间[24],的位置关系,分三种情况讨论;最大值在端点取得时,只须比较(2)f 与 (4)f 的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两 种情况. 3、轴定区间动:例.若函数2()22f x x x =-+当1t x t +≤≤时的最小值为()g t ,求函数()g t 当[32]t ∈-,时的最值. 分析:2()(1)1f x x =-+,按直线1x =与区间[1]t t +,的不同位置关系分类讨论:若1t >,则2min ()()(1)1f x f t t ==-+;若11t t +≤≤,即01t ≤≤,则min ()(1)1f x f ==; 若11t +<,即0t <,则2min ()(1)1f x f t t =+=+.∴22(1)1(1)()1(0)1(0)t t g t t t t ⎧-+>⎪=⎨⎪+<⎩≤≤1 函数()g t 在(0)-∞,内是减函数,在[01],内是常值函数,在(1)+∞,内是增函数,又(3)(2)g g ->,故在区间[32]-,内,min ()1g t =(当01t ≤≤时取得),max ()(3)10g t g =-=.小结:(i )解此类问题时,心中要有图象;(ii )含参数问题有两种:一种是“轴变区间定”,另一种是“轴定区间变”.讨论时,要紧紧抓住对称轴与所给区间的相对位置关系,这是进行正确划分的关键.☆【探究3】数形结合思想在求解二次函数的区间根中的应用;(区间根问题同样为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲)二次方程的根其实质就是其相应二次函数的图像与x 轴交点的横坐标.因此, 可以借助于二次函数及其图像,利用数形结合的方法来研究二次方程的实根分布问题.设二次方程()002≠=++a c bx ax 的两个实根1x 、2x ()21x x <,ac b 42-=∆,方程对应的二次函数为()()02≠++=a c bx ax x f .1.当方程有一根大于m ,另一根小于m 时,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ;2.当方程两根均大于m 时,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, m ab2-,()0>m af ; 3.当方程两根均在区间()n m ,内,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, n abm <<2-,()0>m af ,()0>n af ; 4.当两根中仅有一根在区间()n m ,内,对应函数()x f 的图像有下列四种情形:方程系数所满足的充要条件: ()()0<n f m f ⋅;5.当两根在区间[]n m ,之外时:对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ,()0<n af ;6.当两根分别在区间()n m ,、()t s ,内,且s n ≤,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0>m af ,()0<n af ,()0<s af , ()0>t af .小结: 由函数图像与x 轴交点的位置写出相应的充要条件,一般考虑三个方面:①判别式ac b 42-=∆的符号;②对称轴abx 2-=的位置分布;③二次函数在实根分布界点处 函数值的符号.例.若方程01222=+-+m mx x 的两个根均大于2,求实数m 的取值范围. 分析:令()1222+-+=m mx x x f ,如图得充要条件:()()⎪⎩⎪⎨⎧-+-+=≥+-⋅-=∆20124220124422>>m m m f m m ,解得4316-≤-m .训练1. 已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A B C D【解析】 B .由a b c >>,且0a b c ++=,可得0a >, 0c <,且过()10,点,由a b c >>,且a b c ++=0,利用不等式性质,可以进一步推出下列不等关系:a b a b >>--,∴112ba -<<, ∴11224b a -<-<.另一方法:∵a b >,∴330a b ->,330a b a b c -+++>,从而得到420a b c -+>.训练2.已知二次函数()2211y kx k x =+--与x 轴交点的横坐标为1x 、2x ()12x x <,则对于下列结论:⑴ 当2x =-时,1y =;⑵ 当2x x >时,0y >;⑶ 方程()22110kx k x +--=有两个不相等的实数根1x 、2x ;⑷11x <-,21x >-;⑸21x x -=确的结论是______.(只需填写序号)【解析】 ⑴⑶⑷.当2x =-时,代入得1y =,故⑴正确;因为k 的符号不确定,故开口不确定,因此无法确定当2x x >时,0y >,故⑵不正确;联立方程()22110y kx k x y ⎧=+--⎪⎨=⎪⎩可得()22110kx k x +--=,抛物线与x 轴有两个交点,即方程()22110kx k x +--=有两个不相等的实数根.当1x =-时,y k =-,若0k >,0y k =-<,若0k <,0y k =->,故⑷正确.21x x -=.训练3. 如图所示,二次函数2(2)5y x a x a =--+-的图象交x 轴于A 和B ,交y 轴于C ,当线段AB 最短时,求线段OC 的长.【解析】 设1(A x ,0),2(B x ,0),思维拓展训练(选讲)则1x ,2x 是方程2(2)50x a x a --+-=的两根,则12AB x x =-=== 当4a =时,AB 取最小值,即最短,此时,抛物线为221y x x =--, 可求得C 的纵坐标为1-,即线段OC 的长是1.训练4. 小明为了通过描点法作出函数21y x x =-+的图象,先取自变量x 的7个值满足:213276x x x x x x d -=-==-= ,再分别算出对应的y 值,列出表1:表1:x1x 2x3x4x 5x 6x7xy1 3 7 13 21 31 43记121m y y =-,232m y y =-,343m y y =-,454m y y =-,…; 121s m m =-,232s m m =-,343s m m =-,… ⑴ 判断1s 、2s 、3s 之间关系;⑵ 若将函数“21y x x =-+”改为“2(0)y ax bx c a =++≠”,列出表2:表2:x 1x 2x 3x 4x 5x 6x 7x y1y 2y 3y 4y 5y 6y 7y其他条件不变,判断1s 、2s 、3s 之间关系,并说明理由;⑶ 小明为了通过描点法作出函数2(0)y ax bx c a =++≠的图象,列出表3: 表3: x 1x 2x 3x4x 5x 6x7x y 10 50 110 190 290 420 550由于小明的粗心,表3中有一个y 值算错了,请指出算错的y 值(直接写答案).【解析】 ⑴ 123s s s ==;⑵ 123s s s ==.证明:()()222121111112m y y a x d b x d c ax bx c adx ad bd ⎡⎤⎡⎤=-=++++-++=++⎣⎦⎣⎦()222322122m y y adx ad bd ad x d ad bd =-=++=+++()2234331222m y y adx ad bd ad x d ad bd =-=++=+++()2245441223m y y adx ad bd ad x d ad bd =-=++=+++()22212111222s m m ad x d ad bd adx ad bd ad ⎡⎤⎡⎤=-=+++-++=⎣⎦⎣⎦ 同理22322s m m ad =-=,23432s m m ad =-=. ∴123s s s ==.⑶ 表中的420改为410.题型一 二次函数图象与其解析式系数的关系 巩固练习【练习1】 ⑴ 函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的( )⑵ 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )【解析】 ⑴ A .⑵ D .【练习2】 如图所示,二次函数2y ax bx c =++的图象开口向上,图象经点()12-,和()10,且与y 轴交于负半轴.⑴ 下列四个结论:①0a >;②0b >;③0c >;④0a b c ++=, 其中正确的结论的序号是 . ⑵给出下列四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确的结论的序号是 .【解析】 ⑴图象开口向上得0a >;对称轴02ba->可得0b <;当0x =时,0y <,即0c <;由1x =时,0y =,即0a b c ++=.故①④.⑵由⑴可知0abc >;对称轴12ba-<,∴20a b +>;∵点()12-,和()10,在抛物线上,代入解析式得20a b c a b c -+=⎧⎨++=⎩两式相加得1a c +=,得1a c =-,∵0c <,∴11c ->,即1a >.A BCD复习巩固故②③④.【练习3】 如图,表示抛物线2y ax bx c =++的一部分图象,它与x轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是( )A .20b -<<B .10b -<<C .102b -<< D .01b <<【解析】 B .【练习4】 二次函数()20y ax bx c a =++≠的图象大致如图所示,⑴判别a ,b ,c 和24b ac -的符号,并说明理由; ⑵如果OA OC =,求证:10ac b ++=【解析】 ⑴ 解:因为抛物线开口向上,0a >.因为抛物线与y 轴交于负半轴,0c <.又因为抛物线对称轴在y 轴的右侧,02ba->,即a ,b 异号,由0a >,得0b <. 因为抛物线与x 轴有两个交点,所以方程20ax bx c ++=有两个不相等的实根,所以其判别式240b ac ->.⑵ 证明:由于C 点坐标为()0c ,,而OA OC =,所以A 点坐标为()0c ,,把()0A c ,代入2y ax bx c =++,得20ac bc c =++. 因为0c ≠,所以10ac b ++=.题型二 二次函数的最值 巩固练习【练习5】 已知:关于x 的一元二次方程22(2)0x n m x m mn +-+-=①.⑴ 求证:方程①有两个实数根;⑵ 若10m n --=,求证方程①有一个实数根为1;⑶ 在⑵的条件下,设方程①的另一个根为a . 当2x =时,关于m 的函数1y nx am =+与()2222y x a n m x m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y 、2y 的图象分别交于点C 、D . 当l 沿AB 由点A 平移到点B 时,求CD 的最大值.【解析】 ⑴ 证明:()()22224n m m mn n ∆=---=.∵20n ≥, ∴0∆≥. ∴方程①有两个实数根.⑵ 解:由10m n --=,得1m n -=当x =1时,等号左边212n m m mn =+-+-()121210n m m m n n m m n m =+-+-=+-+=+-=. 等号右边=0. ∴左边=右边.∴ 1x =是方程①的一个实数根.⑶ 解:由求根公式,得22m n nx -±=.x =m 或x m n =-∵ 1m n -=, ∴ a m =.当2x =时,222122(1)22y n m m m m m =+=-+=+-,22222()()42(1)24y m n m m m m n m m m m m =+--+-=+--+=--+如图,当l 沿AB 由点A 平移到点B 时,22211273363(24CD y y m m m =-=--+=-++由12y y =,得222224m m m m +-=--+解得m =-2或m =1.∴ m A =-2,m B =1.∵-2<12-<1,∴当m =12-时,CD 取得最大值274.【测试1】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断:24a b c a b c a b c b ac ++-+-、、、、、的符号.【解析】由图像可知0a >,102ba-<<,2404ac b a -<,2000a b c ⋅+⋅+<,0a b c -+=,0a b c ++>,于是20000040a b c a b c a b c b ac >><++>-+=->,,,,,.【测试2】 若01x ≤≤,求221y x x =-+的最大值、最小值;【解析】由图像可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =. ∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.课后测。
中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)
中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题。
解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量的取值范围。
2.几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论。
3.构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题。
练习题1、(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:解法一:如图,过点B作BH⊥AC于H,则BH≤AB=4,∵S△ABC=•AC•BH,∴当BH=4时,△ABC的面积最大为×4×4=8;解法二:过点A作AD⊥BC于D,设CD=x,AD=y,则x2+y2=16,∴S=•BC•AD=•2x•y=xy,∵(x﹣y)2=x2+y2﹣2xy≥0,∴16﹣2xy≥0,∴xy≤8,∴当且仅当x=y=2时,菜园最大面积=8米2;方案3:半圆的半径=米,∴此时菜园最大面积==米2>8米2;故选:C . 2、(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m 高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm ,与跳台底部所在水平面的竖直高度为ym ,y 与x 的函数关系式为y =2213212++−x x (0≤x ≤20.5),当她与跳台边缘的水平距离为 m 时,竖直高度达到最大值.【分析】把抛物线解析式化为顶点式,由函数的性质求解即可.【解答】解:y =x 2+x +2=﹣(x ﹣8)2+4,∵﹣<0, ∴当x =8时,y 有最大值,最大值为4,∴当她与跳台边缘的水平距离为8m 时,竖直高度达到最大值.故答案为:8.3、(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y =﹣121x 2+32x +35,则铅球推出的水平距离OA 的长是 m .【分析】根据题目中的函数解析式和图象可知,OA 的长就是抛物线与x 轴正半轴的交点的横坐标的值,然后令y =0求出相应的x 的值,即可得到OA 的长.【解答】解:∵y =﹣x 2+x +,∴当y=0时,0=﹣x2+x+,解得x1=﹣2,x2=10,∴OA=10m,故答案为:10.4、(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为s时,小球达到最高点.【分析】把二次函数解析式化为顶点式,即可得出结论.【解答】解:h=﹣5t2+20t=﹣5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.5、(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.6、(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可得出答案.【解答】解:以水面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把A点坐标(﹣3,0)代入抛物线解析式得,9a+2=0,解得:a=﹣,所以抛物线解析式为y=﹣x2+2,当x=4时,y=﹣×16+2=﹣,∴水面下降米,故答案为:.7、(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.【分析】设与墙垂直的一边长为xm,然后根据矩形面积列出函数关系式,从而利用二次函数的性质分析其最值.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(16﹣2x)m,∴矩形围栏的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,矩形有最大面积为32m2,故答案为:32.8、(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.9、(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05m,则他距篮筐中心的水平距离OH是m.【分析】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【解答】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.10、(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.。
中考数学总复习《二次函数的实际应用》专题训练(附答案)
(1)求二次函数的表达式;
(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少万元?
9.张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成,围成的花圃是如图所示的矩形 .
(2)求出篮球在该运动员出手时的高度.
13.“活力海洋之都,精彩宜人之城”,青岛获评2023年中国十大旅游目的地必去城市.为宣传青岛城市文化,某景区研发出一款文创纪念品,投入景区内进行销售.已知该文创纪念品每件的成本为20元,销售一段时间发现,每天的销售量y(件)与销售单价x(元/件)之间的关系如图所示,图象是直线的一部分.
(1)求该拋物线的表达式;
(2)如图 ,为了保证蔬菜大棚的通风性,该大棚要安装两个大小一样的正方形孔的排气装置 , ( ,G,M,N在线段 上,L,R在抛物线上),若要保证两个正方形装置的间距 ,求正方形排气装置的边长 的长.(结果保留根号)
6.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨x( ,且x为整数)元.
(1)商城举行了“感恩老客户”活动,对于老客户,商城连续两次降价,每次降价的百分率相同,最后以每个16.2元的价格售出,求商城每次降价的百分率;
(2)市场调研表明:当每个售价20元时,平均每天能够售出40个,当每个售价每降1元时,平均每天就能多售出10个,在保证每个商品的售价不低于进价的前提下,商城要想获得最大利润,每个商品的定价应为多少元?最大利润是多少?
中考数学专题复习二次函数的应用题与最值问题
二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。
中考数学考点16二次函数实际应用总复习(解析版)
二次函数实际应用【命题趋势】在中考中.二次函数的实际应用是中考必考考点.常以解答题形式考查.往往会结合方程(组)与一次函数考查。
【中考考查重点】一、二次函数的实际应用-运动类型二、二次函数的实际应用-经济类型三、二次函数的实际应用-面积类型四、二次函数的实际应用-拱桥类型考点一:运动类型考向1 落地模型1.(2021秋•松江区期末)一位运动员投掷铅球.如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+.那么铅球运动过程中最高点离地面的距离为米.【答案】3【解答】解:由题意可得:y=﹣=﹣(x2﹣8x)+=﹣(x﹣4)2+3.故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.考向2 最值模型2.(2021秋•信阳期中)烟花厂为建党成立100周年特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+8t.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣=﹣=6.∴从点火升空到引爆需要的时间为6s.故选:D.3.(2021秋•越秀区期末)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣1.5t2.则飞机停下前最后10秒滑行的距离是米.【答案】15【解答】解:∵s=60t﹣1.5t2=﹣(t﹣20)2+600.﹣<0.抛物线开口向下.∴当t=20时.s有最大值.此时s=600.∴飞机从落地到停下来共需20秒.飞机前10秒滑行的距离为:s1=60×10﹣1.5×102=585(米).∴飞机停下前最后10秒滑行的距离为:600﹣585=15(米).故答案为:15.考点二:经济类型4.(2021秋•克东县期末)某水果商场经销一种高档水果.原价每千克50元.连续两次降价后每千克32元.若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元.每天可售出500千克.经市场调查发现.在进货价不变的情况下商场决定采取适当的涨价措施.若每千克涨价1元.日销售量将减少20千克.现该商场要保证每天盈利6000元.且要尽快减少库存.那么每千克应涨价多少元?(3)若使商场每天的盈利达到最大值.则应涨价多少元?此时每天的最大盈利是多少?【答案】(1)20% (2)涨价5元(3)涨价7.5元.6125元【解答】解:(1)设每次下降的百分率为a.根据题意.得:50(1﹣a)2=32.解得:a=1.8(舍)或a=0.2.答:每次下降的百分率为20%;(2)设每千克应涨价x元.由题意.得:(10+x)(500﹣20x)=6000.整理.得x2﹣15x+50=0.解得:x1=5.x2=10.因为要尽快减少库存.所以x=5符合题意.答:该商场要保证每天盈利6000元.那么每千克应涨价5元;(3)设商场每天的盈利为y元.由(2)可知:y=(10+x)(500﹣20x)=﹣20x2+300x+5000.∵﹣20<0.∴当x=﹣=7.5时.y取最大值.∴当x=7.5时.y最大值=(10+7.5)×(500﹣20×7.5)=6125(元).答:应涨价7.5元.每天的盈利达到最大值.为6125元.5.(2021秋•郧西县期末)根据对某市相关的市场物价调研.预计进入夏季后的某一段时间.某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示.乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1.y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨.设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大.最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在什么范围内合适?【答案】(1)y1=0.6x .y2=﹣0.2x2+2.2x(2)2≤t≤6【解答】解:(1)由题意得:5k=3.解得k=0.6.∴y1=0.6x;由.解得:.∴y2=﹣0.2x2+2.2x;(2)①W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.当t=4时.W有最大值9.2.答:甲种蔬菜进货量为6吨.乙种蔬菜进货量为4吨时.获得的销售利润之和最大.最大利润是9200元;②当W=8.4=﹣0.2(t﹣4)2+9.2.∴t1=2.t2=6.∵a=﹣2<0.∴当2≤t≤6时.W≥8.4.答:为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在2≤t≤6范围内合适.考点三:面积类型6.(2021秋•西湖区校级期中)在校园嘉年华中.九年级同学将对一块长20m.宽10m的场地进行布置.设计方案如图所示.阴影区域为绿化区(四块全等的矩形).空白区域为活动区.且4个出口宽度相同.其宽度不小于4m.不大于8m.设出口长均为x(m).活动区面积为y(m2).(1)求y关于x的函数表达式;(2)当x取多少时.活动区面积最大?最大面积是多少?(3)若活动区布置成本为10元/m2.绿化区布置成本为8元/m2.布置场地的预算不超过1850元.当x为整数时.请求出符合预算且使活动区面积最大的x值及此时的布置成本.【答案】(1)y=﹣x2+30x(4≤x≤8)(2)x取8m时.最大面积是176m2(3)x=5时.活动区面积最大.此时的布置成本为1850元【解答】解:(1)根据题意得:y=20×10﹣4××=200﹣(20﹣x)(10﹣x)=200﹣200+30x﹣x2=﹣x2+30x.∴y与x的函数关系式为y=﹣x2+30x(4≤x≤8);(2)由(1)知:y=﹣x2+30x=﹣(x﹣15)2+225.∵﹣1<0.∵当x<15时.y随x的增大而增大.∵4≤x≤8.∴当x=8时.y有最大值.最大值为176.∴当x取8m时.活动区面积最大.最大面积是176m2;(3)设布置场地所用费用为w元.则w=10(﹣x2+30x)+8[200﹣(﹣x2+30x)]=﹣10x2+300x+1600+8x2﹣240x=﹣2x2+60x+1600.令w=1850.﹣2x2+60x+1600=1850.解得:x=25或x=5.∵4≤x≤8.∴4≤x≤5.∵活动区域面积为y=﹣x2+30x.﹣1<0.对称轴为直线x=15.∴当x=5时.活动区面积最大.此时的布置成本为1850元.考点三:拱桥类型7.(2021秋•建华区期末)如图(1)是一个横断面为抛物线形状的拱桥.水面在l时.拱顶(拱桥洞的最高点)离水面3米.水面宽4米.如果按图(2)建立平面直角坐标系.那么抛物线的解析式是.【答案】【解答】解:设出抛物线方程y=ax2(a≠0).由图象可知该图象经过(﹣2.﹣3)点.故﹣3=4a.a=﹣.故y=﹣x2.故答案为.8.(2021秋•绿园区期末)一座石拱桥的桥拱是近似的抛物线形.建立如图所示的平面直角坐标系.其函数关系为.当水面的宽度AB为16米时.水面离桥拱顶的高度OC为m.【答案】4【解答】解:∵水面的宽度AB为16米∴B的横坐标为8.把x=8代入y=﹣x2.得y=﹣4.∴B(8.﹣4).∴OC=4m.水面离桥拱顶的高度OC为4m.故答案为:4.9.(2021秋•营口期末)如图①.桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).【答案】(1)y=﹣x2+2x(0≤x≤8)(2)不会碰到头【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵小船距O点0.4m.小船宽1.2m.工人直立在小船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将=1代入y=﹣x2+2x.解得:y==1.75∵1.75m>1.68m.∴此时工人不会碰到头.1.(2021秋•房山区期末)从地面竖直向上抛出一小球.小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).小球运动的时间是s时.小球最高;小球运动中的最大高度是m.【答案】3.45.【解答】解:h=30t﹣5t2=﹣5(t﹣3)2+45.∵﹣5<0.0≤t≤6.∴当t=3时.h有最大值.最大值为45.故答案为:3.45.2.(2021秋•龙凤区期末)飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=20t﹣0.5t2.飞机着陆后滑行m才能停下来.【答案】200【解答】解:s=20t﹣0.5t2=﹣0.5(t﹣20)2+200当t=20时.s有最大值为200.即飞机着陆后滑行200m才能停下来.故答案为200.3.(2021秋•黔西南州期末)中国贵州省省内的射电望远镜(F AST)是目前世界上口径最大.精度最高的望远镜.根据有关资料显示.该望远镜的轴截面呈抛物线状.口径AB 为500米.最低点P到口径面AB的距离是100米.若按如图(2)所示建立平面直角坐标系.则抛物线的解析式是.【答案】y=x2﹣100【解答】解:由题意可得:A(﹣250.0).P(0.﹣100).设抛物线解析式为:y=ax2﹣100.则0=62500a﹣100.解得:a=.故抛物线解析式为:y=x2﹣100.故答案为:y=x2﹣100.4.(2021秋•和平区期末)如图.小明父亲想用长为100m的栅栏.再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m.设矩形ABCD的边AB=xm.面积为Sm2.(1)请直接写出S与x之间的函数表达式为.并直接写出x的取值范围是;(2)求当x为多少m时.面积S为1050m2;(3)当AB.BC分别为多少米时.羊圈的面积最大?最大面积是多少?【答案】(1)S=﹣2x2+100x.30≤x<50 (2)x为35m时.面积S为1050m2(3)AB=30m.BC=40m时.面积S有最大值为1200m2【解答】解:(1)∵AB=CD=xm.则BC=(100﹣2x)m.∴S=x(100﹣2x)=﹣2x2+100x.∵0<100﹣2x≤40.∴30≤x<50.∴S与x之间的函数表达式为S=﹣2x2+100x.自变量x的取值范围是30≤x<50.故答案安为:S=﹣2x2+100x.30≤x<50;(2)令S=1050.则﹣2x2+100x=1050.解得:x1=15.x2=35.∵30≤x<50.∴x=35.∴当x为35m时.面积S为1050m2;(3)∵S=﹣2(x2﹣50x+625﹣625)=﹣2(x﹣25)2+1250.∵﹣2<0.∴当x>25时.S随着x的增大而减小.∵30≤x<50.∴当x=30时.S有最大值为1200.∴当AB=30m.BC=40m时.面积S有最大值为1200m2.5.(2021秋•龙江县校级期末)某超市销售一种商品.每件成本为50元.销售人员经调查发现.销售单价为100元时.每月的销售量为50件.而销售单价每降低2元.则每月可多售出10件.且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元.并使顾客获得更多的实惠.销售单价应定为多少元?(3)为了每月所获利润最大.该商品销售单价应定为多少元?【答案】(1) y=﹣5x+550 (2)70元(3)80元【解答】解:(1)依题意得:y=50+(100﹣x)××10=﹣5x+550.∴y与x的函数关系式为y=﹣5x+550;(2)依题意得:y(x﹣50)=4000.即(﹣5x+550)(x﹣50)=4000.解得:x1=70.x2=90.∵70<90.∴当该商品每月销售利润为4000.为使顾客获得更多实惠.销售单价应定为70元;(3)设每月总利润为w元.依题意得w=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500.∵﹣5<0.此图象开口向下.∴当x=80时.w有最大值为4500元.∴为了每月所获利润最大.该商品销售单价应定为80元.6.(2021秋•宽城区期末)某商场以每件20元的价格购进一种商品.经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系.其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与x之间的函数关系式.(2)求w与x之间的函数关系式.(3)该商场规定这种商品每件售价不低于进价.又不高于36元.当每件商品的售价定为多少元时.每天销售利润最大?最大利润是多少?【答案】(1)y=﹣2x+120 (2)w=﹣2x2+160x﹣2400(3)售价定为36元时.每天销售利润最大.最大利润是768元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知:.解得.故y与x的函数关系式为y=﹣2x+120;(2)∵y=﹣2x+120.∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400.即w与x之间的函数关系式为w=﹣2x2+160x﹣2400;(3)w=﹣2x2+160x﹣2400=﹣2(x﹣40)2+800.∵﹣2<0.20≤x≤36<40.∴当x=36时.w取得最大值.w最大=﹣2×(36﹣40)2+800=768.答:当每件商品的售价定为36元时.每天销售利润最大.最大利润是768元.1.(2020•长沙)“闻起来臭.吃起来香”的臭豆腐是长沙特色小吃.臭豆腐虽小.但制作流程却比较复杂.其中在进行加工煎炸臭豆腐时.我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下.“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0.a.b.c是常数).如图记录了三次实验的数据.根据上述函数关系和实验数据.可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟【答案】C【解答】解:将图象中的三个点(3.0.8)、(4.0.9)、(5.0.6)代入函数关系P=at2+bt+c 中..解得.所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9.由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=﹣=﹣=3.75.则当t=3.75分钟时.可以得到最佳时间.故选:C.2.(2021•黔西南州)小华酷爱足球运动.一次训练时.他将足球从地面向上踢出.足球距地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系为h=﹣5t2+12t.则足球距地面的最大高度是m.【答案】7.2【解答】解:∵h=﹣5t2+12t.a=﹣5.b=12.c=0.∴足球距地面的最大高度是:=7.2m.故答案为:7.2.3.(2020•日照)如图.某小区有一块靠墙(墙的长度不限)的矩形空地ABCD.为美化环境.用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆.篱笆的厚度不计).(1)若四块矩形花圃的面积相等.求证:AE=3BE;(2)在(1)的条件下.设BC的长度为xm.矩形区域ABCD的面积为ym2.求y与x之间的函数关系式.并写出自变量x的取值范围.【答案】(1)AE=3BE(2)(0<x<)【解答】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等.∴ME=BE.AM=GH.∵四块矩形花圃的面积相等.即S矩形AMND=2S矩形MEFN.∴AM=2ME.∴AE=3BE;(2)∵篱笆总长为100m.∴2AB+GH+3BC=100.即.∴.设BC的长度为xm.矩形区域ABCD的面积为ym2.则.∵.∴BE=10﹣x>0.解得x<.∴(0<x<).4.(2020•呼伦贝尔)某商店销售一种销售成本为每件40元的玩具.若按每件50元销售.一个月可售出500件.销售价每涨1元.月销量就减少10件.设销售价为每件x元(x ≥50).月销量为y件.月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下.使月销售利润达到8000元.销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.【答案】(1)y= ﹣10x2+1400x﹣40000 (2)8元(3)70元时会获得最大利润9000【解答】解:(1)由题意得:y=500﹣10(x﹣50)=1000﹣10x.w=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000;(2)由题意得:﹣10x2+1400x﹣40000=8000.解得:x1=60.x2=80.当x=60时.成本=40×[500﹣10(60﹣50)]=16000>10000不符合要求.舍去.当x=80时.成本=40×[500﹣10(80﹣50)]=8000<10000符合要求.∴销售价应定为每件80元;(3)∵w=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.又∵﹣10<0.当x=70时.w取最大值9000.故销售价定为每件70元时会获得最大利润9000元.5.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①.甲秀楼的桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).(3)如图③.桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0).该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度.平移后的函数图象在8≤x≤9时.y的值随x值的增大而减小.结合函数图象.求m的取值范围.【答案】(1)y=﹣x2+2x(0≤x≤8)(2)工人不会碰到头(3)5≤m≤8【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵打捞船距O点0.4m.打捞船宽1.2m.工人直立在打捞船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将x=1代入y=﹣x2+2x.解得:y==1.75.∵1.75m>1.68m.∴此时工人不会碰到头;(3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.如图所示.新函数图象的对称轴也是直线x=4.此时.当0≤x≤4或x≥8时.y的值随x值的增大而减小.将新函数图象向右平移m个单位长度.可得平移后的函数图象.如图所示.∵平移不改变图形形状和大小.∴平移后函数图象的对称轴是直线x=4+m.∴当m≤x≤4+m或x≥8+m时.y的值随x值的增大而减小.∴当8≤x≤9时.y的值随x值的增大而减小.结合函数图象.得m的取值范围是:①m≤8且4+m≥9.得5≤m≤8.②8+m≤8.得m≤0.由题意知m>0.∴m≤0不符合题意.舍去.综上所述.m的取值范围是5≤m≤8.1.(2021•晋中模拟)在中考体育训练期间.小宇对自己某次实心球训练的录像进行分析.发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=﹣x2+x+.由此可知小宇此次实心球训练的成绩为()A.米B.8米C.10米D.2米【答案】B【解答】解:当y=0时.即y=﹣x2+x+=0.解得:x1=﹣2(舍去).x2=8.所以小宇此次实心球训练的成绩为8米.故选:B.2.(2021•温州模拟)烟花厂为成都春节特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣==6(s).故选:D.3.(2021秋•岳池县期末)赵州桥的桥拱横截面是近似的抛物线形.其示意图如图所示.其解析式为y=﹣x2.当水面离桥拱顶的高度DO为4m时.水面宽度AB为m.【答案】20【解答】解:由题意得.﹣4=﹣x2.解得x=±10.即点A的坐标为(﹣10.﹣4).点B的坐标为(10.﹣4).这时水面宽度AB为20m.故答案为:20.4.(2021秋•朝阳区期末)一名运动员在平地上推铅球.铅球出手时离地面的高度为米.出手后铅球离地面的高度y(米)与水平距离x(米)之间的函数关系式为.当铅球离地面的高度最大时.与出手点水平距离为5米.则该运动员推铅球的成绩为米.【答案】12【解答】解:设铅球出手点为点A.根据题意建立平面直角坐标系.如图:∵当铅球离地面的高度最大时.与出手点水平距离为5米.∴抛物线的对称轴为直线x=5.∴﹣=﹣==5.则b=.又∵抛物线经过(0.).∴c=.∴y=﹣x2+x+.当y=0时.﹣x2+x+=0.整理得:x2﹣10x﹣24=0.解得:x1=﹣2(舍去).x2=12.故答案安为:12.5.(2021•连云港模拟)汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t.汽车从刹车到停下来所用时间是秒.【答案】【解答】解:∵s=﹣3t2+8t.=﹣3(t﹣)2+.∴当t=秒时.s取得最大值.即汽车停下来.故答案为:.6.(2021•金堂县模拟)如图.有长为24m的篱笆.一面利用墙(墙的最大可用长度为11m)围成中间隔有一道篱笆的矩形花圃.并且预留两个各1m的门.设花圃的宽AB为xm.面积为Sm2.(1)请用含x的代数式表示BC并求S与x的函数关系式;(2)若4<x<7.则S的最大值是多少?请说明理由.【答案】(1)S=﹣3x2+26x(5≤x<)(2)55m2【解答】解:(1)由题可知.花圃的宽AB为x米.则BC为(24﹣3x+2)米=(26﹣3x)米.则S=x(26﹣3x)=﹣3x2+26x.∵BC=26﹣3x≤11.3x<24+2.∴5≤x.∴S=﹣3x2+26x(5≤x<);(2))解不等式组.解得:5≤x<7.∵S=﹣3x2+26x=﹣3(x﹣)2+.∵﹣3<0.∴x>时.S随x的增大而减小.∴x=5时.S的最大值=﹣3×52+26×5=55m2.7.(2021•盐城二模)疫情期间.某销售商在网上销售A、B两种型号的电脑“手写板”.其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400600200B型8001200400根据市场行情.该销售商对A型手写板降价销售.同时对B型手写板提高售价.此时发现A型手写板每降低5元就可多卖1个.B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变.设其中A型手写板每天多销售x个.每天获得的总利润为y元.(1)求y与x之间的函数关系式.并直接写出x的取值范围;(2)要使每天的利润不低于212000元.求出x的取值范围;(3)该销售商决定每销售一个B型手写板.就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生.若当30≤x≤40时.每天的最大利润为203400元.求a的值.【答案】(1)y=﹣10x2+800x+200000.(0≤x≤40且x为整数)(2)20≤x≤40 (3)a=35【解答】解:(1)由题意得.y=(600﹣400﹣5x)(200+x)+(1200﹣800+5x)(400﹣x)=﹣10x2+800x+200000.(0≤x≤40且x为整数).即y与x之间的函数关系式是y=﹣10x2+800x+200000.(0≤x≤40且x为整数);(2)∵y=﹣10x2+800x+200000=﹣10(x﹣40)2+216000.∴当y=212000时.﹣10(x﹣40)2+216000=212000.解得:x1=20.x2=60.要使y≥212000.则20≤x≤60.∵0≤x≤40.∴20≤x≤40.即x的取值范围是:20≤x≤40;(3)设捐款后每天的利润为w元.则w=﹣10x2+800x+200000﹣(400﹣x)a=﹣10x2+(800+a)x+200000﹣400a.对称轴为.∵0<a≤100.∴.∵抛物线开口向下.当30≤x≤40时.w随x的增大而增大.∴当x=40时.w最大.∴﹣10×402+40(800+a)+200000﹣400a=203400.解得.a=35.8.(2021•即墨区一模)即墨古城某城门横断面分为两部分.上半部分为抛物线形状.下半部分为正方形(OMNE为正方形).已知城门宽度为4米.最高处离地面6米.如图1所示.现以O点为原点.OM所在的直线为x轴.OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式.并写出其自变量的取值范围;(2)有一辆宽3米.高4.5米的消防车需要通过该城门进入古城.请问该消防车能否正常进入?(3)为营造节日气氛.需要临时搭建一个矩形“装饰门”ABCD.该“装饰门”关于抛物线对称轴对称.如图2所示.其中AB.AD.CD为三根承重钢支架.A、D在抛物线上.B.C 在地面上.已知钢支架每米50元.问搭建这样一个矩形“装饰门”.仅钢支架一项.最多需要花费多少元?【答案】(1)(0≤x≤4)(2)消防车能正常进入(3)650元【解答】解:(1)由题意知.抛物线的顶点为(2.6).∴设抛物线的表达式为y=a(x﹣2)2+6.又∵抛物线经过点E(0.4).∴4=4a+6.∴a=.∴抛物线的表达式为.即(0≤x≤4);(2)由题意知.当消防车走最中间时.进入的可能性最大.即当x=时.=4.875>4.5.∴消防车能正常进入;(3)设B点的横坐标为m.AB+AD+CD的长度为L.由题意知BC=4﹣2m.即AD=4﹣2m.CD=AB=.∴L=2×()+(4﹣2m)=﹣m2+2m+12.∵0≤x≤4.当m==1时.L最大.L最大=﹣12+2×1+12=13.∴费用为13×50=650(元).答:仅钢支架一项.最多需要花费650元.9.(2021•路南区一模)某园林专业户计划投资种植树木及花卉.根据市场调查与预测.图1是种植树木的利润y与投资量x成正比例关系.图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1、l2.求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉.其中投入x(x>0)万元种植花卉.那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上.该园林专业户应怎样投资?【答案】(1)y=x2(x≥0)(2)18万元(3)该园林专业户应投资花卉种植超过4万元【解答】解:(1)设l1:y=kx.∵函数y=kx的图象过(1.2).∴2=k⋅1.k=2.故l1中y与x的函数关系式是y=2x(x≥0).∵该抛物线的顶点是原点.∴设l2:y=ax2.由图2.函数y=ax2的图象过(2.2).∴2=a⋅22.解得:a=.故l2中y与x的函数关系式是:y=x2(x≥0);(2)因为投入x万元(0<x≤10)种植花卉.则投入(10﹣x)万元种植树木..∵a=>0.0<x≤10.∴当x=2时.w的最小值是18.他至少获得18万元的利润.(3)根据题意.当w=20时..解得:x=0(不合题意舍).x=4.∴至少获得20万元利润.则x=4.∵在2≤x≤10的范图内w随x的增大而增大.∴w>20.只需要x>4.所以保证获利在20万元以上.该园林专业户应投资花卉种植超过4万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16讲┃ 归类示例
(3)当球正好过点 (18,0)时,y=a(x- 6)2+h还过点(0, 2)点, 1 2= 36a+ h, a=-54, 代入解析式得: 解得: 0= 144a+ h, h=8, 3 1 2 8 此时二次函数解析式为: y=- (x- 6) + , 54 3 8 此时球若不出边界则 h≥ . 3
图 16- 1
第16讲┃ ቤተ መጻሕፍቲ ባይዱ类示例
[解析] (1)利用h=2.6,将 (0,2)代入解析式求出即可; 1 (2)利用当 x=9时, y=- (x- 6)2+2.6=2.45,当y=0时, 60 1 - (x-6)2+ 2.6= 0,分别得出即可; 60 (3)根据当球正好过点 (18,0)时, y=a(x-6)2+h的图象还过 (0,2)点,以及当球刚能过网,此时函数的图象过点 (9,2.43), y= a(x- 6)2+ h的图象还过点 (0,2)分别得出h的取值范围,即可 得出答案.
建立平面直角坐标系,把代数问题与几何问题进行互相 转化,充分结合三角函数、解直角三角形、相似、全等、圆 等知识解决问题,求二次函数的表达式是解题关键.
第16讲┃ 归类示例
归类示例
► 类型之一 利用二次函数解决抛物线形问题
命题角度: 1. 利用二次函数解决导弹、铅球、喷水池、抛球、跳 水等抛物线形问题; 2. 利用二次函数解决拱桥、护栏等问题.
第16讲┃ 归类示例
解: (1)∵ h= 2.6,球从 O点正上方 2 m的 A处发出, ∴ y= a(x- 6)2+ h过点(0, 2), 1 2 ∴ 2= a(0- 6) + 2.6,解得: a=- , 60 1 故 y与 x的关系式为: y=- (x- 6)2+ 2.6. 60 1 (2)当 x= 9时, y=- (9- 6)2+ 2.6= 2.45> 2.43, 60 所以球能过球网; 1 当 y= 0时,- (x- 6)2+ 2.6= 0, 60 解得 x1= 6+ 2 39> 18, x2= 6- 2 39(舍去). 故球会出界.
答:甲商品的进货单价是 2元,乙商品的进货单价是 3元 .
第16讲┃ 归类示例
(2)设商店每天销售甲、乙两种商品获取的利润为s元,则 m m s= (1- m)500+ 100× + (5-3- m)300+ 100× 0.1 0.1 即 s=- 2000m2+ 2200m+ 1100 =- 2000(m- 0.55)2+ 1705. ∴当 m= 0.55时, s有最大值,最大值为1705. 答:当 m定为0.55时,才能使商店每天销售甲、乙两种商 品获取的利润最大,每天的最大利润是1705元.
第16讲┃ 归类示例
二次函数解决销售问题是我们生活中经常遇到的问 题,这类问题通常是根据实际条件建立二次函数表达式, 然后利用二次函数的最值或自变量在实际问题中的取值 解决利润最大问题.
第16讲┃ 归类示例
► 类型之三
二次函数在几何图形中的应用
命题角度: 1. 二次函数与三角形、圆等几何知识结合往往是涉 及最大面积,最小距离等; 2. 在写函数表达式时,要注意自变量的取值范围.
第16讲┃ 归类示例
[解析] (1)相等关系:甲、乙两种商品的进货单价之和 是5元;按零售价买甲商品 3件和乙商品2件,共付了 19元. (2)利润=(售价-进价)×件数.
解: (1)设甲商品的进货单价是 x元,乙商品的进货单价 是 y元.
x+ y= 5, 根据题意,得 3( x+ 1)+ 2( 2y- 1)= 19, x= 2, 解得 y= 3
第16讲┃ 归类示例
当球刚能过网,此时函数图象过点 (9, 2.43), y= a(x- 6)2 + h的图象还过点(0, 2),将两点坐标代入解析式得: 43 2 a=-2700, 2.43= a( 9- 6) + h, 解得 2 2= a( 0- 6) + h, h=193, 75 193 8 193 8 此时球要过网则 h≥ .∵ > ,∴ h≥ , 75 3 75 3 故若球一定能越过球网,又不出边界, h的取值范围是: 8 h≥ . 3
第16讲┃ 归类示例
[2012· 安徽 ] 如图 16- 1,排球运动员站在点 O处练习发 球,将球从 O点正上方 2 m的 A处发出,把球看成点,其运行的高 度 y(m)与运行的水平距离 x(m)满足关系式 y= a(x- 6)2+ h.已知球 网与 O点的水平距离为 9 m,高度为 2.43 m,球场的边界距 O点的 水平距离为 18 m. (1)当 h= 2.6时,求 y与 x的关系式(不要求写出自变量 x的取值 范围 ); (2)当 h= 2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求 h的取值范围.
第16讲┃ 归类示例 ► 类型之二 二次函数在营销问题方面的应用
命题角度: 二次函数在销售问题方面的应用.
[2011· 盐城 ] 利民商店经销甲、乙两种商品.现有 如下信息:
图 16- 2
第16讲┃ 归类示例
请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品 500件和乙商品 300件.经 调查发现,甲、乙两种商品零售单价分别每降 0.1元,这两种 商品每天可各多销售 100件.为了使每天获取更大的利润, 商店决定把甲、乙两种商品的零售单价都下降 m元.在不考 虑其他因素的条件下,当 m定为多少时,才能使商店每天销 售甲、乙两种商品获取的利润最大?每天的最大利润是多 少?
第16讲┃二次函数的应用
第16讲┃ 考点聚焦
考点聚焦
考点1 二次函数的应用
二次函数的应用关键在于建立二次函数的数学模型,这 就需要认真审题,理解题意,利用二次函数解决实际问题, 应用最多的是根据二次函数的最值确定最大利润、最节省方 案等问题.
第16讲┃ 考点聚焦
考点2
建立平面直角坐标系,用二次函数的图象解决实际问题