高中均值不等式讲解及习题
均值不等式方法及例题
之阳早格格创做均值没有等式当且仅当a=b时等号创制)是一个要害的没有等式,利用它不妨供解函数最值问题.对付于有些题目,不妨曲交利用公式供解.然而是有些题目必须举止需要的变形才搞利用均值没有等式供解.底下是一些时常使用的变形要领.一、配凑1. 凑系数例1. 当时,供的最大值.剖析:由知,,利用均值没有等式供最值,必须战为定值或者积为定值,此题为二个式子积的形式,然而其战没有是定值.注意到为定值,故只需将凑上一个系数即可.当且仅当,即x=2时与等号.所以当x=2时,的最大值为8.评注:原题无法曲交使用均值没有等式供解,然而凑系数后可得到战为定值,进而可利用均值没有等式供最大值.2. 凑项例2. 已知,供函数的最大值.剖析:由题意知,最先要安排标记,又没有是定值,故需对付举止凑项才搞得到定值.∵∴当且仅当,坐即等号创制.评注:原题需要安排项的标记,又要配凑项的系数,使其积为定值.3. 分散例3. 供的值域.剖析:原题瞅似无法使用均值没有等式,无妨将分子配圆凑出含有(x+1)的项,再将其分散.当,坐即(当且仅当x=1时与“=”号).当,坐即(当且仅当x=-3时与“=”号).∴的值域为.评注:分式函数供最值,常常化成g(x)恒正或者恒背的形式,而后使用均值没有等式去供最值.二、完全代换例4. 已知,供的最小值.解法1:无妨将乘以1,而1用a+2b代换.当且仅当时与等号,由坐即,的最小值为.解法2:将分子中的1用代换.评注:原题巧妙使用“1”的代换,得到,而与的积为定值,即可用均值没有等式供得的最小值.三、换元例5. 供函数的最大值.剖析:变量代换,令,则当t=0时,y=0当时,当且仅当,坐即与等号故.评注:原题通过换元法使问题得到了简化,而且将问题转移为认识的分式型函数的供最值问题,进而为构制积为定值创制有利条件.四、与仄圆例6. 供函数的最大值.剖析:注意到的战为定值.又,所以当且仅当,坐即与等号.故.评注:原题将剖析式二边仄圆构制出“战为定值”,为利用均值没有等式创制了条件.总之,咱们利用均值没有等式供最值时,一定要注意“一正二定三相等”,共时还要注意一些变形本领,主动创制条件利用均值没有等式.1. 若,供的最大值.2. 供函数的最小值.3. 供函数的最小值.4. 已知,且,供的最小值.参照问案:1. 2. 5 3. 8 4.。
专题3:均值不等式
一.【知识要点】
1.均值不等式
二.【经பைடு நூலகம்例题】
1.阅读理解:对于任意正实数a、b, ≥0, ≥0, ≥ ,只有当a=b时,等号成立。
结论:在 ≥ (a、b均为正实数)中,若ab为定值p,则 ≥ ,只有当a=b时,a+b有最小值 .
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时, 有最小值______.
【D】
1.如图,正方形ABCD的边长为2,P是△BCD内一动点,过点P作PM⊥AB于M,PN⊥AD于N,分别与对角线BD相交于点E,F.记PM= ,PN=b,当点P运动时,
(1)求证: ;
(2)设△AEF的面积为S,试探究S是否存在最小值?若存在,请求出S的最小值;若不存在,请说明理由.
(2)若m>0,只有当m=______时, 有最小值______.
三.【题库】
【A】
【B】
【C】
1.已知正数a和b,有下列结论:
(1)若a=1,b=1,则 ;(2)若 ,则 ;
(3)若a=2,b=3,则 ;(4)若a=1,b=5,则 .
根据以上几个命题所提供的信息,请猜想:若a=6,b=7,则ab≤______.
均值不等式知点讲解及习题
第三节:基本不等式1、 基本不等式:(1)如果a 、b 是正数,那么(当且仅当a=b 时取“=”)(2)对基本不等式的理解:a >0,b >0,a,b 的算术平均数是a+b/2,几何平均数是_________.叙述为:两个正数的算术平均数不小于他们的几何平均数 2、 基本不等式的推广:注意:用基本不等式求最值的要点是:一正 、二定 、三相等三个正数的均值不等式: n 个正数的均值不等式: 3、四种均值的关系两个正数a 、b 的调和平均数、几何平均数、算术平均数、均方根之间的关系是:4. 最值定理设x >0,y >0,由x+y ≥ (1)若积xy=P(定值),则和x+y 有最小值 ;(2)若和x+y=S(定值),则积xy 有最大值 即:积定和最小,和定积最大.2a b+≥ab).(22,R ,)4().(2,R ,)3().(2R,,)2()"",00(,0R,)1(222222等号时取当且仅当则若时取等号当且仅当则若时取等号当且仅当则若取时当且仅当则若b a b a b a b a b a ab b a b a b a ab b a b a a a a a =⎪⎭⎫ ⎝⎛+≥+∈=≥+∈=≥+∈==≥≥∈++.2211222b a b a ab b a +≤+≤≤+xy2P 222⎪⎭⎫ ⎝⎛S .33abc c b a ≥++.....n....2121n n n a a a a a a ≥+++(不等式的证明)例1、证明基本不等式(跟踪训练) 例2、(跟踪训练)例3、若x >0,y >0,x+y=1. 求证:2a b +≥,,: 2.ba ab ab+≥已知都是正数求证9)11)(11(≥++yx(跟踪训练)若a 、b 、c 是不全相等的正数,求证:(利用基本不等式求最值) 例3、(跟踪训练1)(跟踪训练2)若x 、y ∈ ,则x+4y=1,求x .y 的最大值+R .lg lg lg 2lg 2lg 2lg c b a c a b c b a ++>+++++例4、若正数a,b 满足求a+b的最小值(跟踪训练1)若正实数x,y满足xy=2x+y+6,求xy的最小值。
高中数学人教版必修5——第十三讲均值不等式(解析版)
高中数学人教版必修5——第十三讲均值不等式(解析版)第十三讲均值不等式(解析版)在高中数学的学习中,均值不等式是一条非常重要的数学定理。
它能够帮助我们找到一组数的平均值与其他特定的数值之间的关系。
本文将详细解析高中数学人教版必修5中的第十三讲——均值不等式。
一、均值不等式的定义和性质均值不等式实际上是按平均值来衡量一组数与其他数值之间的大小关系。
它包含了算术平均值、几何平均值和平方平均值等不同的形式。
算术平均值是最为熟悉的一种形式,它表示一组数相加后除以元素个数得到的结果。
几何平均值是将一组数相乘后开根号得到的结果。
平方平均值是将一组数的平方相加后除以元素个数再开根号得到的结果。
在不等式的关系中,对于正实数来说,有以下几个性质:1. 当所有元素相等时,算术平均值、几何平均值和平方平均值相等。
2. 当所有元素不相等时,算术平均值大于几何平均值,而几何平均值大于平方平均值。
3. 对于正实数来说,算术平均值大于几何平均值,并且它们都大于平方平均值。
二、均值不等式的应用均值不等式在数学问题的解决中具有广泛的应用。
它可以帮助我们证明和推导其他重要的数学关系。
1. 证明与推导在证明和推导方面,均值不等式可以帮助我们解决一些复杂的不等式问题。
通过运用不同形式的均值不等式,我们可以逐步地推导出更为严格的不等式关系。
例如,在求证某个不等式问题时,我们可以使用算术平均值与几何平均值之间的关系来逐步推导出正确的结论。
2. 理解与比较均值不等式还能够帮助我们理解和比较数列的大小关系。
通过对数列的算术平均值、几何平均值和平方平均值的比较,我们可以得出一些关于数列性质的结论。
例如,当一组数的算术平均值大于几何平均值时,就能够说明这组数存在着某种程度的波动和不均匀性。
三、均值不等式的例题解析下面,我们将通过一些例题来具体解析均值不等式的应用。
例题1:已知a、b、c为正实数,证明(a+b)(a+c)(b+c)≥8abc。
解析:我们可以通过均值不等式来证明这个不等式关系。
均值不等式练习题及答案解析
均值不等式练习题及答案解析一.均值不等式1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab2. 若a,b?R*,则a?b2?*?a?b222a?b时取“=”)ab 若a,b?R,则a?b?22aba?b?若a,b?R,则ab??) ?? ?2a?b2注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域y=3x解:y=3x+11y=x+xx13x =∴值域为[,+∞)2x1x· =2; x1x· =-2x1≥22x1当x>0时,y=x+≥x11当x<0时, y=x+= -≤-2xx∴值域为解题技巧:技巧一:凑项例1:已知x?54,求函数y?4x?2?14x?5的最大值。
1解:因4x?5?0,所以首先要“调整”符号,又?x?54,?5?4x?0,?y?4x?2?14x?5不是常数,所以对4x?2要进行拆、凑项,???2?3?1 ??3?1????5?4x?4x?55?4x?当且仅当5?4x?15?4x,即x?1时,上式等号成立,故当x?1时,ymax?1。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1. 当时,求y?x的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2x??8为定值,故只需将y?x凑上一个系数即可。
当,即x=2时取等号当x=2时,y?x的最大值为8。
32评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
变式:设0?x?,求函数y?4x的最大值。
322x?3?2x?9解:∵0?x?∴3?2x?0∴y?4x?2?2x?2????222??当且仅当2x?3?2x,即x?3?3???0,?时等号成立。
高中数学《均值不等式及其应用》针对练习及答案
第一章 集合与常用逻辑用语、不等式1.4.2 均值不等式及其应用(针对练习)针对练习针对练习一 均值不等式的内容及辨析1.,a b R ∈,下列不等式始终成立的是 A .()2221a b a b +>-- B .22a b a b+≥C . 2a b+≥D .22a b ab +⎛⎫≥ ⎪⎝⎭2.若0a b >>,则下列不等式成立的是( )A .2a ba b +>>>B .2a ba b +>>C .2a ba b +>>> D .2a ba b +>>>3.下列不等式中正确的是( ) A .224a b ab +≥ B .44a a+≥C .221242a a ++≥+ D .2244a a+≥4.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“( )”的几何解释.A .如果a b >,b c >,那么a c >B .如果0a b >>,那么22a b >C .对任意实数a 和b ,有222a b ab +≥,当且仅当 a b =时等号成立D .如果a b >,0c >那么ac bc >5.若,a b R +∈,则下列关系正确的是( )A.2112a b a b+≤≤+B.2112a ba b+≤≤+C2112a ba b+≤≤≤+D2112a b a b+≤≤+针对练习二 均值不等式的简单应用6.设正实数,x y 满足21x y +=,则xy 的最大值为( ) A .12 B .14C .18D .1167.已知0m >,0n >,且0m n +-=,则mn 的最大值是( ) A .1 BC .3D .58.正实数a ,b 满足25a b +=,当b =( )时,ab 取得最大值. A .254B .258C .52D .549.已知21a b -=,则139ba⎛⎫+ ⎪⎝⎭的最小值为( )A .4 BC.D10.已知两个正数,,m n 满足3mn =,则3m n +的最小值为( ) A .3 B .6CD针对练习三 均值不等式相关拓展公式的应用11.已知0a >,0b >,1a b +=,则以下不等式正确的是( ) A .114ab+≤、 B≥ C .221a b +≥ D .2214ab a b +≥12.已知0x >,0y >,且2x y +=,则下列结论中正确的是( ) A .22xy+有最小值4B .xy 有最小值1C .22x y +有最大值4D 413.已知0a >,0b >,且1a b +=.下述四个结论 ①14ab >;①ln ln 0a b +<;①1916a b +≥;①2212a b +≥. 其中所有正确结论的编号是( ) A .①①① B .①①① C .①①① D .①①①14.已知0a >,0b >,且2a b +=,则下列式子不恒成立的是( ) A .222a b +≥ B .124a b ->C .22log log 0a b +≥D 215.已知0a ≥,0b ≥,且4a b +=,则( ) A .3ab ≤ B .5ab ≥C .228a b +≥D .2212a b +≤针对练习四 均值不等式“1”的妙用16.已知0a >,0b >,431a b +=,则13b a+的最小值为( ) A .13 B .19 C .21 D .2717.若正数,x y 满足315xy+=,则34x y +的最小值是( ) A .245B .285C .5D .618.已知实数,,0,191a b a b >+=,则119a b+的最小值为( ) A .100 B .300 C .800 D .40019.已知0a >,0b >,32a b ab +=,则a b +的最小值为( )A .2B .3C .2D .2+20.设0a >,1b >,若2a b +=,则411ab +-的最小值为( )针对练习五 对勾函数与均值定理的关系与区别21.下列各函数中,最小值为4的是( ) A .4y x x=+ B .4sin (0)sin y x x xπ=+<< C .34log log 3x y x =+ D .4x x y e e -=+22.若0x >,则下列说法正确的是( )A的最小值为2 B .11x x ++的最小值为1 C .122x x+的最小值为2 D .1lg lg x x+的最小值为223.已知0a ≠,下列各不等式恒成立的是 A .12a a+> B .12a a+≥C .12a a+≤-D .12a a+≥24.函数()933y x x x =+>-的最小值是( ) A .2 B .4 C .6 D .925.已知函数4y x x=+,()0,4x ∈,则该函数( ) A .有最大值5,无最小值 B .无最大值,有最小值4 C .有最大值5和最小值4 D .无最大值和最小值针对练习六 分式最值问题26.函数21()1x x f x x ++=-(1x >)的最小值为( )A.B .3+C .2+ D .527.若函数()()22422x x f x x x -+=>-在x a =处取最小值,则=a ( )28.若72x ,则2610()3x x f x x -+=-有( )A .最大值52B .最小值52C .最大值2D .最小值229.若a ,b ,c 均为正实数,则2222ab bca b c +++的最大值为( )A .12 B .14C D30.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0 B .3C .94D .1针对练习七 均值不等式的综合应用31.已知1F ,2F 是椭圆22:12516x y C +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ). A .13 B .12 C .25 D .1632.如图,已知点G 是①ABC 的重心,过点G 作直线分别与AB 、AC 两边交于M 、N两点(M 、N 与B 、C 不重合),设AB xAM =,AC y AN =,则1111x y +++的最小值为( )A .12 B .23C .34D .4533.已知0a >,0b >,在()32111133ax bx x ⎛⎫--- ⎪⎝⎭的展开式中,若3x 项的系数为2,则11a b+的最小值为( ) A .12 B .2 C .34D .4334.已知tan tan 1αβ=,则cos cos αβ的最大值为( ) A .12 B .14CD35.已知等比数列{}n a 的公比为q ,且51a =,则下列选项不正确的是( ) A .372a a +≥ B .462a a +≥C .76210a a -+≥D .191911a a a a +=+第一章 集合与常用逻辑用语、不等式1.4.2 均值不等式及其应用(针对练习)针对练习针对练习一 均值不等式的内容及辨析1.,a b R ∈,下列不等式始终成立的是 A .()2221a b a b +>-- B .22a b a b+≥C. 2a b+≥D .22a b ab +⎛⎫≥ ⎪⎝⎭【答案】D【解析】 【分析】均值不等式使用首要条件都为正数.排除BD ,A 选项可取等号. 【详解】A 选项,()()()222221110a b a b a b +---=-++≥,故A 不正确;B 、C 选项的不等式,只有0,0a b >>时才成立,所以不正确;D 选项, 作差法()22022a b a b ab -+⎛⎫-=≥ ⎪⎝⎭,所以正确选项为D . 【点睛】均值不等式的使用“一正二定三相等”,缺一不可. 2.若0a b >>,则下列不等式成立的是( )A .2a ba b +>>>B .2a ba b +>>C .2a ba b +>>> D .2a ba b +>>> 【答案】C 【解析】根据题中条件,由不等式的性质,以及基本不等式,即可比较出结果. 【详解】因为0a b >>,所以2a ba +>b ,又根据基本不等式可得,2a b+>所以2a ba b +>>>. 故选:C.3.下列不等式中正确的是( ) A .224a b ab +≥ B .44a a+≥C .221242a a ++≥+ D .2244a a+≥ 【答案】D 【解析】 【分析】利用作差法和基本不等式分析判断每一个选项的正误得解. 【详解】A. 2224()2a b ab a b ab +-=--不一定大于等于零,所以该选项错误;B. 4a a +,当a 取负数时,显然40a a +<,所以44a a+≥错误,所以该选项错误;C. 22122a a ++≥+,当且仅当221a +=时成立,由于取得条件不成立,所以221222a a ++>+,如0a =时,22152422a a ++=<+,所以该选项错误;D. 224a a +≥,当且仅当a =.所以该选项正确. 故选:D 【点睛】本题主要考查基本不等式的应用,意在考查学生对这些知识的理解掌握水平. 4.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“( )”的几何解释.A .如果a b >,b c >,那么a c >B .如果0a b >>,那么22a b >C .对任意实数a 和b ,有222a b ab +≥,当且仅当 a b =时等号成立D .如果a b >,0c >那么ac bc > 【答案】C 【解析】设图中直角三角形的边长分别为a ,b ,正方形面积,根据图象关系,可得222ab a b ≤+即可得答案. 【详解】设图中全等的直角三角形的边长分别为a ,b ,则四个直角三角形的面积为1422a b ab ⨯⨯⨯=,正方形的面积为222a b =+, 由图象可得,四个直角三角形面积之和小于等于正方形的面积, 所以222ab a b ≤+,当且仅当a b =时等号成立,所以对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立. 故选:C5.若,a b R +∈,则下列关系正确的是( )A.2112a b a b+≤≤+B.2112a ba b+≤≤+C2112a ba b+≤≤≤+D2112a b a b+≤≤+【答案】A 【解析】本题可根据11112abab得出211a b≤+a b+≥2a b +≤,最后根据222a bab +≥2a b+≥,即可得出结果. 【详解】 因为111122a ba b ab,当且仅当a b =时取等号, 所以211ab≤+a b =时取等号,因为a b +≥a b =时取等号, 2a b+≤,当且仅当a b =时取等号, 因为222a b ab +≥,当且仅当a b =时取等号, 所以()22222222a b a b aba b +≥++=+,即22224a b ab 2a b +,当且仅当a b =时取等号,综上所述,2112a b a b+≤≤+a b =时取等号, 故选:A. 【点睛】本题考查基本不等式的相关性质,主要考查基本不等式通过转化得出的其他形式,考查运算能力,考查转化与化归思想,是简单题.针对练习二 均值不等式的简单应用6.设正实数,x y 满足21x y +=,则xy 的最大值为( ) A .12 B .14C .18D .116【答案】C 【解析】 【分析】根据基本不等式可求得最值.【详解】由基本不等式可得2x y +≥即1≤, 解得18xy ≤,当且仅当2x y =,即14x =,12y =时,取等号, 故选:C.7.已知0m >,0n >,且0m n +-=,则mn 的最大值是( ) A .1B C .3D .5【答案】D 【解析】 【分析】结合基本不等式求得mn 的最大值. 【详解】依题意m n +=所以252m n mn +⎛⎫≤= ⎪⎝⎭,当且仅当m n =.故选:D8.正实数a ,b 满足25a b +=,当b =( )时,ab 取得最大值. A .254B .258C .52D .54【答案】D 【解析】由a ,b 为正实数,所以2a b +≥()2225=88a b ab +≤,当且仅当2a b =时取等,结合25a b +=即可得解. 【详解】由a ,b 为正实数,所以2a b +≥()2225=88a b ab +≤,当且仅当2a b =时取等, 又25a b +=,此时54b =. 故选:D. 【点睛】本题考查了利用基本不等式求最值,以及基本不等式的取等条件,属于基础题.9.已知21a b -=,则139ba⎛⎫+ ⎪⎝⎭的最小值为( )A.4 BC .D 【答案】C 【解析】 【分析】结合基本不等式来求得最小值. 【详解】 依题意21a b -=,2213239b a ba-⎛⎫+≥⋅= ⎪⎝⎭122a b =-=时取等号. 故选:C10.已知两个正数,,m n 满足3mn =,则3m n +的最小值为( ) A .3 B .6 CD 【答案】B 【解析】 【分析】直接由基本不等式可得. 【详解】3236m n +≥⨯=,当且仅当33m n ==时取等号,所以3m n +的最小值为6,故选:B针对练习三 均值不等式相关拓展公式的应用11.已知0a >,0b >,1a b +=,则以下不等式正确的是( )A .114a b+≤ B +≥C .221a b +≥ D .2214ab a b +≥【答案】B 【解析】 【分析】根据条件结合基本不等式进行求解. 【详解】由题意,()1124baa b a b a b⎛⎫++=++≥ ⎪⎝⎭,故选项A 错误;2≥=12a b ==时,等号成立,故选项B 正确;2221224a b a b ++⎛⎫= ⎪⎝⎭≥,则2212a b +≥,故选项C 错误;()222124a b ab a b ab a b +⎛⎫+=+≤= ⎪⎝⎭,故选项D 错误. 故选:B.12.已知0x >,0y >,且2x y +=,则下列结论中正确的是( ) A .22xy+有最小值4 B .xy 有最小值1C .22x y +有最大值4D 4【答案】A 【解析】 【分析】利用基本不等式和不等式的性质逐个分析判断即可 【详解】解: 0x >,0y >,且2x y +=,对于A ,()221222242x y x y xy x y y x ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当1x y ==时取等号,所以A 正确,对于B ,因为2x y =+≥1xy ≤,当且仅当1x y ==时取等号,即xy 有最大值1,所以B 错误,对于C ,因为224x y +≥==,当且仅当1x y ==时取等号,即22x y +有最小值4,所以C 错误,对于D ,因为22()4x y x y =+++=,当且仅当1x y ==时取等号,即4,所以D 错误,故选:A13.已知0a >,0b >,且1a b +=.下述四个结论 ①14ab >;①ln ln 0a b +<;①1916ab+≥;①2212a b +≥. 其中所有正确结论的编号是( ) A .①①① B .①①①C .①①①D .①①①【答案】D 【解析】 【分析】利用基本不等式和不等式的性质逐个分析判断解:对于①,因为0a >,0b >,且1a b +=,所以1a b =+≥12a b ==时取等号,得104ab <≤,所以①错误,对于①,由①可知,104ab <≤,所以()1ln ln 4ab ≤,即ln ln 2ln 2a b +≤-,所以ln ln 0a b +<,所以①正确,对于①,因为0a >,0b >,且1a b +=,所以()19199101016a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9a b b a =即13,44a b ==时取等号,所以①正确,对于①,因为222()21a b a ab b +=++=,所以2212a b ab +=-,由①可知,104ab <≤,所以1122ab -≥,所以2212a b +≥,当且仅当12a b ==时取等号,所以①正确,故答案为:D14.已知0a >,0b >,且2a b +=,则下列式子不恒成立的是( ) A.222a b +≥ B .124a b ->C .22log log 0a b +≥D 2【答案】C 【解析】由基本不等式得1ab ≤,根据各选项结合已知条件即可判断正误. 【详解】由0a >,0b >,2a b +=,得2()14a b ab +≤=当且仅当a b =时等号成立, 222()22a b a b ab +=+-≥,124a b b --=,111b a -=->-,即124a b->, 222log log log ()0a b ab +=≤,24a b =++0>2≤,故选:C15.已知0a ≥,0b ≥,且4a b +=,则( ) A .3ab ≤ B .5ab ≥C .228a b +≥D .2212a b +≤【答案】C【分析】ab 范围可直接由基本不等式得到,22a b +可先将a b +平方再利用基本不等式关系.【详解】解:由0a ,0b ,且4a b +=,∴242a b ab +⎛⎫= ⎪⎝⎭,当且仅当2a b ==时取等号而2222216()22()a b a b ab a b =+=+++,当且仅当2a b ==时取等号228a b ∴+.故选:C . 【点睛】本题主要考查基本不等式知识的运用,属于基础题,基本不等式是沟通和与积的联系式,和与平方和联系时,可先将和平方.针对练习四 均值不等式“1”的妙用16.已知0a >,0b >,431a b +=,则13b a+的最小值为( ) A .13 B .19 C .21 D .27【答案】D 【解析】 【分析】利用基本不等式“1”的妙用求最小值. 【详解】11443333129152427b b a ab a a b ab ⎛⎫⎛⎫+=++=++++= ⎪⎪⎝⎭⎝⎭,当且仅当49ab ab =,即19a =,b =6时,等号成立,故13b a+的最小值为27 故选:D17.若正数,x y 满足315xy+=,则34x y +的最小值是( ) A .245B .285C .5D .6【答案】C【分析】利用基本不等式“1”的代换求34x y +的最小值,注意等号成立条件. 【详解】11123134(34)((13)31)(13555y x x y x y x y x y +=+++≥++=5=,当且仅当2x y =时等号成立,①34x y +的最小值是5. 故选:C18.已知实数,,0,191a b a b >+=,则119a b+的最小值为( ) A .100 B .300 C .800 D .400【答案】D 【解析】 【分析】应用“1”的代换,将目标式转化为1919362b aa b++,再利用基本不等式求最小值即可,注意等号成立的条件. 【详解】由,0,191a b a b >+=,①1191191919()(19)362362400b a a b ab a b a b +=++=++≥+,当且仅当a b =时等号成立. ①119a b+的最小值为400. 故选:D19.已知0a >,0b >,32a b ab +=,则a b +的最小值为( ) A.2 B .3 C .2D .2+【答案】D 【解析】 【详解】根据题意,3132122a b ab b a+=⇒+=,①313()2222222a b a b a b b a b a ⎛⎫+=++=++≥+=⎪⎝⎭b =且32a b ab +=时等号成立,①a b +的最小值为2+ 故选:D .20.设0a >,1b >,若2a b +=,则411a b +-的最小值为( ) A.6 B .9 C .D .18【答案】B 【解析】 【分析】依题意可得(1)1a b +-=,再利用乘“1”法及基本不等式计算可得; 【详解】解:0a >,1b >,且2a b +=,10b ->∴且(1)1a b +-=,∴4141()[(1)]11a b a b a b +=++--- 4(1)4(55291b a b a b -=+++-, 当且仅当4(1)1b aa b -=-,即23a =43b =时取等号, 故411ab +-的最小值为9; 故选:B针对练习五 对勾函数与均值定理的关系与区别21.下列各函数中,最小值为4的是( ) A .4y x x=+ B .4sin (0)sin y x x xπ=+<< C .34log log 3x y x =+ D .4x x y e e -=+【答案】D 【解析】 【分析】直接利用基本不等式2a b ab +.(0,0)a b >>和关系式的恒等变换的应用求出结果.【详解】解:用基本不等式要满足“一正二定三相等“.A .选项中x 的正负不确定.同样的,C ,选项中3log x 和log 3x 取值不一定大于0.B .当(0,)x π∈时,sin (0x ∈,1]sin 0x ⇒>,40sin x>, 4sin sin x x=时sin 2x ⇒=不符合,所以也不能用基本不等式,不满足三相等, D .0x e >,40x e ->且4244x x x x e e e e --+=,当且仅当4x x e e -=即2x ln =时取等号. 故选:D . 【点睛】本题考查的知识要点:直接利用基本不等式的性质的应用和用基本不等式要满足“一正二定三相等“.的条件的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.22.若0x >,则下列说法正确的是( )A的最小值为2 B .11x x ++的最小值为1 C .122x x+的最小值为2 D .1lg lg x x+的最小值为2 【答案】A 【解析】 【分析】A.2≥,所以该选项正确; B. 函数的最小值不是1,所以该选项错误; C. 函数的最小值不是2,所以该选项错误; D. 当01x <<时,1lg 0lg x x+<,所以函数的最小值为2错误,所以该选项错误. 【详解】解:A.2≥,当且仅当1x =时等号成立,所以该选项正确;B. 11111111x x x x +=++-≥=++,当且仅当0x =时取等,因为0x >,所以等号不成立,所以函数的最小值不是1,所以该选项错误;C. 1222x x +≥,当且仅当0x =时取等,因为0x >,所以等号不成立,所以函数的最小值不是2,所以该选项错误; D. 当01x <<时,1lg 0,0lg x x <<,所以1lg 0lg x x+<,所以函数的最小值为2错误,所以该选项错误. 故选:A23.已知0a ≠,下列各不等式恒成立的是 A .12a a+> B .12a a+≥C .12a a+≤-D .12a a+≥ 【答案】D 【解析】当0a <时,10a a+<,选项,A B 不成立;当0a >时,10a a+>,选项C 不成立;11||||a a a a+=+,由基本不等式可得选项D 成立. 【详解】取1a =-时,12a a+=-,可判断选项A,B 不正确; 取1a =时,12a a+=,可判断选项C 不正确; 因为1,a a同号,11=||||2a a a a++≥, 当且仅当1a =±时,等号成立,选项D 正确. 故选:D. 【点睛】本题考查基本不等式求最值满足的条件,“一正”“二定”“三等”缺一不可,解题时要注意特值的运用,减少计算量,提高效率,属于基础题. 24.函数()933y x x x =+>-的最小值是( ) A .2 B .4 C .6 D .9【答案】D【解析】先将函数解析式化为9333y x x =-++-,再利用基本不等式,即可求出结果. 【详解】 因为3x >,所以993333933y x x x x =+=-++≥==--, 当且仅当933x x -=-,即6x =时,等号成立. 故选:D. 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 25.已知函数4y x x=+,()0,4x ∈,则该函数( ) A .有最大值5,无最小值 B .无最大值,有最小值4 C .有最大值5和最小值4 D .无最大值和最小值【答案】B 【解析】 【分析】根据基本不等式求解,注意“一正二定三相等”的条件. 【详解】解:因为()0,4x ∈,所以44y x x=+≥=,当且仅当42x x ==时等号成立,所以函数有最小值4,由于定义域为开区间,故无最大值. 故选:B针对练习六 分式最值问题26.函数21()1x x f x x ++=-(1x >)的最小值为( )A .B .3+C .2+D .5 【答案】B【解析】【分析】 将函数化简变形为221(1)3(1)33()(1)3111x x x x f x x x x x ++-+-+===-++---,然后利用基本不等式求解即可【详解】解:因为1x >,所以10x ->,所以221(1)3(1)33()(1)333111x x x x f x x x x x ++-+-+===-++≥=---,当且仅当311x x -=-,即1x =+时取等号,所以函数21()1x x f x x ++=-(1x >)的最小值为3+ 故选:B 27.若函数()()22422x x f x x x -+=>-在x a =处取最小值,则=a ( ) A.1+B .2 C .4 D .6【答案】C【解析】【分析】 由20x ->,而()4222f x x x =-++-,利用基本不等式可求出最小值,结合等号取得的条件可求出a 的值.【详解】 由题意,20x ->,而()()()22222424422222x x x x f x x x x x -+-+-+===-++---26≥=,当且仅当422x x -=-,即4x =时,等号成立,所以4a =.故选:C.【点睛】本题考查基本不等式的应用,考查学生的计算求解能力,属于基础题.28.若72x ,则2610()3x x f x x -+=-有( ) A .最大值52B .最小值52C .最大值2D .最小值2【答案】D【解析】【分析】 构造基本不等式()1()33f x x x =-+-即可得结果. 【详解】①72x ≥,①30x ->,①()()22316101()=32333x x x f x x x x x -+-+==-+≥---, 当且仅当133x x -=-,即4x =时,等号成立,即()f x 有最小值2. 故选:D.【点睛】 本题主要考查通过构造基本不等式求最值,属于基础题.29.若a ,b ,c 均为正实数,则2222ab bc a b c +++的最大值为( )A .12B .14C .2D 【答案】A【解析】【分析】对原式变形,两次利用基本不等式,求解即可.【详解】因为a ,b 均为正实数,则2222222ab bc a c a c a b c b b ++=≤++++12=, 当且仅当222a c b b+=,且a c =,即a b c ==时取等号, 则2222ab bc a b c+++的最大值为12. 故选:A .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”中的“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.30.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-的最大值为( )A .0B .3C .94D .1【答案】D【解析】【分析】利用22340x xy y z -+-=可得143xy x y z y x =+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可. 【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x ===-++-, 当且仅当20x y =>时取等号,此时22z y =. ∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z +-的最大值是1.故选:D【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题. 针对练习七 均值不等式的综合应用31.已知1F ,2F 是椭圆22:12516x y C +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ).A .13B .12C .25D .16 【答案】C【解析】【分析】根据椭圆定义可得1210MF MF +=,利用基本不等式可得结果.【详解】由椭圆方程知:5a =;根据椭圆定义知:12210MF MF a +==,21212252MF MF MF MF ⎛+⎫∴⋅≤= ⎪⎝⎭(当且仅当12MF MF =时取等号), 12MF MF ∴⋅的最大值为25.故选:C.32.如图,已知点G 是①ABC 的重心,过点G 作直线分别与AB 、AC 两边交于M 、N两点(M 、N 与B 、C 不重合),设AB xAM =,AC y AN =,则1111x y +++的最小值为( )A .12B .23C .34D .45【答案】D【解析】【分析】 依据三点共线得到关于x y 、的等式,再依据均值定理去求1111x y +++的最小值 【详解】因为G 是①ABC 的重心,所以()()211(0,0)323AG AB AC xAM y AN x y =⨯+=+>> 由于M 、G 、N 共线,所以11133x y +=,即3x y += 所以()1111111111211511511y x x y x y x y x y ⎛⎫⎛⎫+++=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭14255⎛+= ⎝≥(当且仅当1111y x x y ++=++即32x y ==时取等号) 故选:D33.已知0a >,0b >,在()32111133ax bx x ⎛⎫--- ⎪⎝⎭的展开式中,若3x 项的系数为2,则11a b+的最小值为( )A .12B .2C .34D .43 【答案】D【解析】【分析】根据二项展开式的通项公式得到3a b +=,再利用基本不等式可求出结果.【详解】 因为()32111133ax bx x ⎛⎫--- ⎪⎝⎭233311(1)(1)(1)33ax x bx x x =-----, 3(1)x -的展开式的通项公式为313(1)k k k k T C x -+=⋅-,0,1,2,3k =,所以221333311(1)(1)233a Cb C C ⋅⋅--⋅⋅--=,即3a b +=, 因为0,0a b >>,所以1111()3a b a b a b ++=+⋅1(2)3b a a b =++14(22)33≥+=, 当且仅当32a b ==时,等号成立.故选:D 34.已知tan tan 1αβ=,则cos cos αβ的最大值为( )A .12B .14 CD【答案】A【解析】【分析】依据重要不等式去求解cos cos αβ的最大值【详解】①tan tan 1αβ=,sin sin cos cos ,αβαβ∴=()22222sin cos sin cos 11cos cos sin cos sin cos cos cos .2242ααββαβααββαβ++∴=⋅⋅=⇒≤(当且仅当tan tan 1αβ==时等号成立),故选:A.35.已知等比数列{}n a 的公比为q ,且51a =,则下列选项不正确的是( ) A .372a a +≥B .462a a +≥C .76210a a -+≥D .191911a a a a +=+ 【答案】B【解析】【分析】根据等比数列的通项公式可得321a q =,27a q =,41a q =,6a q =,再利用基本不等式判断A ,利用特殊值判断B ,根据完全平方数的非负性判断C ,根据下标和性质判断D ;【详解】解:因为等比数列{}n a 的公比为q ,且51a =,所以321a q =,27a q =,41a q =,6a q =,所以237221a q q a =≥++,当且仅当221q q =,即1q =±时取等号,故A 正确; 所以461a a q q +=+,当0q <时460a a +<,故B 错误;()2276212110a a q q q -+=-+=-≥,故C 正确; 19191921919511a a a a a a a a a a a +++===+⋅,故D 正确; 故选:B。
高考数学均值不等式专题含答案家教文理通用
高考:均值不等式专题◆知识梳理1.常见基本不等式2,0,a R a ∈≥0a ≥222()22a b a b ++≥, 222a b c ab bc ac ++≥++ 若a>b>0,m>0,则b b m a a m +<+; 若a,b 同号且a>b 则11a b<。
ab b a R b a 2,,22≥+∈则;.2,,22ab b a R b a -≥+∈2.均值不等式:两个正数的均值不等式:ab b a ≥+2 变形ab b a 2≥+,22a b ab +⎛⎫≤ ⎪⎝⎭,ab b a 222≥+等。
3.最值定理:设,0,x y x y >+≥由(1)如果x,y 是正数,且积(xy P =是定值),则 时,x y +和有最小值(2)如果x,y 是正数和(x y S +=是定值),则 时,22Sxy 积有最大值()4.利用均值不等式可以证明不等式,求最值、取值范围,比较大小等。
注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
◆课前热身1. 已知,x y R +∈,且41x y +=,则x y ⋅的最大值为 . 2. 2. 若0,0x y >>1x y +=,则41x y+的最小值为 . 3. 已知:0>>x y ,且1=xy ,则22x y x y+-的最小值是 .4. 4. 已知下列四个结论①当2lg 1lg ,10≥+≠>x x x x 时且;②02x >≥当时;③x x x 1,2+≥时当的最小值为2;④当xx x 1,20-≤<时无最大值. 则其中正确的个数为◆考点剖析 一、基础题型。
1.直接利用均值不等式求解最值。
例1:(2010年高考山东文科卷第14题)已知,x y R +∈,且满足134x y+=,则xy 的最大值为 。
均值不等式(基本不等式+知识点+例题+习题)pdf版
t
t
t
答案:[2, )
例 2 求函数 y x2 3 的最小值. x2 1
解析:令 x2 1 t,t 1,则 x2 t2 1 ,带入原式化简得 y t 2 2 2 , t
当 t 2 即 t 2 时等号成立. t
答案: 2 2
例 3 已知 x 1,求 f (x) x2 x 1 的最小值. 2x 1
2
2
2 | 10
[不等式] 练习答案:
1
2
38
对勾函数:
形如 f (x) ax b (ab 0) 的函数. x
利用对勾函数性质可解决均值不等式等号不成立时的情况.
性质
a 0,b 0
y
a 0,b 0 y
图像
2 ab
Obxab a NhomakorabeaO
x
-2 ab
定义域
值域 奇偶性 渐近线
{x | x 0}
2
题型四:分离换元法求最值(二次比一次或一次比二次时用)
例 1 求函数 y x2 3 (x 1) 的值域. x 1 2
解析:令 x 1 t,t 3 ,则 x t 1,带入原式得到 y (t 1)2 3 t 4 2 ,
2
t
t
t 4 2 2 t 4 2 2 ,当 t 4 即 t 2 时等号成立.
解析:构造对勾函数 y 3x 12 ,由函数性质可知 x (3, ) 时函数单调递减, x
故
y
3x
12 x
y(3)
13
.
答案: (, 13]
练习 1 练习 2
已知 x 0 ,求函数 y x 4 的最小值. x4
已知 x 3,求函数 y 2x 3 的值域. 2x
均值不等式的应用(习题+答案)
.均值不等式2 21. (1)若 a,b • R ,则 a 2 b 2 _2ab (2)若a,b ・ R ,则 ab ・::a-(当且仅当 a 二 b 时取“二”)22. (1)若a,b ・R *,则 U _ . ab ⑵ 若a,b ・R *,则a • b _ 2 ab (当且仅当a = b 时取“=”)2(3)若a,b • R *,则ab 空 口 (当且仅当a =b 时取“=”) 飞2丿113. 若x 0,则x 2 (当且仅当x = 1时取“=”);若x ::: 0,则x 2 (当且仅当x = -1时取“=”)xx若x^O ,则x +1艺2即x +1^2或X +丄兰-2 (当且仅当a = b 时取“=”)xxx3.若ab .0,则a b_2 (当且仅当a =b 时取“=”) b a4.若 a,b • R ,则(-a b)2£ (当且仅当 a = b 时取“=”)2 2注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大” (2) 求最值的条件“一正,二定,三取等”(3) 均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1 :求下列函数的值域1 1(门 y =3x 2+ 衣 (2)y = x + x(2 )当 x >0 时,y = x +1>2寸x • x = 2;当 x v 0 时, y = x +1= —(— x - x ) w — 2 •••值域为(一a ,— 2] U [2,+s )解题技巧: 技巧一:凑项54例1 :已知x,求函数 y =4x —2 • -------- 的最大值。
4 4x -5解:因4x-5:::0,所以首先要“调整”符号,又(4X -2)〉^ 不是常数,所以对4x-2要进行拆、凑项,4x —5x ::5,. 5—4x 0,. y=4x —2-5—4x -3 岂一2 3=14 ' 4x-55-4x1当且仅当5-4x 丄,即x=1时,上式等号成立,故当 x=1时,5 -4x评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
均值不等式知识点讲解及模拟题
第三节:基本不等式1、 基本不等式:(1)如果a 、b 是正数,那么(当且仅当a=b 时取“=”)(2)对基本不等式的理解:a >0,b >0,a,b 的算术平均数是a+b/2,几何平均数是_________.叙述为:两个正数的算术平均数不小于他们的几何平均数 2、 基本不等式的推广:注意:用基本不等式求最值的要点是:一正 、二定 、三相等 三个正数的均值不等式: n 个正数的均值不等式: 3、四种均值的关系两个正数a 、b 的调和平均数、几何平均数、算术平均数、均方根之间的关系是: 4. 最值定理 设x >0,y >0,由x+y ≥ (1)若积xy=P(定值),则和x+y 有最小值 ;(2)若和x+y=S(定值),则积xy 有最大值 即:积定和最小,和定积最大. (不等式的证明)例1、证明基本不等式(跟踪训练) 2a b+≥ab).(22,R ,)4().(2,R ,)3().(2R,,)2()"",00(,0R,)1(222222等号时取当且仅当则若时取等号当且仅当则若时取等号当且仅当则若取时当且仅当则若b a b a b a b a b a ab b a b a b a ab b a b a a a a a =⎪⎭⎫ ⎝⎛+≥+∈=≥+∈=≥+∈==≥≥∈++.2211222b a b a ab ba +≤+≤≤+xy2P 222⎪⎭⎫ ⎝⎛S .33abc c b a ≥++.....n....2121n n n a a a a a a ≥+++2a b +≥,,: 2.ba ab ab+≥已知都是正数求证例2、(跟踪训练)例3、若x >0,y >0,x+y=1. 求证:(跟踪训练)若a 、b 、c 是不全相等的正数,求证: (利用基本不等式求最值) 例3、(跟踪训练1)(跟踪训练2)若x 、y ∈,则x+4y=1,求x .y 的最大值 例4、若正数a,b 满足求a+b 的最小值(跟踪训练1)若正实数x,y 满足xy=2x+y+6,求xy 的最小值。
高中数学人教版必修5——第十三讲:均值不等式(解析版)
均值不等式教学重点: 掌握均值不等式的证明及应用,会用均值不等式求函数的最大值或最小值; 教学难点: 利用均值不等式的证明。
1. 算术平均值与几何平均值(1) 算术平均值:对任意两个正实数,a b ,数2a b+ 叫做,a b 的算术平均值 (2) 几何平均值:对任意两个正实数,a b,a b 的几何平均值 2. 均值定理如果,a b R +∈,那么2a b+≥a b =时,等号成立 3. 均值不等式的常见变形(1)),a b a b R ++≥∈(2)()2,2a b ab a b R +⎛⎫≤∈ ⎪⎝⎭(3)2b aa b+≥(,a b 同号且不为0) (4))2,11a b R a b+≤∈+类型一: 均值不等式的理解例1. 设0,0a b >>,则下列不等式不成立的是()A.2b a a b +≥B.44222a b a b +≥ C. 22b a a b a b +≥+ D.1122a b a b+≥++ 解析:特值法,令1a b ==,则A,B,C 项都成立,而D 项中,1122,23a b a b+=+=+ 显然不成立,故D 项不成立。
答案:D练习1. 若a 、b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥2答案:D练习2. 设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<bC .a <ab <b <a +b 2D .ab <a <a +b2<b答案:B类型二: 均值不等式与最值例2. 若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245 B .285 C .5 D .6解析:由x +3y =5xy 得15y +35x =1,∴3x +4y =(3x +4y )·(15y +35x )=3x 5y +12y 5x +95+45≥23x 5y ·12y 5x +135=125+135=5,当且仅当3x 5y =12y5x时,得到最小值5. 答案:C练习3. 设x 、y ∈R ,且x +y =5,则3x +3y 的最小值为( ) A .10 B .63 C .46 D .183答案:D练习4. 已知正项等差数列{a n }中,a 5+a 16=10则a 5a 16的最大值为( ) A .100 B .75 C .50 D .25 答案:D类型三: 利用均值不等式证明不等式及应用例3. 已知a 、b 、c ∈R ,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ). 解析:∵a +b2≤a 2+b 22,∴a 2+b 2≥a +b2=22(a +b )(a ,b ∈R 等号在a =b 时成立). 同理b 2+c 2≥22(b +c )(等号在b =c 时成立). a 2+c 2≥22(a +c )(等号在a =c 时成立). 三式相加得a 2+b 2+b 2+c 2+a 2+c 2 ≥22(a +b )+22(b +c )+22(a +c ) =2(a +b +c )(等号在a =b =c 时成立). 答案:见解析练习5. 已知a 、b 是正数,试比较21a +1b 与ab 的大小.答案:∵a >0,b >0,∴1a +1b ≥21ab >0. ∴21a +1b ≤221ab =ab .即21a +1b≤ab . 练习6.若x >0,y >0,x +y =1,求证:(1+1x )·(1+1y)≥9..答案:证法一:左边=(1+1x )(1+1y)=1+1x +1y +1xy =1+x +y xy +1xy=1+2xy ≥1+2(x +y 2)2=9=右边.当且仅当x =y =12时,等号成立.证法二:∵x +y =1,∴左边=(1+1x )(1+1y)=(1+x +y x )(1+x +y y )=(2+y x )(2+xy )=5+2(y x +xy )≥5+4=9=右边.当且仅当x =y =12时,等号成立.例4. 在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时θ、r 的值分别是( )A .θ=1,r =SB .θ=2,r =4SC .θ=2,r =3S D .θ=2,r =S解析:S =12θr 2⇒θ=2Sr2,又扇形周长P =2r +θr =2⎝⎛⎭⎫r +Sr ≥4S , 当P 最小时,r =Sr ⇒r =S ,此时θ=2.答案:D练习7. 设计用32m 2的材料制造某种长方体车厢(无盖),按交通规定车厢宽为2m ,则车厢的最大容积是( )A .(38-373)m 3B .16m 3C .42m 3D .14m 3 答案:B练习8. 将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定在( )A .每个95元B .每个100元C .每个105元D .每个110元 答案:A1. 若x >0,y >0,且x +y ≤4,则下列不等式中恒成立的是( ) A .1x +y ≤14 B .1x +1y ≥1 C .xy ≥2 D .1xy ≥1答案:B2. 已知m 、n ∈R ,m 2+n 2=100,则mn 的最大值是( )A .100B .50C .20D .10 答案:B3. 若a >0,b >0且a +b =4,则下列不等式恒成立的是( )A .1ab >12B .1a +1b ≤1C .ab ≥2D .1a 2+b 2≤18答案:D4. 实数x 、y 满足x +2y =4,则3x +9y 的最小值为( )A .18B .12C .23D .43 答案:A5.设x +3y -2=0,则3x +27y +1的最小值为( )A .7B .339 C .1+22 D .5 答案:A6. 设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D .14答案:B__________________________________________________________________________________________________________________________________________________________________基础巩固1. 若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( ) A .a 2+b 2 B .2ab C .2ab D .a +b 答案:D2. 若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 答案:D3. 已知x 、y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.答案:34. 已知a 、b 为实常数,函数y =(x -a )2+(x -b )2的最小值为__________ 答案:12(a -b )25. a 、b 、c 是互不相等的正数,且a 2+c 2=2bc ,则下列关系中可能成立的是( ) A .a >b >c B .c >a > b C .b >a >cD .a >c >b答案:C6. 设{a n }是正数等差数列,{b n }是正数等比数列,且a 1=b 1,a 21=b 21,则( ) A .a 11=b 11 B .a 11>b 11 C .a 11<b 11 D .a 11≥b 11 答案:D7. 已知a >1,b >1,且lg a +lg b =6,则lg a ·lg b 的最大值为( ) A .6 B .9 C .12 D .18答案:B8. 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件 答案:B9. 已知2x +3y=2(x >0,y >0),则xy 的最小值是________.答案:610. 若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.答案:23311. 做一个面积为1 m 2,形状为直角三角形的铁架框,在下面四种长度的铁管中,最合理(够用,又浪费最少)的是( )A .4.6 mB .4.8 mC .5 mD .5.2 m 答案:C12. 光线透过一块玻璃,其强度要减弱110.要使光线的强度减弱到原来的13以下,至少需这样的玻璃板________块.(参考数据:lg2=0.3010,lg3=0.4771) 答案:1113. 一个矩形的周长为l ,面积为S ,给出下列实数对:①(4,1);②(8,6);③(10,8);④(3,12).其中可作为(l ,S )的取值的实数对的序号是________. 答案:①④14. 已知正常数a 、b 和正实数x 、y ,满足a +b =10,a x +by =1,x +y 的最小值为18,求a 、b 的值.答案:x +y =(x +y )·1=(x +y )·(a x +by)=a +b +ay x +bxy ≥a +b +2ab =(a +b )2,等号在ay x =bx y 即y x=ba时成立. ∴x +y 的最小值为(a +b )2=18, 又a +b =10,∴ab =16.∴a 、b 是方程x 2-10x +16=0的两根, ∴a =2,b =8或a =8,b =2.能力提升15. 已知x >0,y >0,lg2x +lg8y =lg2,则 1x +13y 的最小值是( )A .2B .22C .4D .23 答案:C16. 设函数f (x )=2x +1x-1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数 答案:A17. 已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd的最小值是( )A .0B .1C .2D .4 答案:D18. 若a 、b 、c 、d 、x 、y 是正实数,且P =ab +cd ,Q =ax +cy ·b x +dy,则有( ) A .P =Q B .P ≥Q C .P ≤Q D .P >Q 答案:C19. 已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54 C .最大值1 D .最小值1答案: D20. 已知y >x >0,且x +y =1,那么( )A .x <x +y 2<y <2xyB .2xy <x <x +y 2<yC .x <x +y 2<2xy <yD .x <2xy <x +y2<y答案:D21. 设a 、b 是正实数,给出以下不等式:①ab >2ab a +b;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2,其中恒成立的序号为( )A .①③B .①④C .②③D .②④ 答案:D22. 已知a >0,b >0,且a +b =1,则⎝⎛⎭⎫1a 2-1⎝⎛⎭⎫1b 2-1的最小值为( ) A .6 B .7 C .8 D .9 答案:D23.若直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值为( )A .14B .12 C .2 D .4答案:D24. 当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 答案:D25. 已知正数x 、y 满足1x +4y=1,则xy 有( )A .最小值116B .最大值16C .最小值16D .最大值116答案:C26. 若正实数x 、y 满足2x +y +6=xy ,则xy 的最小值是________ 答案:1827. 已知函数f (x )=lg x (x ∈R +),若x 1、x 2∈R +,判断12[f (x 1)+f (x 2)]与f (x 1+x 22)的大小并加以证明.答案:12[f (x 1)+f (x 2)]≤f (x 1+x 22)∵f (x 1)+f (x 2)=lg x 1+lg x 2=lg(x 1·x 2), f (x 1+x 22)=lg x 1+x 22,而x 1、x 2∈R +,x 1x 2≤(x 1+x 22)2,而f (x )=lg x 在区间(0,+∞)上为增函数. ∴lg(x 1x 2)≤lg(x 1+x 22)2,∴12lg(x 1x 2)≤lg x 1+x 22. 即12(lg x 1+lg x 2)≤lg x 1+x 22. 因此,12[f (x 1)+f (x 2)]≤f (x 1+x 22).28. 已知a 、b 、c ∈R +,求证:a 2b +b 2c +c 2a≥a +b +C答案:∵a 、b 、c ∈R +,a 2b ,b 2c ,c 2a均大于0,又a 2b +b ≥2a 2b ·b =2a , b 2c +c ≥2b 2c·c =2b , c 2a+a ≥2c 2a·a =2c , 三式相加得a 2b +b +b 2c +c +c 2a +a ≥2a +2b +2c ,∴a 2b +b 2c +c 2a ≥a +b +C . 29.求函数y =1-2x -3x的值域.答案:y =1-2x -3x =1-(2x +3x).①当x >0时,2x +3x≥22x ·3x=2 6. 当且仅当2x =3x ,即x =62时取等号.∴y =1-(2x +3x)≤1-2 6.②当x <0时,y =1+(-2x )+(-3x ).∵-2x +(-3x)≥2(-2x )·(-3x)=2 6.当且仅当-2x =-3x 时,即x =-62时取等号.∴此时y =1-2x -3x≥1+26综上知y ∈(-∞,1-26]∪[1+26,+∞).∴函数y =1-2x -3x的值域为(-∞,1-26)∪[1+26,+∞).30. 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元.试求:(1)仓库面积S 的取值范围是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?答案:(1)设正面铁栅长x m ,侧面长为y m ,总造价为z 元,则z =40x +2×45y +20xy =40x +90y +20xy ,仓库面积S =xy .由条件知z ≤3 200,即4x +9y +2xy ≤320. ∵x >0,y >0,∴4x +9y ≥24x ·9y =12xy .∴6S +S ≤160,即(S )2+6S -160≤0. ∴0<S ≤10,∴0<S ≤100. 故S 的取值范围是(0,100].(2)当S =100 m 2时,4x =9y ,且xy =100. 解之得x =15(m),y =203(m).答:仓库面积S 的取值范围是(0,100],当S 取到最大允许值100 m 2时,正面铁栅长15 m.31. 某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案最合算?答案:由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f (n ),则f (n )=50n -[12+16+…+(8+4n )]-98=40n -2n 2-98.(1)由f (n )>0得,n 2-20n +49<0,∴10-51<n <10+51,又∵n ∈N ,∴n =3,4, (17)即从第3年开始获利.(2)①年平均收入=f (n )n =40-2(n +49n)≤40-2×14=12, 当且仅当n =7时,渔船总收益为12×7+26=110(万元).②f (n )=-2(n -10)2+102.因此当n =10时,f (n )max =102,总收益为102+8=110万元,但7<10,所以第一种方案更合算.。
均值不等式应用及例题解析(PPT教案)
a/4 (x=a/8)
练习3
练习4 :已知2a b 2 求f ( x) 4a 2b的最值及此时的 a和b.
最小值 4 ,当2a=b时 有最小值(a=1/2 b=1)
三不等,改用“单调性”
例11.求函数 y
x2 5 x 4
2
的最小值. 5/2(x=0)
变形:
1 利用对勾函数 y t t
(t>0)的单调性.
练习:( 1 )求函数y (2)求函数y
2
x 5
2
x 1
2
的最小值;
sin x 5
2
sin x 1 1 1 (3)求函数y x 在 , 3上的值域。 x 2
的最小值;
例 12: 用三元均值不等式求最值
构造三 解: 1 x 0, 个数相 1 2 y x (1 x) x x (2 2 x) 加等于 2 定值.
注意:各项必须为正数
一 不 正 , 常 用 a b 2 a b ( a 0, b 0 )
二边乘-1不等式要变号
2x x 3 例8、( 1 )已知函数f(x) (x 0) x 求f ( x)的最大值,以及此时 x的值。
2
解:函数看不出二项相乘为定值,需要变形使它二项相乘为定值 (凑积定)
(拆项时常拆成两个相同项)。
五、错题辨析
阅读下题的各种解法是否正确,若有错, 指出有错误的地方。 1 1 1. 已 知 a, b R , 且 a 2 b 1, 求 的 最 小 值 . a b
1 1 1 1 解法二:由a 2b 1及a、b R , ( a 2b)( ) a b a b 1 1 1 2 2ab 2 , 的最小值为 4 2 . 因为二不定 ab a b
[必修五]·[均值不等式] · [提高] · [知识点+典型例题]·[学生版]
均值不等式知识讲解一、等号成立条件条件:对于任意实数a b ,,222a b ab +≥,当且仅当a b =时,等号成立. 证明:2222()a b ab a b +-=-,当a b ≠时,2()0a b ->;当a b =时,2()=0a b -.222a b ab ∴+≥,当且仅当a b =时,等号成立. 二、均值不等式定义:如果a b ,,是正数,那么2a b+,当且仅当a b =时,有等号成立.此结论又称均值不等式或基本不等式.证明:2220a b +-=+=≥,即a b +≥2a b+三、均值不等式的几何解释解释:对于任意正实数a b ,,以AB a b =+的线段为直径做圆,在直线AB 上取点C ,使,AC a CB b ==,过点C 作垂直于直线AB 的弦DD ',连接AD 、DB 、如图已知Rt ACD Rt DCB ∆∆,那么2DC AC BC =⋅,即CD .这个圆的半径为2a b+,显然2a b+C 与圆心重合,即a b =时,等号成立.abb aD 'D C B A四、均值不等式的理解1.对于任意两个实数a b ,,2a b+叫做a b ,a b ,的几何平均值.此定理可以叙述为:两个正数的算术平均数不小于他们的几何平均数.2.对于=“”的理解应为a b =是2a b +a b ≠,则2a b+3.注意222a b ab +≥和2a b+>a b R ∈,,后者是+a b R ∈,五、极值定理1.若x y s +=(和为定值),则当x y =时,xy 取得最大值是24s;【证明】x y ,都是正数,2x y +x y s +=,22()24x y s xy +≤=,当且仅当x y =时,xy 取得最大值是24s;2.若=xy p (积为定值),则当x y =时,x y +取得最小值是;【证明】x y ,都是正数,2x y +≥x y =时,等号成立.又=xy p ,x y +≥.【注意】利用极值定理求最大值或最小值是应注意:①注意均值不等式的前提条件:函数式中的各项必须都是正数,在异号时不能运用均值不 等式,在同负时可以先进行转化,再运用均值不等式;②求积xy 最大值时,应看和x y +是否是定值;求和x y +最小值时,看xy 是否为定值. ③通过加减的方法配凑成使用算术平均数与几何平均数定理的形式; ④注意“1”的代换;⑤等号是否成立: 只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由均值不等式求最值,只能用函数的单调性求最值.运用均值不等式的前提有口诀:一正二定三相等.典型例题一.选择题(共12小题)1.(2018•嘉兴模拟)已知x+y=++8(x,y>0),则x+y的最小值为()A.5 B.9 C.4+D.10,若目标函数z=ax+by 2.(2018•洛阳一模)设实数x,y满足条,(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.43.(2018春•怀化期末)若不等式<恒成立,则实数a的取值范围是()A.(0,1) B.,C.,D.,4.(2016秋•龙岩期末)已知两个正数a,b满足3a+2b=1,则+的最小值是()A.23 B.24 C.25 D.265.(2017春•温州期末)已知x>0,y>0,x+2y=1,若不等式>m2+2m成立,则实数m的取值范围是()A.m≥4或m≤﹣2 B.m≥2或m≤﹣4 C.﹣2<m<4 D.﹣4<m<2 6.(2016秋•焦作期末)已知x,y∈R,满足4≥y≥4﹣x,x≤2,则的最大值为()A.2 B.C.D.7.(2016秋•郑州期末)正实数ab满足+=1,则(a+2)(b+4)的最小值为()A.16 B.24 C.32 D.408.(2017•揭阳一模)已知抛物线y=ax2+2x﹣a﹣1(a∈R),恒过第三象限上一定点A,且点A在直线3mx+ny+1=0(m>0,n>0)上,则的最小值为()A.4 B.12 C.24 D.369.(2017•平度市二模)若直线2mx﹣ny﹣2=0(m>0,n>0)过点(1,﹣2),则+最小值()A.2 B.6 C.12 D.3+210.(2017春•贵池区校级期末)设x>0,y>0,x+y+xy=2,则x+y的最小值是()A.B.1+C.2﹣2 D.2﹣11.(2016秋•湖州期末)已知实数a,b,c满足a2+2b2+3c2=1,则a+2b的最大值是()A.B.2 C.D.312.(2016秋•鹤壁期末)已知a>0,b>0,+=2,则y=4a+b的最小值是()A.8 B.6 C.2 D.9二.填空题(共3小题)13.(2018•江苏)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.14.(2018•天津一模)已知正实数a,b满足ab=a+2,那么2a+b的最小值为.15.(2018•南开区一模)设x>0,y>0,且xy﹣(x+y)=1,则x+y的最小值为.三.解答题(共1小题)16.(2018•石嘴山一模)已知函数f(x)=|x﹣1|﹣2|x+1|的最大值为k.(1)求k的值;(2)若a,b,c∈R,,求b(a+c)的最大值.。
均值不等式高考一轮复习教师总结含历年高考真题
证明:柯西不等式的证明方法有多种,其中一种常用的方法是利用数学归纳法和二项式定理
变式:柯西不等式有许多变式,如加权柯西不等式、平方和柯西不等式等
切比雪夫不等式
添加标题
定义:对于任意的n个正数x1, x2, ..., xn,有(x1^2 + x2^2 + ... + xn^2)/n ≥ (x1 + x2 + ... + xn)^2/n
时)。
添加标题
考点:二次函数 的性质、不等式 的性质、分类讨
论思想。
添加标题
2016年高考真题解析
题目:2016年高考数学全国卷(理科)第12题
解析:本题考查了均值不等式的应用,需要掌握均值不等式的性质和证明方法,同时要注意不 等式的取等条件。
解题思路:利用均值不等式进行证明,注意取等条件的应用。
证明:利用数学归纳法和基本不等式性质
应用:在解决最值问题、不等式证明等方面有广泛应用
变式:当n=2时,即为算术平均数不小于几何平均数的均值不等式
感谢您的观看
定义导数
利用导数证明均值不等式
导数与函数单调性关系
利用导数证明均值不等式的步骤
证明过程中的注意事项
柯西不等式
定义:柯西不等式是数学中的一个重要不等式,它表明对于任意正实数a1,a2,…,an和b1,b2,…,bn,总有 (a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+anbn)^2
均值不等式的几何意义:在数轴上,表示点(a,b)到点(0,0)的距离与点(a,b)到直线x=y的距离相等,当 且仅当a=b时取等号。
高中均值不等式讲解及习题
高中均值不等式讲解及习题一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式的应用(习题+答案)
均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式练习题解析版
均值不等式练习题班级_______姓名____________1. 已知x,y∈R+,xy=2x+y,则x+y取得最小值时,x=.2. 若a>0,b>0,且a+b=4,则下列不等式恒成立的是_______________①1ab ≤14②1a+1b≤1③√ab≥2③a2+b2≥83. 下列结论正确的是______________①若a,b∈R,则ba +ab≥2②若x<0,则x+4x ≥−2√x⋅4x=−4③若ab≠0,则b2a +a2b≥a+b④若x<0,则2x+2−x>24. “a>0,b>0”是“ab<(a+b2)2”的条件5. “x+1x>2”是“x>1”的条件6. 设a>1,b>1且ab−(a+b)=1,下列结论正确的是_______________①a+b有最小值2+2√2②a+b有最大值2+2√2③ab有最大值√2+1④ab有最小值2+2√27. 设m∈R且m≠0,“不等式m+4m>4”成立的一个必要不充分条件是( )①m≠2②m>0且m≠2③m>2④m≥28. 设直线x=t(t>0)与曲线y=x2+2和x轴分别交于A,B两点,C(t+1t,2),则△ABC面积的最小值为.9. 若不等式(x+y)(ax +4y)≥16对任意正实数x,y恒成立,则正实数a的最小值为.10. 已知a>0,b>0,若a+b=4,则a2+b2的最小值为.11. 已知x>0,y>0,且x+2y=2,那么xy的最大值是.12. 已知x>54,则函数y=4x+14x−5的最小值为.13. 已知某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓房能全部租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设已出租的每套房子每月需要公司花费100元的日常维修等费用(设没有出租的房子不需要花这些费用),则要使公司获得最大利润,每套房月租金应定为元.14. 已知0<x<1,当x=_______时,√x(1−x)的值最大.15. 已知x>−1,求x+4x+1的值最小值.16. 设a,b,c∈R,求证:b+ca +c+ab+a+bc≥6.17. 设ab≠0,利用基本不等式有如下证明:ba +ab=b2+a2ab≥2abab=2.试判断这个证明过程是否正确.若正确,请说明每一步的依据;若不正确,请说明理由.18. 某工厂有一面长14m的旧墙,现准备利用这面旧墙建造平面图形为矩形,面积为126m2的厂房.工程条件是:①修1m新墙的费用为a元;②修1m旧墙的费用是a4元;③用拆去1m旧墙所得的材料建1m新墙的费用为a2元.经过讨论有两种方案(设利用旧墙的矩形厂房的一面边长为x m):方案1:利用旧墙的一段为矩形厂房的一面边长(x<14):方案2:利用旧墙为矩形厂房的一面边长(x≥14).则如何利用旧墙,即x为多少时建墙费用最省?答案1. √2+12. ④【解析】4=a +b ≥2√ab (当且仅当 a =b 时,等号成立),即 √ab ≤2,ab ≤4,1ab ≥14,选项①,③不成立;1a +1b =a+b ab=4ab ≥1,选项②不成立;a 2+b 2=(a +b )2−2ab =16−2ab ≥8,选项④成立.3. ④ 【解析】对于①,当 ab <0 时不成立; 对于②,若 x <0,则 x +4x =−(−x +4−x)≤−2√(−x )⋅4−x =−4,当且仅当 x =−2 时,等号成立,因此②选项不成立;对于③,取 a =−1,b =−2,b 2a +a 2b=−92<a +b =−3,所以③选项不成立;对于④,若 x <0,则 2x +2−x >2 成立. 4. 既不充分也不必要【解析】当 a >0,b >0 时,a+b 2≥√ab ,即 ab ≤(a+b 2)2,当 a =b 时,ab <(a+b 2)2 不成立,故“a >0,b >0”不是“ab <(a+b 2)2”的充分条件.当 ab <(a+b 2)2 时,a ,b 可以异号,故 a >0,b >0 不一定成立,故“a >0,b >0”不是“ab <(a+b 2)2”的必要条件.故“a >0,b >0”是“ab <(a+b 2)2”的既不充分也不必要条件.5. 必要而不充分6. ① 【解析】因为 a >1,b >1 且 ab −(a +b )=1,所以 1+a +b =ab ≤(a+b 2)2,则 (a +b )2−4(a +b )−4≥0,得 a +b ≥2+2√2 或 a +b ≤−2√2+2(舍去),当且仅当 a =b =1+√2 时等号成立.因为 a +b =ab −1≥2+2√2,所以 ab ≥3+2√2,当且仅当 a =b 时等号成立. 7. ①8. √2.【解析】由 {x =t,y =x 2+2可得 A (t,t 2+2),所以 ∣AB∣=t 2+2,则 △ABC 的面积S=12×∣∣t +1t−t ∣∣×(t 2+2)=12×t 2+2t =12(t +2t )≥12×2√t ×2t=√2,当且仅当 t =2t ,即 t =√2 时等号成立,所以 △ABC 面积的最小值为 √2.9. 4【解析】因为不等式 (x +y )(a x +4y)≥16 对任意正实数 x ,y 恒成立,所以 16≤[(x +y )(ax +4y )]min,令 f (x )=(x +y )(ax +4y )(a >0),则f (x )=a +4+ay x+4x y ≥a +4+2√ayx ⋅4x y=a +4+4√a,当且仅当 xy =√a2时取等号, 所以 a +4√a ++4≥16,解得 a ≥4, 因此正实数 a 的最小值为 4. 10. 8 11. 12【解析】因为 x >0,y >0,且 x +2y =2, 所以 xy =12x ⋅2y ≤12×(x+2y 2)2=12×(1)2=12,当且仅当 x =2y =1,即 x =1,y =12 时,取等号,故 xy 的最大值是 12. 12. 7【解析】因为 x >54,所以 4x −5>0.y =4x +14x−5=(4x −5)+14x−5+5≥2+5=7. 当且仅当 4x −5=14x−5,即 x =32时等号成立.法二:因为 x >54,令 yʹ=4−4(4x−5)2=0,得 x =1 或 x =32,当 54<x <32 时,yʹ<0,函数单调递减; 当 x >32 时,yʹ>0,函数单调递增.所以当 x =32时函数取得最大值为:4×32+14×32−5=7.13. 3300【解析】设利润为 y 元,租金定为 3000+50x (0≤x ≤70,x ∈N ) 元.则 y =(3000+50x )(70−x )−100(70−x )=(2900+50x )(70−x )=50(58+x )(70−x )≤50(58+x+70−x 2)2,当且仅当 58+x =70−x ,即 x =6 时,等号成立,故每月租金定为 3000+300=3300(元)时,公司得最大利润.14. 0<x <1⇒√x >0,√1−x >0⇒√x ⋅√1−x ≤x+(1−x )2=12,即 √x (1−x )≤12(当且仅当 x =1−x ,即 x =12时,等号成立), 所以当 x =12 时,√x (1−x ) 的最大值为 12. 第三部分 15.x >−1⇒x +1>0⇒x +4x +1=(x +1)+4x +1−1≥2√(x +1)⋅4x +1−1=3(当且仅当x +1=4x +1,即x =1时,等号成立⇒当x =1时,x +4x +1的最小值为3.16. ba +ab≥2c b +bc ≥2a c +ca ≥2} ⇒b+c a +c+ab +a+bc ≥6(当且仅当 a =b =c 时,等号成立).17. 这个证明过程不正确.过程中b 2+a 2ab≥2ab ab这一步不成立,这是因为 ab 的正负没有确定.18. 设利用旧墙的矩形厂房的一面边长为 x m ,则另一面边长为 126xm .若利用旧墙的一段为矩形厂房的一面边长,则修旧墙的费用为 x ⋅a 4元,剩余的旧墙拆得的材料建新墙的费用为 (14−x )⋅a2 元,其余的建新墙的费用为 (2x +2×126x−14)⋅a 元,总费用为y =a 4x +(14−x )a 2+a (2x +252x−14)=a (7x 4+252x −7)=7a (x4+36x−1)(0<x <14).因为 x 4+36x≥2√x4⋅36x=6,0<x <14,所以当且仅当 x =12 时,y min =7a (6−1)=35a ( 元).若利用旧墙为矩形厂房的一面边长,则修旧墙的费用为 a4⋅14=7a2元,建新墙的费用为 (2x +252x−14)⋅a 元,总费用为 y=72a +a (2x +252x −14)=72a +2a (x +126x−7)(x ≥14).设14≤x1<x2,则x1+126x1−(x2+126x2)=(x1−x2)(1−126x1x2)<0(x1x2>126),所以m=x+126x 在[14,+∞)上为增函数,所以当x=14时,y min=72a+2a(14+12614−7)=35.5a(元).综上可知,采用方案1,即利用旧墙12m为矩形厂房的一面边长,可使建墙费用最省.。
均值不等式常见题型及解析
均值不等式常见题型及解析一、直接应用均值不等式均值不等式的基本形式是对于正实数a、b,有\(\frac{a + b}{2}\geq\sqrt{ab}\),当且仅当a = b时等号成立。
比如说,已知\(a>0\),\(b>0\),\(a + b = 1\),求\(ab\)的最大值。
这时候就可以直接用均值不等式啦。
由\(\frac{a + b}{2}\geq\sqrt{ab}\),把\(a + b = 1\)代入,得到\(\frac{1}{2}\geq\sqrt{ab}\),那么\(ab\leq\frac{1}{4}\),当且仅当\(a=b=\frac{1}{2}\)的时候取到最大值。
这种直接应用的题型呢,关键就是要识别出是两个正实数的和与积的关系,然后套公式就好啦。
就像看到一道题,告诉你两个正数的和是定值,那你就赶紧想均值不等式求积的最值;要是告诉你积是定值,就想求它们和的最值。
这就像一个小窍门,一看到这种形式,心里就“叮”一下,知道该怎么做啦。
二、凑项应用均值不等式有些题呢,不会直接给你能用均值不等式的形式,需要咱们自己去凑项。
比如说,求\(y = x+\frac{1}{x - 1}(x>1)\)的最小值。
这时候直接用均值不等式可不行,因为\(x\)和\(\frac{1}{x - 1}\)的和不是直接能用均值不等式的形式。
那我们就凑项呀,把式子变成\(y=(x - 1)+\frac{1}{x - 1}+1\)。
因为\(x>1\),所以\(x - 1>0\),\(\frac{1}{x - 1}>0\)。
根据均值不等式\(\frac{(x - 1)+\frac{1}{x - 1}}{2}\geq\sqrt{(x - 1)\times\frac{1}{x - 1}}\),也就是\((x - 1)+\frac{1}{x - 1}\geq2\),那么\(y=(x - 1)+\frac{1}{x - 1}+1\geq2 + 1=3\),当且仅当\(x - 1=\frac{1}{x - 1}\),也就是\(x = 2\)的时候取到最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中均值不等式讲解及习题内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)高中均值不等式讲解及习题一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫⎝⎛-+≤-⋅=-=x x x x x x y当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立。
技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。
解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。
技巧四:换元解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。
当,即t=时,4259y t t≥⨯=(当t=2即x =1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。
即化为()(0,0)()Ay mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x =+的单调性。
例:求函数224y x =+的值域。
24(2)x t t +=≥,则224y x +2214(2)4x t t t x =+=+≥+因10,1t t t>⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。
因为1y t t=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。
所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。
练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x xπ=+∈2.已知01x <<,求函数y =.;3.203x <<,求函数y .条件求最值1.若实数满足2=+b a ,则b a 33+的最小值是 .分析:“和”到“积”是一个缩小的过程,而且b a 33⋅定值,因此考虑利用均值定理求最小值,解: b a 33和都是正数,b a 33+≥632332==⋅+b a b a当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6.变式:若44log log 2x y +=,求11x y+的最小值.并求x,y 的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
2:已知0,0x y >>,且191xy+=,求x y +的最小值。
错解..:0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥= ⎪⎝⎭故 ()min 12x y += 。
错因:解法中两次连用均值不等式,在x y +≥等号成立条件是x y =,在19x y +≥19x y =即9y x =,取等号的条件的不一致,产生错误。
因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。
正解:190,0,1x y xy>>+=,()1991061016y xx y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y xx y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。
变式: (1)若+∈R y x ,且12=+y x ,求yx 11+的最小值(2)已知+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值技巧七、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22。
同时还应化简1+y 2 中y 2前面的系数为 12, x 1+y 2 =x2·1+y 22 = 2 x ·12 +y 22下面将x ,12 +y 22分别看成两个因式:x ·12 +y22≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34 即x 1+y 2 = 2 ·x12 +y 22 ≤ 342 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15 令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t)+34∵t +16t≥2t ·16t=8∴ ab ≤18 ∴ y ≥118当且仅当t =4,即b =3,a =6时,等号成立。
法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值. 解法一:若利用算术平均与平方平均之间的不等关系,a +b2≤a 2+b 22 ,本题很简单3x +2y ≤ 2 (3x )2+(2y )2 = 2 3x +2y =2 5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20∴ W ≤20 =2 5 变式: 求函数15()22y x =<<的最大值。
解析:注意到21x -与52x -的和为定值。
又0y >,所以0y <≤当且仅当21x -=52x -,即32x =时取等号。
故max y =。
评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。
总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。