均值不等式高考题
高考备考 均值不等式和柯西不等式 含历年高考真题
1、(2008江苏)设a ,b ,c 为正实数,求证:333111abc+++abc ≥.2、(2010辽宁理数)已知c b a ,,均为正数,证明:36)111(2222≥+++++cbac b a ,并确定c b a ,,为何值时,等号成立。
3、(2012江苏理数)已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 4、(2013新课标Ⅱ)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.5、(2012福建)已知函数f (x )=m -|x -2|,m ∈R,且f (x +2)≥0的解集为[-1,1].(1)求m 的值; (2)若a ,b ,c ∈R,且1a + 12b + 13c =m ,求证:a + 2b +3c ≥96、(2011浙江)设正数z y x ,,满足122=++z y x . (1)求zx yz xy ++3的最大值; (2)证明:26125111113≥+++++xz yz xy 7. (2017全国新课标II 卷) 已知330,0,2a b a b >>+=。
证明: (1)55()()4a b a b ++≥; (2)2a b +≤。
8.(2017天津) 若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.9. 【2015高考新课标2,理24】设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >+>(Ⅱ)>是a b c d -<-的充要条件. 10. 【2015高考福建,理21】选修4-5:不等式选讲已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值; (Ⅱ)求2221149a b c ++的最小值.11.【2015高考陕西,理24】(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{}24x x <<.(I )求实数a ,b 的值;(II )求+的最大值. 【均值不等式】例题1:已知y x ,均为正数,且y x >,求证:3221222+≥+-+y yxy x x . 例题2:已知z y x ,,均为正数.求证:zy x xy z zx y yz x 111++≥++. 变式:设z y x ,,为正数,证明:()()()()y x z z x y z y x z y x +++++≥++2223332. 【柯西不等式】例题1:若正数c b a ,,满足1=++c b a ,求121121121+++++c b a 的最小值.变式:若21,32x ⎛⎫∈- ⎪⎝⎭<例题2:已知z y x ,,是正数.()1若1=+y x ,求y y x x +++2222的最小值; ()2若1222=+++++z zy y x x ,求证:1222222≥+++++zz y y x x . 变式1:设0,,>c b a ,1=++c b a ,求证:53222≥-+-+-c c b b a a . 变式2:已知正数y x ,满足xyz z y x =++,求zxyzxy211++的最大值.【能力提升】1、 设c b a ,,均为正实数,求证:ba c a cbc b a +++++≥++111212121.。
(完整版)均值不等式专题20道-带答案
(完整版)均值不等式专题20道-带答案均值不等式专题3学校:___________姓名:___________班级:___________考号:___________⼀、填空题1.若则的最⼩值是__________.2.若,且则的最⼤值为______________.3.已知,且,则的最⼩值为______.4.已知正数满⾜,则的最⼩值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最⼩值是______.6.设正实数满⾜,则的最⼩值为________7.已知,且,则的最⼩值是________8.已知正实数x,y满⾜,则的最⼩值是______9.已知,函数的值域为,则的最⼩值为________.10.已知,,且,则的最⼩值为__________.11.若正数x,y满⾜,则的最⼩值是______.12.已知正实数x,y满⾜,则的最⼩值为______.13.若,,,则的最⼩值为______.14.若,则的最⼩值为________.15.已知a,b都是正数,满⾜,则的最⼩值为______.16.已知,且,则的最⼩值为______.17.已知点在圆上运动,则的最⼩值为___________.18.若函数的单调递增区间为,则的最⼩值为____.19.已知正实数,满⾜,则的最⼤值为______.20.已知,,则的最⼩值为____.参考答案1.【解析】【分析】根据对数相等得到,利⽤基本不等式求解的最⼩值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题考查基本不等式求解和的最⼩值问题,关键是能够利⽤对数相等得到的关系,从⽽构造出符合基本不等式的形式. 2.【解析】【分析】先平⽅,再消元,最后利⽤基本不等式求最值.【详解】当时,,,所以最⼤值为1,当时,因为,当且仅当时取等号,所以,即最⼤值为,综上的最⼤值为【点睛】本题考查利⽤基本不等式求最值,考查基本分析求解能⼒,属中档题.3.4.【解析】【分析】直接利⽤代数式的恒等变换和利⽤均值不等式的应⽤求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应⽤,主要考查学⽣的运算能⼒和转化能⼒,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满⾜,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】由题意可得经过圆⼼,可得,再+利⽤基本不等式求得它的最⼩值.【详解】圆,即,表⽰以为圆⼼、半径等于2的圆.再根据弦长为4,可得经过圆⼼,故有,求得,则,当且仅当时,取等号,故则的最⼩值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应⽤,属于基础题.6.8【解析】【分析】根据基本不等式求最⼩值.【详解】令,则当且仅当时取等号.即的最⼩值为8.【点睛】在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.7.【解析】【分析】根据基本不等式求最⼩值.【详解】因为,当且仅当时取等号,所以的最⼩值是【点睛】由已知分离,然后进⾏1的代换后利⽤基本不等式即可求解.【详解】正实数x,y满⾜,则当且仅当且即,时取得最⼩值是故答案为:【点睛】本题主要考查了利⽤基本不等式求解最值,解题的关键是进⾏分离后利⽤1的代换,在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利⽤基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成⽴,所以的最⼩值为,故答案为.【点睛】本题主要考查⼆次函数的图象与性质,以及基本不等式的应⽤,属于中档题. 在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.10.【解析】【分析】因为,所以,=(当且仅当,即,时取等号),所以的最⼩值为,故答案为.【点睛】本题考查基本不等式及利⽤基本不等式求最值,将所求式运⽤“1”的变换,化为积为常数的形式是关键,属于中档题. 11.【解析】【分析】利⽤乘“1”法,借助基本不等式即可求出.【详解】正数x,y满⾜,则,,当且仅当时取等号,故的最⼩值是12,故答案为:12【点睛】本题考查了基本不等式及其应⽤属基础题.12.2【解析】【分析】利⽤“1”的代换,求得最值,再对直接利⽤基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满⾜,,,当且仅当,即,时,取等号,的最⼩值为2.故答案为:2.【点睛】本题考查基本不等式的应⽤,熟记不等式应⽤条件,多次运⽤基本不等式要注意“=”是否同时取到,是中档题【分析】由条件可得,即有,由基本不等式可得所求最⼩值.【详解】若,,,即,则,当且仅当取得最⼩值9,故答案为:9.【点睛】本题考查基本不等式的运⽤,注意运⽤“1”的代换,考查化简运算能⼒,属于基础题.【解析】【分析】由基本不等式,可得到,然后利⽤,可得到最⼩值,要注意等号取得的条件。
均值不等式的应用(习题+答案)
均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
高考考前复习均值不等式典型题汇编
高考考前复习均值不等式典型题汇编【典型例题】例1、若x 、y +∈R ,求4()f x x x=+)10(≤<x 的最小值。
例2、已知正数x 、y 满足811x y+=,求2x y +的最小值。
例3、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围。
例4、 求函数221632y x x =++的最小值.例5、已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.例6、 已知1x >-,求函数()()521x x y x ++=+的最小值.例7、 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 例8、已知0,0x y >>且22283y x +=求.例9、求函数25y x =+的最大值.【高考题汇编】例1、(重庆理,2005)若x ,y 是正数,则22)21()21(xy y x +++的最小值是【 】 A .3 B .27 C .4 D .29例2、(天津文,2009) 设yx b a b a b a R y x yx11,32,3,1,1,,+=+==>>∈则若的最大值为【 】A. 2B.23 C. 1 D. 21 例3.(福建文,2011)若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】A.2 B .3 C .6 D .9例4、(重庆文,2011)若函数)2(21)(>-+=x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4例5、已知54x <,求函数14245y x x =-+-的最大值.例6、函数1(3)3x x x +>-的最小值为【 】 A. 2B. 3C. 4D. 5例7、函数232(0)x x x+>的最小值为【 】A. B. 例8、(天津文,2011)已知22log log 1a b +≥,则39ab+的最小值为__________.例9、(重庆文,2009)已知0,0a b >>,则11a b++ 】A.2 B ..4 D .5 例10、(四川理,2009)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是【 】A.2B.4C.5 例11、(重庆文,2005)若y x y x -=+则,422的最大值是 .例12、(福建理,2005)设b a b a b a +=+∈则,62,,22R 的最小值是【 】A .22-B .335-C .3-D .27-例13、设,x y 是实数,且224,x y +=则22xyS x y =+-的最小值是【 】A.2-B.C. 2-1)例14、已知实数,,0a b c >满足9,24,a b c ab bc ca ++=++=,则b 的取值范围为例15、(重庆理,2011)已知2,0,0=+>>b a b a ,则14y a b=+的最小值是【 】 A.72 B .4 C .92D .5例16、(天津理,2009)设0,0.a b >>1133aba b+与的等比中项,则的最小值为 【 】A. 8B. 4C. 1D.14例17、已知,,a b c 都是正实数,且满足93log (9)log a b +=4a b c +≥恒成立的c 的取值范围是【 】A.4[,2)3B. [0,22)C. [2,23)D. (0,25]例18、(重庆文,2010)0t >已知,则函数241t t y t-+=的最小值为__________.例19、(湖北文,2004)已知4254)(,252-+-=≥x x x x f x 则有【 】A .最大值45 B .最小值45C .最大值1D .最小值1 例20、(浙江理,2011)设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .例21、(重庆文,2004)已知()2320,0x y x y+=>>,则xy 的最小值是 . 例22、(重庆理,2007)若a 是12b +与12b -的等比中项,则22aba b+的最大值为【 】A.15 B .4 C .5 D .2例22、(重庆文,2006)若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是【 】A. B. 3 C. 2例23、已知0,0,01,a b c a b c >>>++=且则222a b c ++最小值为【 】A.12 B. 13 C. 14D. 15 例24、若,,1a b R a b +∈+=,则1ab ab+的最小值为【 】 A. 144 B. 142 C. 124D. 2 例25、已知1a b +=,则44a b +的最小值是【 】A. 1B.12 C. 14D. 18例26、已知0,0,01,a b c a b c >>>++=且则222111a b c ++最小值为【 】 A. 12 B. 18 C. 24 D. 27例27、(全国1,2004),2,2,1222222=+=+=+a c c b b a 则ca bc ab ++的最小值【 】12 B .12 C .12- D .12+例28、(湖南理,2004)设,0,0>>b a 则以下不等式中不恒成立....的是【 】 A .()114a b a b ⎛⎫++≥⎪⎝⎭B .2332ab b a ≥+C .b a b a 22222+≥++ D .b a b a -≥-||例29、(陕西理,2006)已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为【 】A. 8B. 6C. 4D. 2例30、(全国1理,2008)若直线1x ya b+=通过点()cos sin M αα,,则【 】 A .221a b +≤B .221a b +≥ C .22111a b +≤ D .22111a b+≥例31、已知0,0>>b a 且1=+b a ,求证:425)1)(1(≥++b b a a . 例32、若+∈R b a ,且1=+b a ,求证:22121≤+++b a。
均值不等式的应用(习题+答案)
均值不等式的应用(习题+答案)均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则abba ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式练习题及答案解析
均值不等式练习题及答案解析一.均值不等式1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab2. 若a,b?R*,则a?b2?*?a?b222a?b时取“=”)ab 若a,b?R,则a?b?22aba?b?若a,b?R,则ab??) ?? ?2a?b2注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域y=3x解:y=3x+11y=x+xx13x =∴值域为[,+∞)2x1x· =2; x1x· =-2x1≥22x1当x>0时,y=x+≥x11当x<0时, y=x+= -≤-2xx∴值域为解题技巧:技巧一:凑项例1:已知x?54,求函数y?4x?2?14x?5的最大值。
1解:因4x?5?0,所以首先要“调整”符号,又?x?54,?5?4x?0,?y?4x?2?14x?5不是常数,所以对4x?2要进行拆、凑项,???2?3?1 ??3?1????5?4x?4x?55?4x?当且仅当5?4x?15?4x,即x?1时,上式等号成立,故当x?1时,ymax?1。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1. 当时,求y?x的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2x??8为定值,故只需将y?x凑上一个系数即可。
当,即x=2时取等号当x=2时,y?x的最大值为8。
32评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
变式:设0?x?,求函数y?4x的最大值。
322x?3?2x?9解:∵0?x?∴3?2x?0∴y?4x?2?2x?2????222??当且仅当2x?3?2x,即x?3?3???0,?时等号成立。
高考数学均值不等式专题含答案家教文理通用
高考:均值不等式专题◆知识梳理1.常见基本不等式2,0,a R a ∈≥0a ≥222()22a b a b ++≥, 222a b c ab bc ac ++≥++ 若a>b>0,m>0,则b b m a a m +<+; 若a,b 同号且a>b 则11a b<。
ab b a R b a 2,,22≥+∈则;.2,,22ab b a R b a -≥+∈2.均值不等式:两个正数的均值不等式:ab b a ≥+2 变形ab b a 2≥+,22a b ab +⎛⎫≤ ⎪⎝⎭,ab b a 222≥+等。
3.最值定理:设,0,x y x y >+≥由(1)如果x,y 是正数,且积(xy P =是定值),则 时,x y +和有最小值(2)如果x,y 是正数和(x y S +=是定值),则 时,22Sxy 积有最大值()4.利用均值不等式可以证明不等式,求最值、取值范围,比较大小等。
注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
◆课前热身1. 已知,x y R +∈,且41x y +=,则x y ⋅的最大值为 . 2. 2. 若0,0x y >>1x y +=,则41x y+的最小值为 . 3. 已知:0>>x y ,且1=xy ,则22x y x y+-的最小值是 .4. 4. 已知下列四个结论①当2lg 1lg ,10≥+≠>x x x x 时且;②02x >≥当时;③x x x 1,2+≥时当的最小值为2;④当xx x 1,20-≤<时无最大值. 则其中正确的个数为◆考点剖析 一、基础题型。
1.直接利用均值不等式求解最值。
例1:(2010年高考山东文科卷第14题)已知,x y R +∈,且满足134x y+=,则xy 的最大值为 。
(完整版)均值不等式高考一轮复习(教师总结含历年高考真题)
基础篇一、单变量部分1、 求)0(1>+=x xx y 最小值及对应的x 值答案当x=1最小值2 2、 2、(添负号)求)0(1<+=x xx y 最大值-23、(添系数)求)31,0()31(∈-=x x x y 最大值1214、(添项)求)2(24>-+=x x x y 最小值65、(添根号)02>≥x 求24x x y -=最大值26、(取倒数或除分子)求)0(12>+=x x x y 最大值217、(换元法)求)1(132>-+=x xxx y 最大值-9 8、(换元法)求)2(522->++=x x x y 最大值42二、多变量部分1、(凑系数或消元法)已知041>>a ,b>0且4a+b=1求ab 最大值161 2、(乘“1”法或拆“1”法)已知x>0,y>0,x+y=1求yx 94+最小值25 3、(放缩法)已知正数a ,b 满足ab=a+b+3则求ab 范围),9[+∞ 三、均值+解不等式1. 若正数a,b 满足ab=a+2b+6则ab 的取值范围是______),18[+∞_________2、已知x>0,y>0, x+2y+2xy=8则x+2y 的最小值__________4__________ 练习1. 已知x>0,y>0,且182=+yx 则xy 的最小值_______64_______ 2.)0(1324>++=k kk y 最小值_________2_________ 3. 设0≥a ,0≥b ,1222=+b a ,则21b a +的最大值为_________423_________4. 已知45<x ,求函数54124-+-=x x y 的最大值________1________ 5. 已知x>0,y>0且191=+yx 求x+y 的最小值______16__________ 6. 已知)0,0(232>>=+y x yx 则xy 的最小值是___6_____ 7. 已知a>0,b>0,a+b=2,则b a y 41+=的最小值______29________ 8. 已知+∈R y x ,且满足143=+yx 则xy 的最大值________3_______11、已知x>0,y>0,z>0,x-y+2z=0,则2y xz=_____________D_______ A 、最小值8 B 、最大值8C 、最小值81D 、最大值81注:消y12、设R y x ∈,则)41(12222y xy x +⎪⎪⎭⎫ ⎝⎛+的最小值是_______9_________ 13、若R b a ∈,,且ab>0,则下列不等式中,恒成立的是(D )A 、ab b a 222>+ B 、ab b a 2≥+C 、abb a 211>+ D 、2≥+b a a b 14、若a,b,c,d,x,y 是正实数,且cd ab +=P ,ydx b cy ax Q +⋅+=则有(C )A 、P=QB 、Q P ≥C 、Q P ≤D 、P>Q15、已知25≥x 则4254)(2-+-=x x x x f 有(D )A 、有最大值45 B 、有最小值45 C 、最大值1 D 、最小值116、建造一个容积为83m ,深为2m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为1760元 17、函数y=x(3-2x))10(≤≤x 的最大值为89 18、函数1)(+=x xx f 的最大值是(C )A 、52B 、21C 、22D 、119、已知正数x,y 满足141=+yx 则xy 有(C )A 、最小值161B 、最大值16C 、最小值16D 、最大值16120、若-4<x<1,则当22222-+-x x x 取最大值时,x 的值为(A )A 、-3B 、-2C 、-1D 、021、若122=+yx ,则x+y 的取值范围是(D ) A 、[0,2] B 、[-2,0] C 、),2[+∞- D 、]2,(--∞22、某商场中秋前30天月饼销售总量f(t)与时间t(300≤<t )的关系大致满足1610)(2++=t t t f 则该商场前t 天月饼的平均销售量最少为18 23、已知点P (x,y )在直线x+3y-2=0上,那么代数式yx273+的最小值是6提高篇一、函数与均值 1、)2(21>-+=a a a m ,)0(2122<⎪⎭⎫ ⎝⎛=-x n x 则m,n 之间关系_____m ≥n______________2、 设x ≥0,x x P -+=22,2)cos (sin x x Q +=则( C ) A 、Q P ≥ B 、Q P ≤ C 、P>Q D 、P<Q3、已知函数()x a x f 21+-=若()02≥+x x f 在()+∞,0上恒成立,则a 的取值范围是__),41[)0,(+∞⋃-∞_4、若对任意x>0,a x x x≤++132恒成立,则a 的取值范围是_______51≥a ____________5、函数xxxy 2log 2log +=的值域_______),3[]1,(+∞⋃--∞___________ 6、设a,b,c 都是正实数,且a,b 满足191=+ba 则使cb a ≥+恒成立的c 的取值范围是_D__A 、]8,0(B 、(0,10] C(0,12] D 、(0,16] 7、已知函数())1,0(log 1)1(≠>+=-a a ax f x 的图象恒过定点P ,又点P的坐标满足方程mx+ny=1,则mn 的最大值为_________81_____________ 8、已知函数()()),0(22+∞∈++=x xax x x f⑴当21=a 时,求f(x)的最小值答案:22+⑵若对任意),0(+∞∈x ,f(x)>6恒成立,求正实数a 的取值范围___a>4__ 9、0)1(42>-++x k x 对]3,1[∈x 恒成立,求k 的范围 10、若a+b=2则ba33+的最小值为______6___________11、设x,y,z 均为大于1的实数,且z 为x 和y 的等比中项,则yzx z lg lg lg 4lg +的最小值为A A 、89 B 、49 C 、29D 、9 12、已知a>1,b>1,且lga+lgb=6,则b a lg lg ⋅的最大值为(B )A 、6B 、9C 、12D 、1813、R y x ∈,且x+y=5,则yx33+的最小值为(D ) A 、10 B 、36 C 、64 D 、31814、设a>0,b>0,若3是a 3与b3的等比中项,则ba 11+的最小值为(B ) A 、8 B 、4 C 、1 D 、4115、函数)1,0(1≠>=-a a ay x的图象恒过点A ,若点A 在直线mx+ny-1=0(mn>0)上,则nm 11+的最小值为4 16、当x>1时,不等式a x x ≥-+11恒成立,则实数a 的取值范围是(D )A 、]2,(-∞B 、),2[+∞C 、),3[+∞D 、]3,(-∞17、函数)1,0(1)3(log ≠>-+=a a x y a 的图象恒过定点A ,若点A 在直线mx+ny+2=0上,其中m>0,n>0,则nm 12+的最小值为(D ) A 、22 B 、4 C 、25 D 、29二、数列与均值1、已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则cdba2)(+的最小值是__4_2、已知等比数列{a n}中a2=1,则其前3项的和S3的取值范围是。
基本(均值)不等式及应用41
课时跟踪检测(四十一) 基本(均值)不等式及应用[高考基础题型得分练]1.已知a ,b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b答案:D解析:只需比较a 2+b 2与a +b .由于a ,b ∈(0,1),∴a 2<a ,b 2<b ,∴a 2+b 2<a +b .2.[2018·河北张家口模拟]已知a +2b =2,且a >1,b >0,则2a -1+1b 的最小值为( )A .4B .5C .6D .8 答案:D解析:因为a >1,b >0,且a +2b =2,所以a -1>0,(a -1)+2b =1,所以2a -1+1b =⎝ ⎛⎭⎪⎪⎫2a -1+1b ·[(a -1)+2b ]=4+4b a -1+a -1b ≥4+24b a -1·a -1b =8,当且仅当4b a -1=a -1b 时取等号,所以2a -1+1b 的最小值是8,故选D.3.[2018·江西南昌一模]若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A.1ab >12B.1a +1b ≤1C.ab ≥2D.1a 2+b2≤18 答案:D解析:∵a >0,b >0,且a +b =4, ∴4=a +b ≥2ab , ∴ab ≤2,即ab ≤4.A 项,∵ab ≤4,∴1ab ≥14,故A 不恒成立; B 项,∵ab ≤4=a +b , ∴1a +1b ≥1,故B 不恒成立; C 项,∵ab ≤2,∴C 不恒成立; D 项,∵2=a +b2≤a 2+b 22,∴a 2+b 2≥8, ∴1a 2+b2≤18,∴D 恒成立. 4.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.322答案:B解析:解法一:因为-6≤a ≤3,所以3-a ≥0,a +6≥0, 则由基本(均值)不等式可知, (3-a )(a +6)≤(3-a )+(a +6)2=92, 当且仅当a =-32时等号成立. 解法二:(3-a )(a +6)=-⎝ ⎛⎭⎪⎫a +322+814≤92, 当且仅当a =-32时等号成立.5.已知x ,y ∈(0,+∞),且log 2x +log 2y =2,则1x +1y 的最小值是( )A .4B .3C .2D .1答案:D解析:1x +1y =x +y xy ≥2xy xy =2xy ,当且仅当x =y 时等号成立. ∵log 2x +log 2y =log 2(xy )=2,∴xy =4. ∴1x +1y ≥2xy=1.6.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =abC.ab <v <a +b2 D .v =a +b2答案:A解析:设甲、乙两地之间的距离为s . ∵a <b ,∴v =2ssa +sb =2ab a +b <2ab 2ab =ab . 又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a .7.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值 e C .有最小值e D .有最小值 e答案:C解析:∵x >1,y >1,且14ln x ,14,ln y 成等比数列,∴ln x ·ln y =14≤⎝ ⎛⎭⎪⎪⎫ln x +ln y 22, ∴ln x +ln y =ln xy ≥1⇒xy ≥e.8.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2答案:A解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥2(x -1)⎝ ⎛⎭⎪⎪⎫3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.9.[2018·河南开封模拟]已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是________.答案:⎝⎛⎦⎥⎤-∞,14解析:∵圆关于直线对称, ∴直线过圆心(-1,2),即a +b =1.∴ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22=14,当且仅当a =b =12时等号成立. 10.[2018·广东东莞模拟]函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为________.答案:8解析:函数y =log a (x +3)-1恒过定点A (-2,-1),又点A 在直线mx +ny +1=0上,∴2m +n =1.∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+n m +4m n ≥8,当且仅当n m =4mn ,即m=14,n =12时等号成立.11.[2018·山东潍坊模拟]已知a ,b 为正实数,直线x +y +a =0与圆(x -b )2+(y -1)2=2相切,则a2b +1的取值范围是________.答案:(0,+∞)解析:由题意知,(b,1)到x +y +a =0的距离为2,即b +1+a2=2,得a +b =1,a =1-b ,a 2b +1=(1-b )2b +1=(b +1)2-4(b +1)+4b +1 =(b +1)+4b +1-4≥2(b +1)·4b +1-4=0,当且仅当b =1,a =0时等号成立, 又a >0,b >0,所以a 2b +1>0. 12.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________.答案:2解析:依题意,得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时等号成立),即x +22xy x +y的最大值为2.又λ≥x +22xy x +y,因此有λ≥2,即λ的最小值为2.[冲刺名校能力提升练]1.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22 B .2 2 C. 2 D .2答案:D解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy ≥2.2.[2017·内蒙古包头二模]已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256 答案:A解析:解法一(常数代换法):设数列{a n }的公比为q (q >0),由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4,所以q 2-q -2=0,所以q =2.因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24,所以m +n =6,所以1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当n m =4m n 时,等号成立,所以1m +4n 的最小值为32,故选A.解法二(拼凑法):由解法一可得m +n =6,所以n =6-m , 又m ,n ≥1,所以1≤m ≤5.故1m +4n =1m +46-m =6-m +4m m (6-m )=3(m +2)m (6-m )=3m (6-m )m +2=-3[(m +2)-2][(m +2)-8]m +2=-3(m +2)+16m +2-10. 由基本不等式可得(m +2)+16m +2-10≥2(m +2)×16m +2-10=-2⎝ ⎛⎭⎪⎪⎫当且仅当m +2=16m +2,即m =2时等号成立,易知(m +2)+16m +2-10<0, 所以1m +4n ≥-3-2=32.故选A.3.[2018·河北唐山一模]已知x ,y ∈R 且满足x 2+2xy +4y 2=6,求z =x 2+4y 2的取值范围.解:∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y22, ∴6-(x 2+4y 2)≤x 2+4y22,∴x 2+4y 2≥4,当且仅当|x |=2|y |时等号成立. 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12,当且仅当x =-2y 时等号成立. 综上可知,x 2+4y 2的取值范围为[4,12]. 4.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值. 解:(1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,即xy ≤10, 当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0, ∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎪⎫7+5y x +2x y≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy 时等号成立.由⎩⎨⎧2x +5y =20,5y x =2x y ,解得⎩⎨⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020.5.[2018·江苏常州期末调研]某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式;(2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450,所以2x +7 200x ≥2 2x ×7 200x =240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.。
(完整版)均值不等式专题20道-带答案
均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。
均值不等式【高考题】
利用一、求最值之杨若古兰创作直接求 例1、若x,y 是负数,则(x +1)2+(y +1)2的最小值是【】2y LXA.3B.7C .4D .922例2、设X ,”R ,a >1,b >1,若a x -b y -3,a +b =23,则1+1的最大值为【】xyA.2B.3C.1D.122练习1.若x >0,则x +2的最小值为.x练习2.设x ,y 为负数,则(x +y )(1+4)的最小值为【】xyA.6B.9C.12D 15练习3.若a >0,b >0,且函数f (x )-4x 3一ax 2-2bx +2在x -1处有极值,则ab 的最大值等于【】A.2B.3C.6D.9练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,贝1J x -吨. 练习5.求以下函数的值域:(a +b )2的最小值是【】cd A.0B.4C.2D.1 例3、已知a>0,b >0,c >0且a +b +c —1,则(1一1)(1一1)(1一1)最小值为【】abcA.5B.6C.7D.8凑系数例4、若x ,y e R +,且x +4y -1,则x .y 的最大值是. 练习1.已知x ,y E R +,且满足x +y =1,则孙的最大值为. 34练习2.当0<x <4时,求y -x (8-2x )的最大值.凑项例5、若函数f (x )-x +1(x >2)在x -a 处取最小值,则a -【】x -2⑴y-3x 2+2:2⑵ 练习6.已知x >0,y >0, 1 y -x + x x ,a ,b ,y 成等差数列,x , d ,y 成等比数列,则A-1+2B-1+3C-3D-4练习1.已知x <5,求函数尸4,一2+,的最大值.44%—5 练习2.函数,+%(%>3)的最小值为【】%—3A.2B.3C.4D.5练习3.函数2%2+3(%>0)的最小值为【】% A-艰BYCWD-微 两次用不等式例6、已知抽a +log b >1,贝I3a +9b 的最小值为 22例7、已知a >0,b >0,则1+1+2%a 的最小值是【】ab A-2B-2R C-4D-5例8、设a >b >c >0,则2a 2+L -10ac +25c 2的最小值是【aba (a -b ) A-2B-4C-2V 5D-5练习1.设a >b >0,A-1B-2C-3D-4 练习2.设a >b >0,则a 2+1的最小值是【】b (a —b )A-2B-3C-4D-5练习3.设a >b >0,则a +1的最小值是【】 十b (2a -b )A-33/2B-3<3C-232D-33/4222 练习4.设a >2b >0,则(a -b )2+9的最小值是-b (a-2b ) 换元例9、若%2+y 2二4,则%-y 的最大值是-练习1.设a ,b G R ,a 2+2b 2=6,则a +b 的最小值是【】 A--22B--52C--3D--732 例10、设%,y 是实数,且%2+y 2=4,则S =2%y 的最小值是【】%+y -2A --2B--、2C-2-2k D-2(<2+1)练习1.若%2+y2T 盯则最大值是%y —±,%+y -1 练习2.若0<a <1,0<%<y <1,且(log x )(log y )二1则冲【】aa 消元例11、设x ,y ,z 为正实数,满足%.2y +3z =0,则竺的最小值是. xz练习1.已知实数a ,b ,c 〉0满足a +b +c =9,ab +b c +ca=24,,则b 的取值范围为 两次用 11 a 2+—+j aba (a —b ) 的最小值是【例12、已知负数x,y,z满足x2+y2+z2=1,则S=上z的最小值是【】2xyzA.3B.3a+;")C.4D.2(v2+1)练习1.已知负数x,y,z满足x2+y2+z2=1,则S=上的最小值是【】2xyz2A.3B.9C.4D.2c2练习2.已知x,y,z均为负数,则盯+y z的最大值是【】x2+y2+z2A.q初C.2,/2D.2V3练习3.已知实数x,y,z满足x2+y2+z2=1,则尤xy+yz的最大值是全体代换例13、已知〃>0,b>0,a+b=2,贝y=1+4的最小值是【】abA.7B.4C.9D.5例14、函数y=a-(a>0,a01)的图象恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则I—+—的最小值为.mn例15、设a>0,b>0,若4万是3a与3b的等比中项,则1+1的最小值为abA.8B.4C.1D.14、例16、已知a,b,c都是正实数,且满足log(9a+b)=log abb,则使4a+b>c恒成93立的c的取值范围是A.[4,2)B.[0,22)C.[2,23)D.(0,25]练习1.函数klogG+3)」(〃>0且a=1)的图象恒过定点A,若点A在直线a mx+ny+1=0上,其中mn>0,则1+2的最小值为.mn练习2.若x,y e R+,且2x+y=1,则L1的最小值为.xy练习3.已知x>0,y>0,且1+9=1,求x+y的最小值.xy练习4.若x,y e R+且2x+y=1,求11的最小值.+xy练习5.已知a,b,x,y e R+且ab[,求x+y的最小值.+=1xy练习6.已知x>1,x>1,xx2=1000,则上+▲的最小值等于【I1212lg x lg x12A.4B,4<6C,7+2、落D.7—261-33练习7.若0<x<1,a,b为常数,则竺+上的最小值是x 1一x练习8.已知a >b >也,+'>与恒成立,则m 的取值范围是a -bb -ca 一c 练习9.a ,b e(0,+8),a +3b =1,则+_L 最小值为aa33b分离法【分式】例17、已知t >0,则函数y ='2一4t +1的最小值为.t例18、已知x >5,则f (x )=x 2一4x +5有【】 22x -4A.£大值58.最小值50最大值1口.最小值1 练习1.求y =x 2+7x +10(x >_1)的值域.x +1练习2.若x >1,则函数y =x +1+上的最小值为.'xx 2+1放缩法——解不等式例19、设x ,y 为实数,若4x 2+y 2+町=1,则2x +y 的最大值 是.例20已知2+1=2(x >0,y >0),则xy 的最小值是.xy 例21、若a 是1+2b 与1_2b 的等比中项,则2ab 的最大值为【】a +2bA.空B.,翔C.V5D.\;215丁"5"万 练习1.若实数x ,y 满足x 2+y 2+町=1,则x +y 的最大值是. 练习2.若正实数X ,Y 满足2X +Y +6=XY ,则XY 的最小值是 练习3.已知x >0,y >0,x +2y +2町=8,则X +2y 的最小值是【】A.3B.4C.£D.q练习4.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值.练习5:已知5+2=2(X >0,y >0)恒成立,则xy 的最小值是. Xy 练习6.若直角三角形周长为1,求它的面积最大值. 练习7.若实数X ,y 满足4X +4y =2X +1+2y +1则t=2X +2y 的取值范围是 取平方例22、若a ,b ,c >0且a 2+2ab +2ac +4bc =12,则a +b +c 的最小值是【】A.2x /3B .3C .2D .<3练习1.若a ,b ,c>0且a (a+b+c )+bc =4-2a ,则2a +b +c 的最小值为【】A -<3-1B .\;3+1C .2七3+2D.2,;3-2练习2.已知X ,y 为正实数,3X +2y =10,求函数w =3X +2y 的最值.取平方+解不等式 例23、已知a>0,b>0,c >0且a +b+c =1,则a 2+b 2+c 2最小值为【】A.1B.1C.1D.1结合2单3调性4——5与函数例24、若a ,b e R +,a +b=1,则ab+-1的最小值为【】abA.41B.41C.°1D,2 44224-练习1,求函数丫_%2+5的值域. y _E练习2.求以下函数的最小值,并求取得最小值时工的值. ⑴y _X 2+3X +1,(X >0)(2)y _2X +—,X >3X X -3(3)y _2sin X +—i —,X e (0,兀)sin X练习3.已知0<%<1,求函数y =\X E )的最大值. 练习4.0<X <2,求函数y _.X 2F 的最大值.3 练习5.设a ,b e R +且2a+b_1,S_2ab-4a 2-b 2的最大值是【】A.2-1B.2-1C.2+1D.2+122例25、已知0+b_1,则a 4+b 4的最小值是【】A.1B.£C.1D.1练习1.若实数a ,b ,c 满足2a +2b =2a +b ,2a +2b +2c =2a +b +c ,则c 的最大值是 用另一个公式例26、函数、3+4=7的最大值为.练习1.已知a ,b G R+,a 2+吃=1,,则a 、瓦的最大值是【】2 A.1B.1C.32D.三212例27、已知a 〉0,b >0,c >0且a+b+c =1,则工+_!+_!最小值为【】a 2b 2c 2A.12B.11C.21D.27直接取值【讨论】例28、a 2+b 2-1,b 2+c 2-2,c 2+a 2=2,则ab +bc +ca 的最小值【】A.右一1B.1_、,3C.-1_,运D.1+;32222利用二、恒成立成绩例1、若a ,b e R ,且ab>0,则以下不等式中,恒成立的是【】 A,a 2+b 2>2ab B-a +b>2、/abC 112ba 、C*-+->^=D--+->2ababbab 例2、设a ,b ,c 是互不相等的负数, A*|a -b 1<1a -c 1+1b -c I B,a 2+—>a +1a 2a0*I a -b I +>2D *a+3-a+1<a+2-aa -b例3、设a >0,b>0,则以下不等式中不恒成立的是【••••a 2+b 2+2>2a +2b *I a —b I >a —例4、已知不等式a+y )(i+a )>9对任意正实数羽》恒成立,则正实数a xy的最小值为【】 A.8B.6C.4D.2例5、若直线x +y =1通过点M (cos a ,sin 。
高中均值不等式讲解及习题
高中均值不等式讲解及习题一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
高考数学 均值不等式专题试卷
高考数学 均值不等式专题试卷1.设a 、b∈R +2.若a 、b 、c∈R +,且a +b +c =13.设a 、b 、m∈R +,且b b m a a m<++,求证:a >b.4.若a 、b∈R +,且a≠b,MN M 与N 的大小关系. 5.用数学归纳法证明不等式1111122n n n n ⋯>++++++(n>1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的结果是A ,求代数式A.6.求证:a 2+b 2≥ab +a +b -1.7.已知a>0,b>08.已知x 、y 、z 均为正数,求证:111x y z yz zx xy x y z≥++++9.已知a>0a +1a -2.103a b c≥++ 11.若实数x 、y 、z 满足x +2y +3z =a(a 为常数),求x 2+y 2+z 2的最小值.12.用数学归纳法证明:当n 是不小于5的自然数时,总有2n >n 2成立.13.求函数y 14.设x 、y∈R,求2222114x y y x ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭++的最小值. 15.已知a 、b 、m 、n 均为正数,且a +b =1,mn =2,求(am +bn)(bm +an)的最小值.16.设x 、y 、z∈R,且满足x 2+y 2+z 2=1,x +2y +3z x +y +z 的值.17.已知a≥b>0,求证:2a 3-b 3≥2ab 2-a 2b.18.设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ca≤13;(2)222a b c b c a++≥119.已知正数a 、b 、c 满足abc =1,求证:(a +2)(b +2)(c +2)≥27.20.已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a,b,c∈R,且11123a b c++=m,求证:a+2b+3c≥9.21.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.22.(1)求函数y(2)若函数y=a的值.四、新添加的题型参考答案12-2=22≥022≤(12+12+12)(a+b+c)=33.见解析【解析】由b b ma a m<++,得b b m b a ma a m a a m+(-)-=+(+)<0.因为a、b、m∈R+,所以b-a<0,即b<a. 4.M>NM>N.5.1(2122k k+)(+)【解析】当n=k时,左边=11112k k k k⋯++++++,n=k+1时,左边=12k++13k++…+111k k(+)+(+),故左边增加的式子是11121221k k k+-+++,即A=1(2122k k+)(+) 6.见解析【解析】∵(a2+b2)-(ab+a+b-1)=a2+b2-ab-a-b+1=12(2a2+2b2-2ab-2a-2b+2)=12[(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)]=12[(a-b)2+(a-1)2+(b-1)2]≥0.∴a2+b2≥ab+a+b-1.7.见解析【解析】(证法1)∵-(+)=+=2(-0,∴原不等式成立. (证法2)-1=1.又a>0,b>08.见解析【解析】(证法1:综合法)因为x 、y 、z 都是正数,所以x y yz zx +=1()x y z y x+≥2z .同理可得y z zx xy +≥2x ,x z yz xy +≥2y.将上述三个不等式两边分别相加,并除以2,得 111x y z yz zx xy x y z≥++++. (证法2:分析法)因为x 、y 、z 均为正数,要证111x y z yz zx xy x y z≥++++.只要证222x y z xyz++≥yz zx xy xyz ++,只要证x 2+y 2+z 2≥yz +zx +xy ,只要证(x -y)2+(y -z)2+(z -x)2≥0,而(x -y)2+(y -z)2+(z -x)2≥0显然成立,所以原不等式成立.9.见解析a +1a -2,+2≥a+1a只需证a 2+21a +4+a 2+21a +2+1a a ⎫+⎪⎭+2, 即证1a a ⎫+⎪⎭,只需证4221a a ⎛⎫ ⎪⎝⎭+≥22212a a ⎛⎫+ ⎪⎝⎭+, 即证a 2+21a≥2,此式显然成立. ∴原不等式成立. 10.见解析【解析】∵(12+12+12)(a 2+b 2+c 2)≥(a+b +c)2,∴2223a b c ++≥()29a b c ++3a b c ≥++ 11.214a【解析】∵(12+22+32)(x 2+y 2+z 2)≥(x+2y +3z)2=a 2,即14(x 2+y 2+z 2)≥a 2,∴x 2+y 2+z 2≥214a ,即x 2+y 2+z 2的最小值为214a .12.见解析【解析】(1)当n =5时,25>52,结论成立.(2)假设当n =k(k N *∈,k ≥5)时,结论成立,即有2k>k 2,那么当n =k +1时,左边=2k +1=2·2k >2·k 2=(k +1)2+(k 2-2k -1)=(k +1)2+(k -1--1+1)2=右边.∴也就是说,当n =k +1时,结论成立.∴由(1)、(2)可知,不等式2n>n 2对n N *∈,n ≥5时恒成立. 13.3【解析】∵y 2=2≤[12+2](1-x +2+x)=3×3,∴y ≤3,时取“=”号,即当x =0时,y max =3. 14.9【解析】由柯西不等式,得2222114x y y x ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭++≥(1+2)2=9.∴2222114x y y x ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭++的最小值为9.15.2【解析】利用柯西不等式求解,(am +bn)(an 2=mn·(a+b)2=2·1=2,且仅当am bn an bm=即m =n 时取最小值2.16.7【解析】由柯西不等式可知(x +2y +3z)2=14≤(x 2+y 2+z 2)·(12+22+32), 因为x 2+y 2+z 2=1,所以当且仅当123x y z ==时取等号.此时y =2x ,z =3x 代入x +2y +3z x =14,即y =14,z =14,所以x +y +z 17.见解析【解析】∵2a 3-b 3-2ab 2+a 2b =(2a 3-2ab 2)+(a 2b -b 3)=2a(a 2-b 2)+b(a 2-b 2)=(a 2-b 2)(2a +b)=(a +b)(a -b)(2a +b), 又a≥b>0,∴a +b>0,a -b≥0,2a +b≥0, ∴(a +b)(a -b)(2a +b)≥0,∴2a 3-b 3-2ab 2+a 2b ≥0,∴2a 3-b 3≥2ab 2-a 2b. 18.(1)见解析(2)见解析【解析】(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca.由题设得(a +b +c)2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca)≤1,即ab +bc +ca≤13. (2)因为2a b +b≥2a,2b c +c≥2b,2c a+a≥2c,故222a b c b c a +++(a +b +c)≥2(a+b +c),即222a b c b c a ++≥a +b +c. 所以222a b c b c a++≥1.19.见解析【解析】(a +2)(b +2)(c +2)=(a +1+1)(b +1+1)(c +1+1)≥33327(当且仅当a =b =c =1时等号成立). 20.(1)m =1(2)见解析【解析】(1)∵f(x+2)=m -|x|≥0,∴|x|≤m ,∴m ≥0,-m≤x≤m, ∴f(x +2)≥0的解集是[-1,1],故m =1. (2)由(1)知11123a b c++=1,a 、b 、c∈R,由柯西不等式得a +2b +3c =(a +2b +3c)11123a b c⎛⎫⎪⎝⎭++≥)2=9.21.(1)x=12,y=13,z=16(2)t≥6【解析】(1)∵(2x2+3y2+6z2)(111236++)≥(x+y+z)2=1,当且仅当111==时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=12,y=13,z=16.(2)∵(2x2+3y2+tz2)11123t⎛⎫⎪⎝⎭++≥(x+y+z)2=1,∴(2x2+3y2+tz2)min=1516t+.∵2x2+3y2+tz2≥1恒成立,∴1516t+≥1.∴t≥6.22.(1)2)2【解析】(1)∵(2≤(1+1)(x-1+5-x)=8,当且仅当x=3时,y max=2=⎛⎝2≤(a2+4)(x+1+32-x)=52(a2+4),由已知52(a2+4)=20得a=±2,又∵a>0,∴a=2.。
均值不等式专题20道-带答案
均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。
高考均值不等式经典例题
2022年3月23日;第1页共1页 高考【1】均值不等式经典例题1.已知正数,,a b c 满足215b ab bc ca +++=,则58310a b c +++的最小值为。
2.设M 是ABC 内一点,且23,30AB AC A =∠=︒,定义()(,,)f M m n p =,其中,,m n p 分别是,,MBC MCA MAB 的面积,若1()(,,)2f M x y =,则14x y +的最小值为. 3.已知实数1,12m n >>,则224211n m m n +--的最小值为。
4.设22110,21025()a b c a ac c ab a a b >>>++-+-的最小值为。
5.设,,a b c R ∈,且222,2222a b a b a b c a b c ++++=++=,则c 的最大值为。
6.已知ABC 中,142,10sin sin a b A B +=+=,则ABC 的外接圆半径R 的最大值为。
7.已知112,,339a b ab ≥≥=,则a b +的最大值为。
8.,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为。
9.,,,()4a b c R a a b c bc +∈+++=-2ab c ++的最小值为。
10.函数()f x =11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为。
12.若*3()k k N ≥∈,则(1)log k k+与(1)log k k -的大小:。
13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z取最大值时,212x y z +-的最大值为。
14.若平面向量,a b 满足23a b -≤,则a b ⋅的最小值为。
15.的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为。
高中均值不等式讲解及习题
高中均值不等式讲解及习题一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式常考题型
均值不等式及其应用【1】一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab ba ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式【高考题】.
0 ,则 x
2
的最小值为
.
x
练习 2. 设 x, y 为正数 , 则 ( x
1 y )(
4 ) 的最小值为【
】
xy
A.
6
B.
9
C.
12
D.
15
练习 3. 若 a 0, b 0, 且函数 f ( x) 4x3 ax2 2bx 2 在 x 1处有极值,则 ab 的最大值等于【
A.
2
B
.3
C
.6
D
.9
练习 4. 某公司一年购买某种货物 400 吨,每次都购买 x 吨,运费为 4 万元 / 次,一年的总存储费用为
】
x3
A. 2
B.
3
C.
4
D.
练习 3. 函数 2x2 3 (x 0) 的最小值为【
】
x
【】
.4
5
9 A. 33
2
B. 43 9
53 9
D.
9
3
2
2
2
】
4x 万
两次用不等式
例 6、 已知 log 2 a log 2 b 1,则 3a 9b 的最小值为 __________.
例 7、 已知 a 0, b 0 ,则 1 1 2 ab 的最小值是【
.
练习 1. 设 a, b R , a 2 2b 2 6,则a b 的最小值是【 】
4 5 334 2
A . 22
B . 53 3
例 10、 设 x, y 是实数,且 x2 y2 4, 则 S
C. 3
D. 7 2
2 xy
的最小值是【 】
x y2
A. 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均值不等式高考题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]应用一、求最值直接求例1、若x ,y 是正数,则22)21()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .29例2、设yx b a b a b a R y x yx 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】A. 2B. 23C. 1D. 21练习1.若0x >,则2x x+的最小值为 .练习2.设,x y 为正数, 则14()()x y x y++的最小值为【 】A.6B. 9C. 12D. 15练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】A.2 B .3 C .6 D .9练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域:(1)22213x x y += (2)xx y 1+=练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd+的最小值是【 】A.0B.4C.2D.1例3、已知0,0,01,a b c a b c >>>++=且则111(1)(1)(1)a b c---最小值为【 】A. 5B. 6C. 7D. 8凑系数例4、若x y ∈+R ,,且14=+y x ,则x y ⋅的最大值是 .练习1.已知,x y R +∈,且满足134x y+=,则xy 的最大值为 . 练习2. 当40<<x 时,求(82)y x x =-的最大值. 凑项例5、若函数)2(21)(>-+=x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4练习1.已知54x <,求函数14245y x x =-+-的最大值.练习2.函数1(3)3x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5练习3.函数232(0)x x x +>的最小值为【 】B.例6、已知22log log 1a b +≥,则39ab+的最小值为__________.例7、已知0,0a b >>,则11b++ 】A.2 B ..4 D .5例8、设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是【 】A.2B.4C.5练习1.设0a b >>,则()211a ab a a b ++-的最小值是【 】 A. 1 B. 2 C. 3 D. 4练习2.设0a b >>,则21()a b a b +-的最小值是【 】 A. 2 B. 3 C. 4 D. 5练习3.设0a b ≥>,则1(2)a b a b +-的最小值是【 】A. C. 练习4.设20a b >>,则29()(2)a b b a b -+-的最小值是 .换元例9、若y x y x -=+则,422的最大值是 .练习1.设b a b a b a +=+∈则,62,,22R 的最小值是【 】A .22-B .335-C .3-D .27-例10、设,x y 是实数,且224,x y +=则22xy S x y =+-的最小值是【 】A.2-B.C. 2-1) 练习1.若221,x y +=1xyx y +-则最大值是练习2.若01,01,a x y <<<≤<且(log )(log )1a a x y =则xy 【 】 A.无最大值也无最小值 B.无最大值但有最小值 C.有最大值但无最小值 D.有最大值也有最小值 消元例11、设,,x y z 为正实数,满足230x y z -+=,则2y xz的最小值是 .练习1。
已知实数,,0a b c >满足9,24,a b c ab bc ca ++=++=,则b 的取值范围为两次用例12、已知正数,,x y z 满足2221,x y z ++=则12zS xyz+=的最小值是【 】A. 3 C. 4 D. 1) 练习1。
已知正数,,x y z 满足2221,x y z ++=则212S xyz=的最小值是【 】A. 3B.92C. 4D. 练习2.已知,,x y z 均为正数,则222xy yzx y z+++的最大值是【 】A.2 D.练习3.已知实数,,x y z 满足2221,x y z ++=yz +的最大值是整体代换例13、已知2,0,0=+>>b a b a ,则14y a b=+的最小值是【 】 A.72 B .4 C .92D .5 例14、函数1(01)xy a a a -=>≠,的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n+的最小值为 .例15、设0,0.a b >>1133a ba b+与的等比中项,则的最小值为A. 8B. 4C. 1D. 14例16、已知,,a b c 都是正实数,且满足93log (9)log a b +=4a b c +≥恒成立的c 的取值范围是A.4[,2)3B. [0,22)C. [2,23)D. (0,25]练习1.函数log (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为__________. 练习2.若+∈R y x ,,且12=+y x ,则yx 11+的最小值为 .练习3.已知0,0x y >>,且191x y+=,求x y +的最小值.练习4.若+∈R y x ,且12=+y x ,求yx11+的最小值.练习5.已知+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值.练习6.已知212121,1,1000,x x x x >>=则1213lg lg x x +的最小值等于【 】 A. 4练习7.若01,,x a b <<为常数,则221a b x x+-的最小值是 练习8.已知11ma b c a b b c a c>>+≥---且恒成立,则m 的取值范围是 练习9.,(0,),31,a b a b ∈+∞+=最小值为 分离法【分式】例17、0t >已知,则函数241t t y t-+=的最小值为__________.例18、已知4254)(,252-+-=≥x x x x f x 则有【 】A .最大值45B .最小值45C .最大值1D .最小值1练习1.求2710(1)1x x y x x ++=>-+的值域. 练习2.若1x >,则函数21161xy x x x =+++的最小值为 .放缩法—— 解不等式例19、设,x y 为实数,若2241,x y xy ++=则2x y +的最大值 是 .例20已知()2320,0x y x y+=>>,则xy 的最小值是 . 例21、若a 是12b +与12b -的等比中项,则22aba b+的最大值为【 】A.15B.4 C.5 D.2 练习1.若实数,x y 满足221x y xy ++=,则x y +的最大值是__________.练习2.若正实数,X Y 满足26,X Y XY ++= 则XY 的最小值是 练习3.已知0,0,228x y x y xy >>++=,则2x y +的最小值是【 】A.3B.4C.92D.112练习4.已知1)(,0,0=+->>b a ab b a ,求b a +的最小值.练习5:已知532(0,0)x y x y+=>>恒成立,则xy 的最小值是 .练习6.若直角三角形周长为1,求它的面积最大值.练习7.若实数,x y 满足114422x y x y +++=+则22x y t =+的取值范围是 取平方例22、若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是【 】A. B. 3 C. 2练习1.若,,0a b c >且()4a a b c bc +++=-则2a b c ++的最小值为【 】11 C. 2 D. 2 练习2.已知y x ,为正实数,1023=+y x ,求函数y x W 23+=的最值. 取平方+解不等式例23、已知0,0,01,a b c a b c >>>++=且则222a b c ++最小值为【 】 A.12 B. 13 C. 14D. 15 结合单调性——与函数例24、若,,1a b R a b +∈+=,则1ab ab+的最小值为【 】 A. 144 B. 142 C. 124D. 2练习1.求函数2y =的值域.练习2.求下列函数的最小值,并求取得最小值时x 的值.(1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x xπ=+∈练习3.已知01x <<,求函数y .练习4.203x <<,求函数y . 练习5.设+∈R b a ,且2242,12b a ab S b a --==+的最大值是【 】A.12-B.212- C.12+ D.212+ 例25、已知1a b +=,则44a b +的最小值是【 】A. 1B. 12C. 14D. 18练习1.若实数,,222,2222,a b a b a b c a b ca b c c ++++=++=满足则的最大值是的最大值为 .练习1.已知22,,1,2b a b R a +∈+=,则的最大值是【 】A. 1B.122例27、已知0,0,01,a b c a b c >>>++=且则222111a b c ++最小值为【 】 A. 12 B. 18 C. 24 D. 27 直接取值【讨论】例28、,2,2,1222222=+=+=+a c c b b a 则ca bc ab ++的最小值【 】12B .12- C .12-D .12+应用二、恒成立问题例1、若,a b R ∈,且0ab >,则下列不等式中,恒成立的是【 】A .222a b ab +> B .a b +≥C .11a b +>.2b a a b +≥例2、设,,a b c 是互不相等的正数,则下列等式中不恒成立....的是【 】A .||||||c b c a b a -+-≤-B .aa a a 1122+≥+ C .21||≥-+-ba b a D .a a a a -+≤+-+213 例3、设,0,0>>b a 则以下不等式中不恒成立....的是【 】A .()114a b a b ⎛⎫++≥⎪⎝⎭ B .2332ab b a ≥+ C .b a b a 22222+≥++ D .b a b a -≥-||例4、已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a的最小值为【 】A. 8B. 6C. 4D. 2例5、若直线1x ya b+=通过点()cos sin M αα,,则【 】 A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 练习1.设+∈R b a ,,则下列不等式中不成立的是【 】A.4)11)((≥++b a b aB.ab ab b a 222≥+C.21≥+abab D.ab b a ab ≤+2 练习2.已知下列不等式:①)(233+∈>+R x x x ;②),(322355+∈+≥+R b a b a b a b a ;③)1(222--≥+b a b a . 其中正确的个数是【 】A.0个B.1个C.2个D.3个 练习3.已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围. 练习4.若+∈R y x a ,,,且y x a y x +≤+恒成立,则a 的最小值是【 】A.22B.2C.2D.1练习5.已知,a b R +∈,则使不等式333()()a b k a b +≤+成立的最小k 的值是【 】 A.1B. 2C. 3D. 4练习6.是否存在常数c ,使得不等式yx yy x x c y x y y x x +++≤≤+++2222对任意正数y x ,恒成立,试证明你的结论.应用三、证明不等式例1、已知0,0>>b a 且1=+b a ,求证:425)1)(1(≥++b b a a . 例2、若+∈R b a ,且1=+b a ,求证:22121≤+++b a .例3、已知z y x ,,是互不相等的正数且1=++z y x ,求证:8)11)(11)(11(>---z y x .练习1.在某两个正数y x ,之间插入一个数a ,使y a x ,,成等差数列;若插入两个数c b ,,使y c b x ,,,成等比数列,求证:)1)(1()1(2++≥+c b a .练习2.证明:对于任意实数,,y x 有244)(21y x xy y x +≥+.应用四、比较大小 例1、若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是 .例2、若b a b a ≠<<<<且,10,10,则ab b a ab b a 2,,2,22++中最大的是 .练习1.若12120,0a a b b <<<<,且12121a a b b +=+=,则下列代数式中值最大的是【 】 A. 1122a b a b + B. 1212a a b b + C. 1221a b a b + D.21。