高中物理机械能守恒典型例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K

图5-4-10

K

图5-4-9

θ

图5-1-1

θ

N F N

G

物理机械能守恒经典例题

1.如图5-4-6所示,质量为m 和3m 的小球A 和B ,系在长为L 的细线两端,桌面水平光滑,高h (h

C .

3/gh

D .

6/gh

2.如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运动到B 点,不计滑轮的大小,不计绳与滑轮的质量及绳、滑轮间的摩擦,H=2.4 m,α=37°,β=53°,求绳的拉力对物体所做的功.

【解析】绳的拉力对物体来说是个变力(大小不变,方向改变),但分析发现,人拉绳却是恒力,于是转换研究对象,用人对绳子做的功来求绳对物体所做的功W =F ·l =F (βαsin sin H H -)=100 J

【答案】W =F ·l =F (β

αsin sin H H -)=100J

3..如图5-4-9所示,粗细均匀的U 形管内装有总长为4L 的水.开始时阀

门K 闭合,左右支管内水面高度差为L .打开阀门K 后,左右水面刚好相 平时左管液面的速度是多大?(管的内部横截面很小,摩擦阻力忽略不计) 【解析】由于不考虑摩擦阻力,故整个水柱的机械能守恒从初始状态 到左右支管水面相平为止,相当于有长L /2的水柱由左管移到右管 如图5-4-10所示.系统的重力势能减少, 动能增加.该过程中,整个水柱势能的减少 量等效于高L /2的水柱降低L /2重力势能

的减少.设L/2水柱的质量为m ,则整个 水柱的质量为8mg ,由机械能守恒定律有

282

1

2v m L mg ⋅⋅=⋅

,得8

gL v =. 4.如图5-1-1所示,小物体位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物体沿斜面下滑的过程中,斜面对小物体的作用力( )

A.垂直于接触面,做功为零;

B.垂直于接触面,做功不为零;

C.不垂直于接触面,做功为零;

D.不垂直于接触面,做功不为零.

5-4-6

F β

B A

α H

图5-1-3

【解析】由于斜面是光滑的,斜面对物体的作用力只有支持力N ,方向一定垂直于斜面.若斜面固定不动,物体沿斜面运动时,支持力N 与物体位移方向垂直,不做功,但当斜面不固定时,物体沿斜面下滑的同时,在N 的反作用力作用下,斜面要向后退,如图5-1-1所示,物体参与了两个分运动:沿斜面的下滑;随斜面的后移,物体的合位移l 与支持力N 的夹角α大于90°,故支持力N 对物体做负功,做功不为零.选项B 正确.

5.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.

因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供

向心力,根据牛顿第二定律可列R v m mg c 2= 得 gR m R v m c 2

212

=

在圆轨道最高点小球机械能: mgR mgR E C 22

1

+=

在释放点,小球机械能为: mgh E A =

根据机械能守恒定律

A C E E =

列等式:R mg mgR mgh 22

1+= 解得R h 25=

同理,小球在最低点机械能 22

1B

B mv E = gR v E E B C

B 5==

小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列

mg F R

v m

mg F B 62

==-

据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下. 6.如图5-5-3所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴.AO 、BO 的长分别为2L 和L .开始时直角尺的AO 部分处于水平位置而B 在O 的正下方.让该系统由静止开始自由转动,求:

图5-5-1

A

B O

图5-5-3 A

A

B

O v

v /2 图5-5-4

⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;⑶开始转动后B 球可能达到的最大速度v m .

【解析】以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒.

(1)过程中A 的重力势能减少,A 、B 的动能和B 的重力势能增加, A 的即时速度总是B 的2倍, 如图5-5-4所示. 由系统机械能守恒有:

2

22321221322⎪⎭

⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v =

⑵B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位置比OA 竖直位置向左偏了α角.如图5-5-5所示, 由系统机械能守恒有:

2mg ∙2L cos α=3mg ∙L (1+sin α),此式可化简为 4cos α-3sin α=3,利用三角公式可解得 sin(53°-α)=sin37°,α=16°

⑶B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G .设OA 从开始转过θ角时B 球速度最大,如图5-5-6所示.

()22

32

12221v m v m ⋅⋅+⋅⋅ =2mg ∙2L sin θ-3mg ∙L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ∙L , 解得11

4gL v m

= 7.如图5-5-7所示,在质量不计长为L 的不能弯曲的轻直杆的一端和中点分别固定两个质量均为m 的小球A 、B ,杆的另一端固定在水平轴O 处,杆可以在竖直面内无摩擦地转动,让杆处于水平状态,从静止开始释放,当杆转到竖直位置时,两球速度v A 、v B 分别为多少?

【解析】AB 两球和地球组成的系统由于只有重力势能跟动能的相互转化,所以机械能守恒.初、末态分别选在水平位置、竖直位置,零

势面选在竖直位置时,A 球所在的水平面,由机械能守恒定律得:

图5-5-7

O A

B

α

α

B

O θ

A

θ A

图5-5-6

相关文档
最新文档