【一年创新导向】2018版中考数学:2.4-不等式与不等式组(含答案)
2018年重庆市中考一轮复习《2.4不等式(组)的解法》同步练习含答案
第节不等式(组)的解法及不等式的应用(建议答题时间:分钟)基础过关. (株洲)己知实数、满足+>+,则下列选项可能错误的是( )>. +>+. -<-. >. (眉山)不等式->的解集是( ). <-. <->-. >-. (安徽)不等式->的解集在数轴上表示为( ). (益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )第题图. .. (湖州)一元一次不等式组的解是( ). >- . ≤.-<≤ . >-或≤. (山西)将不等式组的解集表示在数轴上,下面表示正确的是( ). (遵义)不等式-≥-的非负整数解有( ). 个. 个 . 个. 个. (金华)若关于的一元一次不等式组的解是<,则的取值范围是( ). ≥ . > . ≤ . <. (百色)关于的不等式组的解集中至少有个整数解,则正数的最小值是( ). . . .. (上海)不等式组的解集是.. (龙东)若关于的一元一次不等式组无解,则的取值范围是.. (通辽)不等式组的整数解是.. (牡丹江)某种商品的进价为每件元,商场按进价提高后标价,为增加销量,准备打折销售,但要保证利润率不低于,则至多可以打折.. (烟台)运行程序如图所示,从“输入实数”到“结果是否<”为一次程序操作,第题图若输入后程序操作仅进行了一次就停止,则的取值范围是.. (宜宾)若关于、的二元一次方程组的解满足+>,则的取值范围是.. (绍兴)解不等式:+≤(+).. (黄冈)解不等式组:.. (北京)解不等式组:.. (宁夏)解不等式组:.. (甘肃)解不等式组,并写出该不等式组的最大整数解.. (长沙)解不等式组,并把它的解集在数轴上表示出来.第题图. (呼和浩特)已知关于的不等式>-.()当=时,求该不等式的解集;()取何值时,该不等式有解,并求出解集.. (广西四市联考)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在年图书借阅总量是本,年图书借阅总量是本.()求该社区的图书借阅总量从年至年的年平均增长率;()已知年该社区居民借阅图书人数有人,预计年达到人,如果年至年图书借阅总量的增长率不低于年至年的年平均增长率,那么年的人均借阅量比年增长,求的值至少是多少?. (绥化)甲、乙两个工程队计划修建一条长千米的乡村公路,已知甲工程队每天比乙工程队每天多修路千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的倍.()求甲、乙两个工程队每天各修路多少千米?()若甲工程队每天的修路费用为万元,乙工程队每天的修路费用为万元,要使两个工程队修路总费用不超过万元,甲工程队至少修路多少天?. (泰安)某水果商从批发市场用元购进了大樱桃和小樱桃各千克,大樱桃的进价比小樱桃的进价每千克多元,大樱桃售价为每千克元,小樱桃售价为每千克元.()大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?()该水果商第二次仍用元钱从批发市场购进了大樱桃和小樱桃各千克,进价不变,但在运输过程中小樱桃损耗了.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的,大樱桃的售价最少应为多少?满分冲关. 如果关于的方程-(-)+-=有实数根,且关于的不等式组无解,那么符合条件的所有整数的个数为( ).. . . .. (重庆九龙坡区适应考试)已知关于的不等式组只有个非负整数解,且关于的分式方程+=有整数解,则所有满足条件的整数的值的个数为( ). . . .. (重庆一中一模)从,,,,,这个数中,随机抽取一个数,记为,若数使关于的不等式组无解,且使关于的分式方程=的解为非负数,那么这个数中所有满足条件的的值之积是( ). . . .. (重庆育才三模)年俄罗斯世界杯亚洲区强赛组第轮比赛于年月日进行,中国国家队将客场挑战叙利亚队,“爱我中华”球迷协会准备到现场为中国队加油助威,并计划购买、两种球票共张.()若种票的数量不少于种票的倍,求至少购买多少张种票;()“爱我中华”球迷协会从销售处得知,由于团体购票有一定优惠,本场比赛的球票以统一价格(+)元出售给该协会,由于路途遥远,部分球迷放弃现场看球的计划,协会最后购买的票数在原计划的基础上减少(+),购票总共用去元,求的值(>).. (重庆南开阶段测试一)月份,型汽油均价为元升,型汽油均价为元升,某汽车租赁公司购买这两种型号的汽油共支付元;月份,这两种型号的汽油均价都上调了元升,该公司要购买与月份型汽油和型汽油数量都相同的汽油就需多支付费用.()若多支付的费用不超过元,那么该公司月或月最多可购买型汽油多少升?()月份,该公司型汽油的购买量在()小题中月份最多购买量的基础上减少了,但型汽油的均价在月份的基础上上调了元,因此月份支付种型号汽油的费用与()小题中月份支付最多数量型汽油的费用相同,求的值.. (重庆大渡口区二模)某文具店分别以每本元和元的价格一次性购进了、两种笔记本各若干本,共用去了元,种笔记本按每本获利的价格销售,种笔记本每本售价是种笔记本每本售价的倍,经过一段时间后,这两种笔记本都销售完毕,经统计,销售这两种笔记本共获利元.()该文具店此次购进的、两种笔记本各多少本?()调查市场需求后,该文具店又以上次相同的价格购进了相同数量的、两种笔记本.由于市场原因,该文具店调整了这两种笔记本的销售单价,种笔记本每本售价下调了,种笔记本售价上调了,若要求销售完这些笔记本后的利润不低于元,求的最大值.. (重庆西大附中月考)手机下载一个、缴纳一定数额的押金,就能以每小时到元的价格解锁一辆自行车任意骑行…,最近的网红非“共享单车”莫属,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步,共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷,某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于,二月初又投入辆进入市场,使可使用的自行车达到辆.()一月份该公司投入市场的自行车至少有多少辆?()二月份的损坏率为,进入三月份,该公司新投入市场的自行车比二月份增长,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为,三月底可使用的自行车达到辆,求的值.答案基础过关. .【解析】不等式组①,()≤ ②)),解不等式①得>-,解不等式②得≤,所以不等式组的解集为-<≤.【解析】解不等式-≤,得≤,解不等式+>,得>-,∴不等式组的解集为-<≤,解集在数轴上表示为选项.. 【解析】解不等式得≤,则非负整数解有,,,共个.【解析】解不等式->(-),得<,根据不等式组的解集为<,利用同小取小可知≥.. 【解析】∵不等式组的解集为-<≤,该解集中至少有个整数解,所以比-至少大,即≥-+,解得≥,所以的最小值是.>. ≥【解析】由->得>,由->-得<,∴要使不等式组无解,则≥.. ,,【解析】错误!解不等式①得,>-,解不等式②得,≤,∴不等式组的解集为-<≤,∴不等式组的整数解为,,.. 【解析】设至多可以打折,由题意得,(+)-≥×,化简得,≥,≥.则至多可以打折.. < 【解析】根据程序,可得不等式-<,解得<.. >-【解析】将两方程等号两边分别相加,得+=+,∴+=+,∵+>,∴+>,∴>-.. 解:去括号得+≤+,移项,合并同类项,得≤-,解得≤-.. 解:解不等式-<-,移项得+<,合并同类项得<,解得<,解不等式≥,不等式两边同乘以得+≥,合并同类项得≥,解得≥,∴原不等式组的解集为≤<.. 解:解不等式(+)>-,去括号得+>-,移项、合并同类项得->-,解得<.解不等式>,去分母得+>.移项、合并同类项得>,解得<.∴不等式组的解集为<..解:令①,(-)-(-)< ②)),由①得≤,由②得>-,∴不等式组的解集为-<≤.. 解:解不等式(-)≤.得≤,解不等式-<,得>-,则不等式组的解集是-<≤,∴该不等式组的最大整数解为=.. 解:解不等式≥--,得≥-,解不等式->(+),得>,∴不等式组的解集为>.其解集在数轴上表示如解图:第题解图. 解:()当=时,原不等式可变形为>-,去分母得->-,移项、合并同类项得<,∴<.()解不等式>-,移项、合并同类项->-,(+)<(+)当≠-时,原不等式有解;当>-时,原不等式的解集为<;当<-时,原不等式的解集为>.. 解:()设该社区的图书借阅总量从年至年的年平均增长率为.根据题意得,(+)=,解得==或=-(舍去).答:该社区的图书借阅总量从年至年的年平均增长率为.()年的人均借阅量为:÷=(本).根据题意得,≥,解得≥.答:的值至少是.. 解:()设乙工程队每天修路千米,则甲工程队每天修路(+)千米,根据题意列方程=×,解得=,答:甲工程队每天修路千米,乙工程队每天修路千米.()设甲工程队修天,余下的工程由乙工程队修,由两个工程队修路总费用不超过万元,可列不等式为.+×≤,化简得+-≤,解得≥,答:甲工程队至少修天,这样总费用不超过万元.. 解:()设小樱桃的进价为每千克元,大樱桃的进价为每千克元,则,解得.∴大樱桃进价为元千克,小樱桃进价为元千克,×[(-)+(-)]=(元),答:大樱桃和小樱桃的进价分别是每千克元和每千克元,销售完后,该水果商共赚了元.()设大樱桃的售价为元千克,由题意可得,(-)××+-≥×,解得≥,答:大樱桃的售价最少应为元千克.满分冲关. 【解析】∵关于的方程-(-)+-=有实数根,∴[-(-)]-(-)=+≥,∴≥-;解不等式组得<且>,又∵关于的不等式组无解,∴≤.则的取值范围是-≤≤,满足条件的整数有,,,共个.【解析】解不等式组得-<<,∵该不等式组只有个非负整数解,∴<≤,即-<≤,解分式方程+=,得=,∵分式方程的解为整数,∴可取,,,共个数.【解析】解不等式组得,≤<-,要使其无解,则-≤,即≤;解分式方程=,得=,∵为非负数,∴-≥,解得≥,又∵≠,解得≠,综上≤≤且≠,∴这个数中,满足条件的值有,,,,它们之积为×××=.. 解:()设购买张种票,则购买种票(-)张,由题意得,≥(-),解得≥,∴至少购买张种票.()由题意得(+)×[-(+)]×=,解得=,=(舍去),∴的值为.答:的值为.. 解:()设月份可购买型汽油升,则月份购买型汽油的升数为:=(-)升,由题意得,+(-)≤,解得,≤,答:该公司月或月最多可购买型汽油升.()由题意可列方程,(-)×(++)=×(+),即(-)×(+)=×,解得=,=(舍去),∴的值为.答:的值为.. 解:()设购买种笔记本本,种笔记本本,由题意得,()-]=)). 解得.答:购买种笔记本本,种笔记本本.()原售价为(+)=(元),原售价为×=(元),由题意得,×(-)+×(+)-≥. 解得≤.答:的最大值为..解:()设一月份该公司投入市场的自行车有辆,则≤-,解得≥,答:一月份该公司投入市场的自行车至少有辆.()由题意得[(-)+×(+)]=,设=,原方程可化为-+=,解得=(舍去),=,由=,得=.答:的值为.。
专题2.2 不等式(第03期)-2018年中考数学试题分项版汇编(解析版
一、单选题1.不等式组的解集在数轴上表示正确的是()A.B.C.D.【来源】湖南省长沙市2018年中考数学试题【答案】C点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.不等式组的解集在数轴上表示正确的是()A.B.C.D.【来源】湖南省湘西州2018年中考数学试卷【答案】C【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组的解集在数轴上表示如下:故选C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n【来源】广西钦州市2018年中考数学试卷【答案】B【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤7【来源】湖北省荆门市2018年中考数学试卷【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.5.关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤3【来源】湖北省恩施州2018年中考数学试题【答案】D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【来源】山东省滨州市2018年中考数学试题【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.不等式组有3个整数解,则的取值范围是()A.B.C.D.【来源】山东省泰安市2018年中考数学试题【答案】B点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.8.不等式组的解集在数轴上表示正确的是( )A.B.C.D.【来源】辽宁省营口市2018届九年级中考模拟(一)数学试题【答案】B点睛:本题主要考查一元一次不等式组的解法,并能在数轴上正确表示出解集,解决本题的关键是要熟练掌握一元一次不等式组的解法和在数轴上表示解集的方法.9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A.B.C.1 D.2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a的取值范围,解分式方程后根据解为非负数,可得关于a的不等式组,解不等式组求得a的取值范围,即可最终确定出a的范围,将范围内的整数相加即可得.【详解】解不等式,得,由于不等式组只有四个整数解,即只有4个整数解,∴,∴;【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.10.不等式组的最小整数解是()A.-1 B.0 C.1 D.2【来源】湖南省娄底市2018年中考数学试题【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组的解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键.二、填空题11.不等式组的最小整数解是_____.【来源】河南省2018年中考数学试卷【答案】-2点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.12.已知关于x的不等式组无解,则a的取值范围是_____.【来源】贵州省贵阳市2018年中考数学试卷【答案】a≥2【解析】【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【详解】,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.13.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.【来源】黑龙江省龙东地区2018年中考数学试卷【答案】﹣3≤a<﹣2【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.14.一元一次不等式组的解集为_____.【来源】贵州省铜仁市2018年中考数学试题【答案】x>﹣1【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.详解:,由①得:x>-1,由②得:x>-2,所以不等式组的解集为:x>-1.故答案为x>-1.点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.15.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【来源】湖南省湘西州2018年中考数学试卷【答案】1【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.16.不等式组的解集为_____.【来源】黑龙江省哈尔滨市2018年中考数学试题【答案】3≤x<4.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.17.用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【来源】北京市2018年中考数学试卷【答案】23-1点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.18.若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【来源】山东省聊城市2018年中考数学试卷【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题19.(1)求不等式组的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.【来源】湖北省荆州市2018年中考数学试卷【答案】(1)不等式组的整数解为﹣1、0;(2),.【解析】【分析】(1)分别解每个不等式,再根据“大小小大中间找”确定不等式组的解集,从而得出答案;(2)先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【点睛】本题考查了分式的化简求值与解一元一次不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式的能力.20.解不等式组:【来源】辽宁省大连市2018年中考数学试卷【答案】不等式组的解集为x≤﹣1.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.21.攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?【来源】四川省攀枝花市2018年中考数学试题【答案】该同学的家到学校的距离在大于12小于等于13的范围.点睛:此题主要考查了一元一次不等式的应用,根据题意明确其收费标准分两部分是完成本题的关键.22.某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【来源】辽宁省葫芦岛市2018年中考数学试卷【答案】(1)修建一个足球场和一个篮球场各需3.5万元,5万元;(2)至少可以修建7个足球场.【解析】【分析】(1)设修建一个足球场x万元,一个篮球场y万元,根据等量关系:建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元,列方程组进行求解即可得;(2)设足球场m个,则篮球场(20﹣m)个,根据投入资金不超过90万元列出不等式进行求解即可得. 【详解】(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场m个,则篮球场(20﹣m)个,根据题意可得:3.5m+5(20﹣m)≤90,解得:m≥6,答:至少可以修建7足球场.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等量关系列出不等式是解题的关键.23.某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?【来源】四川省广安市2018年中考数学试题【答案】(1)今年A型车每辆车售价为1600元;(2)购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.详解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.点睛:本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)利用一次函数的性质求出最大利润.24.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【来源】内蒙古通辽市2018年中考数学试卷【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.25.在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【来源】辽宁省阜新市2018年中考数学试题【答案】(1)购买一个篮球,一个足球各需150元,100元;(2)最多可购买4个篮球.【解析】分析:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意列出方程组解答即可;(2)设购买a个篮球,根据题意列出不等式解答即可.详解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10-a)≤1050,解得:a≤4,答;最多可购买4个篮球.点睛:本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据总费用作为不等关系列出不等式求解.26.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【来源】广西壮族自治区贺州市2018年中考数学试卷【答案】(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.【详解】(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:,答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20,答:至多能购进B型车20辆.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.27.某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?【来源】云南省2018年中考数学试卷【答案】(1)y=﹣80x+20000,24≤x≤86;(2)y=13120元.【解析】【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【点睛】本题考查了一次函数的应用以及不等式组的应用,正确利用表格获得正确信息是解题关键.28.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【来源】湖北省咸宁市2018年中考数学试卷【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆,故答案为:8;∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.。
各地2018年中考数学试卷不等式及不等式(组)(word,含解析)
不等式及不等式(组)一、选择题1.(2018•ft东滨州•3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.2.(2018·ft东临沂·3分)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有 1、2、3 这 3 个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.[www.3.(2018·ft东泰安·3分)不等式组有 3 个整数解,则 a 的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5【分析】根据解不等式组,可得不等式组的解,根据不等式组的解有3 个整数解,可得答案.【解答】解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x 的不等式组有3 个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选:B.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a 的不等式是解题关键.4.(2018•湖南省永州市•4 分)甲从商贩 A 处购买了若干斤西瓜,又从商贩 B 处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为 3:2,然后将买回的西瓜以从 A、B 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A 的单价大于商贩B 的单价B.商贩A 的单价等于商贩B 的单价C.商版A 的单价小于商贩B 的单价D.赔钱与商贩A、商贩B 的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.5.(2018•株洲市•3组成的不等式组的解集为.( )A. B. C. D.【答案】C【解析】分析:首先计算出不等式 5x>8+2x 的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.详解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是 x<5,故选:C.点睛:此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.6.(2018 年江苏省宿迁)若 a<b,则下列结论不一定成立的是()。
2018年中考数学知识分类汇编《不等式》
不等式一、单选题1.若a<b,则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【来源】江苏省宿迁市2018年中考数学试卷【答案】D2.不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【来源】浙江省嘉兴市2018年中考数学试题【答案】A【解析】分析:求出已知不等式的解集,表示在数轴上即可.详解:不等式1﹣x≥2,解得:x≤-1.表示在数轴上,如图所示:故选A.点睛:本题考查了在数轴上表示不等式的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.不等式的解在数轴上表示正确的是()A. B.C. D.【来源】2018年浙江省舟山市中考数学试题【答案】A【解析】【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式的解集,解一元一次不等式,解题的关键是解不等式.4.不等式3x+2≥5的解集是()A. x≥1B. x≥C. x≤1D. x≤﹣1【来源】浙江省衢州市2018年中考数学试卷【答案】A5.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【来源】湖北省孝感市2018年中考数学试题【答案】B6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.不等式组的最小整数解是()A. -1B. 0C. 1D. 2【来源】湖南省娄底市2018年中考数学试题【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组的解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键.8.不等式组有3个整数解,则的取值范围是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】B9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题10.不等式的解集是___________.【来源】安徽省2018年中考数学试题【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键. 11.不等式组的解是________.【来源】浙江省温州市2018年中考数学试卷【答案】x>412.若不等式组的解集为,则________.【来源】四川省凉山州2018年中考数学试题【答案】-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13.不等式组1<x﹣2≤2的所有整数解的和为_____.【来源】四川省宜宾市2018年中考数学试题【答案】1514.不等式组的解集为__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题15.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【来源】江苏省盐城市2018年中考数学试题【答案】x≥-1,在数轴上表示见解析.16.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【来源】天津市2018年中考数学试题【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.17.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【来源】湖北省孝感市2018年中考数学试题【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.18.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【来源】山东省泰安市2018年中考数学试题【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.19.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)20.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【来源】四川省凉山州2018年中考数学试题【答案】至少涨到每股6.06元时才能卖出.21.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买两种设备的方案;(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【来源】湖南省娄底市2018年中考数学试题【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.22.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.【解析】分析:原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.详解:原式=•﹣=﹣=,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式=.点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.23.解不等式组:【来源】浙江省金华市2018年中考数学试题【答案】不等式组的解集为3<x≤5.【解析】分析:首先分别解出两个不等式的解集,再求其公共解集即可.详解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x-1),得:x≤5,∴不等式组的解集为3<x≤5.点睛:此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.学科&网24.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)40千米;(2)10.25.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2018年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.26.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【来源】广东省深圳市2018年中考数学试题【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键. 27.解不等式组:【来源】江苏省连云港市2018年中考数学试题【答案】﹣3≤x<228.如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【来源】江苏省南京市2018年中考数学试卷【答案】(1).(2)B.。
2018年中考数学真题练习卷:方程与不等式(word版 有答案)-文档资料
中考数学真题练习卷:方程与不等式一、选择题1.方程组的解是()A. B. C. D.【答案】A2.若a<b,则下列结论不一定成立的是()。
A. a-1<b-1B. 2a<2bC.D.【答案】D3.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【答案】B4.分式方程的解为()A. B. C. D. 无解【答案】D5.分式方程的解是()A. x=1B.C.D.【答案】A6.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A.B.C.D.【答案】A7.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【答案】C8.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()。
A. 12B. 10C. 8D. 6【答案】B9.据省统计局发布,2019年我省有效发明专利数比2019年增长22.1%假定2018年的平均增长率保持不变,2019年和2018年我省有效发明专利分别为a万件和b万件,则()A. B. C. D.【答案】B10.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A11.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()。
A.8%B.9%C.10%D.11%【答案】C12.已知关于x的不等式组仅有三个整数解,则a的取值范围是()。
A.≤a<1B.≤a≤1C.<a≤1D.a<1【答案】A二、填空题13.不等式的解集是________.【答案】x >1014.当 ________时,解分式方程 会出现增根.【答案】215.设 、 是一元二次方程 的两个根,且 ,则 ________,________.【答案】;16.关于 的一元二次方程有实数根,则 的取值范围是________.【答案】k≥-417.不等式组 的解集为________. 【答案】18.已知, ,若 ,则实数 的值为________. 【答案】3 19.两地相距的路程为240千米,甲、乙两车沿同一线路从 地出发到 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达 地.甲、乙两车相距的路程 (千米)与甲车行驶时间 (小时)之间的关系如图所示,求乙车修好时,甲车距地还有________千米.【答案】9020.若关于x 、y 的二元一次方程组 ,的解是 ,则关于a 、b 的二元一次方程组的解是________. 【答案】三、解答题21.解方程: .去括号,得,移项并合并同类项,得.经检验,x=-1是原分式方程的根.22.解不等式组:.【答案】解:解不等式,移项并合并同类项,得,系数化为1,得;解不等式,去分母,得,移项并合并同类项,得,系数化为1,得,∴不等式组的解为.23.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..24.为了改善生态环境,某乡村计划植树4000棵,由于志愿者的支援,实际工作效率提高了,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?【答案】解:设原计划植树x天,则实际植树(x-3)天,根据题意得解之:x=20经检验:x=20是原方程的根答:原计划植树20天。
2019版中考数学《2.4不等式与不等式组》导向(含答案)
§2.4 不等式与不等式组一、选择题1.(改编题)已知a <b ,下列式子不成立的是( )A .a +1<b +1B .3a<3bC .-12a>-12bD .如果c <0,那么a c <bc解析 本题考查不等式的性质,由不等式性质3可知,如果c <0,那么a c >bc ,所以D 不成立.故选D.答案 D2.(改编题)不等式组⎩⎪⎨⎪⎧2x +1>3,3x -5≤1的解集在数轴上表示正确的是 ( )解析 解不等式2x +1>3,得x >1;解不等式3x -5≤1,得x≤2.故选D. 答案 D3.(原创题)若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0无解,则a 的取值范围是( )A .a ≥3B .a >3C .a >2D .a ≥2解析 解不等式1+x >a ,得x >a -1;解不等式2x -4≤0,得x≤2.∵不等式组无解,∴a -1≥2,即a≥3.故选A. 答案 A4.(原创题)若不等式组⎩⎪⎨⎪⎧x -b<0,x +a>0的解集为2<x<3,则a ,b 的值分别为( )A .-2,3B .2,-3C .3,-2D .-3,2解析 解不等式组,得⎩⎪⎨⎪⎧x<b ,x>-a 即-a <x <b.∵不等式组的解集是2<x<3,∴-a =2,b =3,即a =-2,b =3.故选A. 答案 A5.(原创题)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+a ,x +3y =3的解满足x +y<505,则a 的取值范围是( ) A .a>2 016 B .a<2 016 C .a>505D .a<505解析 两个方程相加,得4x +4y =4+a ,∴x +y =4+a 4.∵x +y <505,∴4+a4<505,解得a <2 016.故选B. 答案 B6.(改编题)不等式组⎩⎪⎨⎪⎧5x -1>3(x +1),12x -1≤7-32x 的解集是 ( )A .x>2B .x ≤4C .x<2或x≥4D .2<x ≤4解析 解不等式5x -1>3(x +1),得x>2;解不等式12x -1≤7-32x ,得x≤4;∴不等式组的解集为2<x≤4,故选D. 答案 D 二、填空题7.(改编题)已知ab =2,-3≤b≤-1,则a 的取值范围是________. 解析 由ab =2得b =2a,∵ab =2,-3≤b≤-1,∴a<0.∴-3≤2a ≤-1.组成不等式组⎩⎪⎨⎪⎧2a ≥-3,2a ≤-1,解这个不等式组得-2≤a≤-23.答案 -2≤a≤-238.(原创题)关于x 的不等式(m -2)x >1的解集为x >1m -2,则m 的取值范围是________.解析 根据题意,得m -2>0,∴m >2. 答案 m >29.(改编题)不等式2x +9≥3(x+2)的正整数解是________.解析 去括号得2x +9≥3x+6,移项、合并同类项得-x≥-3,系数化为1得x≤3,因此正整数解是1,2,3. 答案 1,2,310.(原创题)若不等式组⎩⎪⎨⎪⎧x>a ,3x +2<4x -1的解集是x >3,则a 的取值范围是________.解析 解3x +2<4x -1得x >3,再由该不等式组的解集是x >3,因此a≤3. 答案 a≤3 三、解答题11.(原创题)阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法:解 ∵x-y =2,∴x =y +2. 又∵x>1,∴y +2>1. ∴y >-1.又∵y<0,∴-1<y <0.① 同理得:1<x <2.②由①+②得-1+1<y +x <0+2, ∴x +y 的取值范围是0<x +y <2, 请按照上述方法,完成下列问题:(1)已知x -y =3,且x >2,y <1,则x +y 的取值范围是________.(2)已知y >1,x <-1,若x -y =a 成立,求x +y 的取值范围(结果用含a 的式子表示). 解 (1)∵x-y =3, ∴x =y +3. 又∵x>2,∴y +3>2,∴y >-1. 又∵y<1,∴-1<y <1.① 同理得:2<x <4.②由①+②得-1+2<y +x <1+4, ∴x +y 的取值范围是1<x +y <5; (2)∵x-y =a , ∴x =y +a. 又∵x<-1, ∴y +a <-1, ∴y <-a -1. 又∵y>1, ∴1<y <-a -1.① 同理得:a +1<x <-1.②由①+②得1+a +1<y +x <-a -1+(-1), ∴x +y 的取值范围是a +2<x +y <-a -2.12.(原创题)某物流公司要同时运输A ,B 两种型号的商品共13件,A 型商品每件体积为2 m 3,每件质量为1吨;B 型商品每件体积为0.8 m 3,每件质量为0.5吨,这两种型号商品的体积之和不超过18.8 m 3,质量之和大于8.5吨.(1)求A 、B 两种型号商品的件数共有几种可能?写出所有可能情况;(2)若一件A 型商品运费200元,一件B 型商品运费为180元,则(1)中哪种情况的运费最少?最少运费是多少?解 (1)设A 种型号的商品有x 件, 则B 种型号的商品有(13-x)件,由题意,得:⎩⎪⎨⎪⎧2x +0.8(13-x )≤18.8,1·x +0.5(13-x )>8.5.解这个不等式组,得:⎩⎪⎨⎪⎧x ≤7,x>4,即4<x≤7.∵x 为正整数, ∴x =5,6,7. ∴13-x =8,7,6.答:共有三种可能,即A 种型号的商品分别为5,6,7件时,对应的B 种型号的商品分别为8,7,6件.(2)∵A 种型号的商品的运费>B 种型号的商品的运费, ∴要使运费最少,则只要A 种型号的商品尽量少.∴当A 种型号的商品为5件,B 种型号的商品为8件时运费最少,最少运费为:200×5+180×8=2 440(元).2019-2020学年数学中考模拟试卷一、选择题1 ) A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间2.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A.8B.6C.12D.103.如图,△ABC 和△DCE 都是边长为8的等边三角形,点B ,C ,E 在同一条直线上接BD ,AE ,则四边形FGCH 的面积为( )A .3B .3C D .34.6月15日“父亲节”,小明准备送给父亲一个礼盒(如图所示),该礼盒的俯视图是( )A. B. C. D.5.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( ) A .1×102 Mbps B .2.048×102 Mbps C .2.048×103 MbpsD .2.048×104 Mbps6.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则的值为( )A.1B.C.D.7.若二次函数y=x2﹣2x﹣m与x轴无交点,则一次函数y=(m+1)x+m﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,己知点A是双曲线y=kx-1(k>0)上的一个动点,连AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=mx-1(m<0)上运动,则m与k的关系是()A.m= -k B.m=C.m= -2k D.m= -3k9.如图,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③ACCD=ABBC;④AC2=AD•AB.其中能够单独判定△ABC∽△ACD的条件个数为( )A.1B.2C.3D.410.如果反比例函数2ayx-=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>211.生活中,有时也用“千千万”来形容数量多,“千千万”就是100亿,“千千万”用科学记数法可表示为( )A.0.1×1011B.10×109C.1×1010D.1×101112.不等式3(x-2)≥x+4的解集是( )A.x≥5B.x≥3C.x≤5D.x≥-5二、填空题13.在平面直角坐标系中,以C(x0,y0)为圆心半径为r的圆的标准方程是(x﹣x0)2+(y﹣y0)2=r2.例如,在平面直角坐标系中,⊙C的圆心C(2,3),点M(3,5)是圆上一点,如图,过点C、点M分别作x轴、y轴的平行线,交于点H,在Rt△MCH中,由勾股定理可得:r2=MC2=CH2+MH2=1+4=5,则圆C的标准方程是(x﹣2)2+(y﹣3)2=5.那么以点(﹣3,4)为圆心,过点(﹣2,﹣1)的圆的标准方程是_____.14.关于x的方程2x ax2a0+-=的一个根为3,则该方程的另一个根是________.15.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.16.已知方程x2﹣6x+m=0有一个根是2,则另一个根是,m= .17.若代数式24xx--的值是2,则x=_____.18.如图,从多边形一个顶点出发作多边形的对角线,试根据下面几种多边形的顶点数、线段数及三角形个数统计结果,推断f,e,v三个量之间的数量关系是:______________多边形:顶点个数f1: 4 5 6 …线段条数e: 5 7 9 …三角形个数v1: 2 3 4 …三、解答题19.小刚和小强两位同学参加放风筝比赛.当他俩把风筝线的一端固定在同一水平的地面时,测得一些数据如表.假设风筝线是拉直的,试比较他俩谁放的风筝较高?高多少米?(精确到0.1米)2.2361≈≈≈).20.如图,正例函数y=kx(k>0)的图象与反比例函数y=mx(m>0,x>0)的图象交于点A,过A作AB⊥x轴于点B.已知点B的坐标为(2,0),平移直线y=kx,使其经过点B,并与y轴交于点C(0,﹣3)(1)求k和m的值(2)点M是线段OA上一点,过点M作MN∥AB,交反比例函数y=mx(m>0,x>0)的图象交于点N,若MN =52,求点M 的坐标21.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 表示该产品每千克生产成本y 1(单位:元)与产量x (单位:kg )之间的函数关系;线段CD 表示每千克的销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当0≤x≤90时,销售该产品获得的利润与产量的关系式是 ;当90≤x≤130时,销售该产品获得的利润与产量的关系式是 ;总之,当产量为 kg 时,获得的利润最大,最大利润是 .22.计算:021)()2π-+.23.“春节”假期间,小明和小华都准备在某市的九龙瀑布(记为A)、凤凰谷(记为B)、彩色沙林(记为C)、海峰湿地(记为D)这四个景点中任选一个去游玩,每个景点被选中的可能性相同. (1)求小明去凤凰谷的概率;(2)用树状图或列表的方法求小明和小华都去九龙瀑布的概率. 24.如图,在△ABC 中,∠B =90°,AB =4,BC =8.(1)在BC 上求作一点P ,使PA+PB =BC ;(尺规作图,不写作法,保留作图痕迹) (2)求BP 的长.25.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动,几秒种后△DPQ 的面积为31cm 2?【参考答案】*** 一、选择题二、填空题13.2614.-915.1 316.;817.618.f+v-e=1三、解答题19.小刚放的风筝比小强放的风筝高约3.6米.【解析】【分析】根据题意:小刚、小强的风筝分别为h1、h2;可得h与线与地面所成角的关系,进而求得h1、h2的大小,比较可得答案.【详解】设小刚、小强的风筝分别为h1、h2,由题意得:h1=250sin45°=250×2≈125×1.4142=176.78(米),h2),∵h1﹣h2=176.78﹣173.21=3.57≈3.6(米),∴小刚放的风筝比小强放的风筝高约3.6米.【点睛】本题考查俯角、仰角的定义,借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形是解题的关键.20.(1)k=32,m=6(2)(43,2)【解析】【分析】(1)设平移后的直线解析式为y=kx+b,待定系数法求出k,A在32y x=,求出A点坐标;又由A在反比例函数上,求出m;(2)设点36M a,a,N a,2a⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,根据635MN aa22=-=求出M点坐标,结合a的取值范围0<a<2,确定符合条件的M.【详解】解:(1)设平移后的直线解析式为y=kx+b,∵点B的坐标为(2,0),点C(0,﹣3)代入,得023k bb=+⎧⎨-=⎩,∴3k2b3⎧=⎪⎨⎪=-⎩,∴3y=x32-,∴32y x =,∵A点横坐标为2,∴A点纵坐标为3,∴A(2,3),∵A在反比例函数myx=(m>0,x>0)的图象上,∴m=6,∴k=32,m=6;(2)设点M(a,32a),N(a,6a),635 MN aa22∴=-=,∴3a2+5a﹣12=0,∴a=﹣3或a=43,∵M在线段OA之间,∴0<a<2,∴a=43,∴M (43,2); 【点睛】本题考查一次函数与反比例函数的图象及解析式,能够利用待定系数法求解析式是解题的必要方法,根据两点间的距离建立方程式求解点坐标的关键.21.(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)y =﹣0.2x+60(0≤x≤90);(3)w =﹣0.4(x ﹣75)2+2250;w =﹣0.6(x ﹣65)2+2535,75,2250.【解析】【分析】(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x 的二次函数,求得最值即可.【详解】解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的y 1与x 之间的函数关系式为y =k 1x+b 1,∵y =k 1x+b 1的图象过点(0,60)与(90,42),∴111609042b k b =⎧⎨+=⎩, ∴解得:11k 0.2b 60=-⎧⎨=⎩, ∴这个一次函数的表达式为;y =﹣0.2x+60(0≤x≤90);(3)设y 2与x 之间的函数关系式为y =k 2x+b 2,∵经过点(0,120)与(130,42),∴222b 120130k b 42=⎧⎨+=⎩, 解得:22k 0.6b 120=-⎧⎨=⎩, ∴这个一次函数的表达式为y 2=﹣0.6x+120(0≤x≤130),设产量为xkg 时,获得的利润为W 元,当0≤x≤90时,W =x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x ﹣75)2+2250,∴当x =75时,W 的值最大,最大值为2250;当90≤x≤130时,W =x[(﹣0.6x+120)﹣42]=﹣0.6(x ﹣65)2+2535,由﹣0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x≤130时,W≤2160,∴当x =90时,W =﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250.故答案为:w=﹣0.4(x﹣75)2+2250;w=﹣0.6(x﹣65)2+2535,75,2250.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.22.-1.【解析】【分析】原式利用零指数幂、负整数指数幂法则,平方根、立方根定义计算即可求出值.【详解】解:原式=1+4﹣3+(﹣3)=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(1)14;(2)116.【解析】【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去九龙瀑布的情况,再利用概率公式即可求得答案【详解】(1)∵小明准备到曲靖的九龙瀑布(记为A)、凤凰谷(记为B)、彩色沙林(记为C)、海峰湿地(记为D)中的一个景点去游玩,∴小明选择去凤凰谷的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中小明和小华都去九龙瀑布的有1种,所以小明和小华都选择去九龙瀑布的概率=1 16.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)见解析;(2)3.【解析】【分析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求.(2)设BP=x,则CP=8﹣x,由(1)中作图知AP=CP=8﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(8﹣x)2,解得:x=3,所以BP=3.【点睛】考核知识点:勾股定理和线段垂直平分线.25.运动1秒或5秒后△DPQ的面积为31cm2.【解析】【分析】设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,利用分割图形求面积法结合△DPQ的面积为31cm2,即可得出关于x的一元二次方程,解之即可得出结论【详解】解:设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,S△DPQ=S矩形ABCD-S△ADP-S△CDQ-S△BPQ,=AB•BC-12AD•AP-12CD•CQ-12BP•BQ,=6×12-12×12x-12×6(12-2x)-12(6-x)•2x,=x2-6x+36=31,解得:x1=1,x2=5.答:运动1秒或5秒后△DPQ的面积为31cm2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A.平均数是15B.众数是10C.中位数是17D.方差是44 32.如图,平面直角坐标系中,在边长为1的菱形ABCD的边上有一动点P从点A出发沿A→B→C→D→A匀速运动一周,则点P的纵坐标y与点P走过的路程S之间的函数关系用图象表示大致是( )A.B.C.D.3.人体中红细胞的直径约为0.0000075m,用科学记数法表示这个数为()A.7.5×106B.75×10﹣7C.7.5×10﹣6D.0.75×10﹣54.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25 B.x+(x+5)+12=25C.x+(x+5)﹣12=25 D.x+(x+5)﹣24=255.“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种儿童玩具赠送给某幼儿园,则可供小芳妈妈选择的购买方案有A.4种B.5种C.6种D.7种6.如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(-1,),顶点B(1,),设直线AE 与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为( )A.B.1C.D. 7.将261y x x =-+化成2y x h k =-+()的形式,则h k +的值是( ) A .-5 B .-8 C .-11 D .58.下列实数3-、0、π中,无理数是( )A .3-B C .0 D .π 9.计算:11x x x+-=( ) A .1 B .2 C .1+2x D .2x x- 10.如图,在△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4,则BC 的长为( )A .4B .8C .12D .1611.已知点A (t ,y 1),B (t+2,y 2)在抛物线212y x =的图象上,且﹣2≤t≤2,则线段AB 长的最大值、最小值分别是( )A . 2B .C .,2D .,12.下列四个几何体中,主视图是三角形的是( )A .B .C .D .二、填空题13.关于x ,y 的二元一次方程组321x y x y +=⎧⎨-=-⎩,则4x 2﹣4xy+y 2的值为_____. 14.计算:(﹣12)2=_____. 15.如图,AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E ,连接OC ,若OC =5,CD =8,则AE =______.16.如图,直线A l A∥BB1∥CC1,若AB=8,BC=4,A1B1=6,则线段A1C1的长是________.17.周末,张三、李四两人在磁湖游玩,张三在湖心岛P处观看李四在湖中划船(如图),小船从P处出发,沿北偏东60︒方向划行200米到A处,接着小船向正南方向划行一段时间到B处.在B处李四观测张三所在的P处在北偏西45︒的方向上,这时张三与李四相距_________米(保留根号).18.如图,四边形ABCD内接于⊙O,BC是⊙O的直径,AD∥BC,AC与BD相交于点P,若∠APB=50°,则∠PBC=___.三、解答题19.在“学习雷锋活动月”中,某校九(2)班全班同学都参加了“广告清除、助老助残、清理垃圾、义务植树”四个志愿活动(每人只参加一个活动).为了了解情况,小明收集整理相关的数据后,绘制如图所示,不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,广告清除部分对应的圆心角的度数.20.如图,为了测量建筑物AC的高度,从距离建筑物底部C处50米的点D(点D与建筑物底部C在同一水平面上)出发,沿坡度i=1:2的斜坡DB前进B,在点B处测得建筑物顶部A的仰角为53°,求建筑物AC的高度.(结果精确到0.1米.参考数据:sin53°≈0.798,cos53°≈0.602,tan53°≈1.327.)21.近年来,体育分数在中招考试中占分比重越来越大,不少家长、考生也越来越重视;某中学计划购买一批足球、跳绳供学生们考前日常练习使用,负责此次采购的老师从商场了解到:购买7个足球和4条跳绳共需510元;购买3个足球比购买5条跳绳少50元.(1)求足球和跳绳的单价;(2)按学校规划,准备购买足球和跳绳共200件,且足球的数量不少于跳绳的数量的12,请设计出最省钱的购买方案,并说明理由.22.(1)计算:(0+3tan30°﹣2|+11()2-(2)解方程:3+1 x x x x -=23.某文化商店计划同时购进A、B两种仪器,若购进A种仪器2台和B种仪器3台,共需要资金1700元;若购进A种仪器3台,B种仪器1台,共需要资金1500元.(1)求A、B两种型号的仪器每台进价各是多少元?(2)已知A种仪器的售价为760元/台,B种仪器的售价为540元/台.该经销商决定在成本不超过30000元的前提下购进A、B两种仪器,若B种仪器是A种仪器的3倍还多10台,那么要使总利润不少于21600元,该经销商有哪几种进货方案?24.先化简,再求值:2422xx x+--,其中x﹣2.25.(1)求不等式组2151132523(2)x xx x-+⎧-≤⎪⎨⎪-<+⎩的整数解;(2)化简2234221121x xx x x x++⎛⎫-÷⎪---+⎝⎭【参考答案】***一、选择题二、填空题13.414.415.216.917.18.25°.三、解答题19.(1)该班的人数是56人;(2)折线统计如图所示:见解析;(3)广告清除部分对应的圆心角的度数是45°.【解析】【分析】(1)根据参加助老助残的人数以及百分比,即可解决问题;(2)先求出义务植树的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可.【详解】(1)该班全部人数:14÷25%=56(人).答:该班的人数是56人;(2)56×50%=28(人),折线统计如图所示:(3)756×360°=45°. 答:广告清除部分对应的圆心角的度数是45°.【点睛】本题考查折线统计图、扇形统计图等知识,解题的关键是记住基本概念,属于中考常考题型.20.建筑物AC 的高度49.8米【解析】【分析】如图作BN ⊥CD 于N ,BM ⊥AC 于M .解直角三角形分别求出AM ,CM 即可解决问题.【详解】如图作BN ⊥CD 于N ,BM ⊥AC 于M .在Rt△BDN中,∵tan∠D=1:2,BD=∴BN=10,DN=20,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=10,BM=CN=30,在Rt△ABM中,tan∠ABM=tan53°=AMBM≈1.327,∴AM≈39.81,∴AC=AM+CM=39.81+10=49.81≈49.8 (米).答:建筑物AC的高度49.8米.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21.(1)足球的单价为50元/个,跳绳的单价为40元/条;(2)最省钱的购买方案是:购买足球67个,跳绳133条.【解析】【分析】(1)设足球的单价为x元/个,跳绳的单价为y元/条,根据题意可列出二元一次方程组74510 5350x yy x+=⎧⎨-=⎩,解方程即可得出答案.(2)设购买足球m个,总费用为w元,则购买跳绳(200﹣m)条,依题意,得:5040200108000w m m m=++(﹣)=.由足球的数量不少于跳绳的数量的12,可得:1(200)2m m≥-,解得:2003m≥.再利用一次函数的性质即可解决最值问题.【详解】解:(1)设足球的单价为x元/个,跳绳的单价为y元/条,依题意,得:74510 5350x yy x+=⎧⎨-=⎩,解得:5040xy=⎧⎨=⎩.答:足球的单价为50元/个,跳绳的单价为40元/条.(2)设购买足球m个,总费用为w元,则购买跳绳(200﹣m)条,依题意,得:5040200108000w m m m =++(﹣)= . ∵足球的数量不少于跳绳的数量的12, ∴1(200)2m m ≥- , 解得:2003m ≥ . ∵m 为整数,∴m≥67.∵10>0,∴w 值随m 值的增大而增大,∴当m =67时,w 取得最小值,此时200﹣m =133.答:最省钱的购买方案是:购买足球67个,跳绳133条.【点睛】本题主要考查了二元一次方程的应用,一元一次不等式以及一次函数的最值问题,找准等量关系,正确列出方程和不等式是解题关键.22.(1);(2)x =﹣1.5.【解析】【分析】(1)根据0指数幂、特殊的三角函数值、绝对值及负整数指数幂即可解答.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=13221+-++=+(2)去分母得:x 2=x 2﹣2x ﹣3,移项合并得:﹣2x =3,解得:x =﹣1.5,经检验x =﹣1.5是原方程的解.【点睛】本题考查了0指数幂、特殊的三角函数值、绝对值、负整数指数幂及解分式方程,掌握各种运算的法则是关键,解分式方程必须检验.23.(1)A 、B 两种型号的仪器每台进价各是400元、300元;(2)有三种具体方案:①购进A 种仪器18台,购进B 种仪器64台;②购进A 种仪器19台,购进B 种仪器67台;③购进A 种仪器20台,购进B 种仪器70台.【解析】【分析】(1)设A 、B 两种型号的仪器每台进价各是x 元和y 元.此问中的等量关系:①购进A 种仪器2台和B 种仪器3台,共需要资金1700元;②购进A 种仪器3台几,B 种仪器1台,共需要资金1500元;依此列出方程组求解即可.(2)结合(1)中求得的结果,根据题目中的不等关系:①成本不超过30000元;②总利润不少于21 600元.列不等式组进行分析.【详解】解:(1)设A、B两种型号的仪器每台进价各是x元和y元.由题意得:231700 31500x yx y+=⎧⎨+=⎩,解得:400300 xy=⎧⎨=⎩.答:A、B两种型号的仪器每台进价各是400元、300元;(2)设购进A种仪器a台,则购进A种仪器(3a+10)台.则有:400300(310)30000(760400)(540300)(310)21600a aa a++⎧⎨-+-+⎩……,解得710 1720913a≤≤.由于a为整数,∴a可取18或19或20.所以有三种具体方案:①购进A种仪器18台,购进B种仪器64台;②购进A种仪器19台,购进B种仪器67台;③购进A种仪器20台,购进B种仪器70台.【点睛】考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.注意:利润=售价﹣进价.24.【解析】【分析】先把分式化简,再把数代入求值.【详解】原式=24 22xx x---=24 2xx --=(2)(2)2x xx+--=﹣(x+2),当x2时,原式=22)-+=.【点睛】此题考查分式的加法,关键是寻找最简公分母,也要注意符号的处理.25.(1)﹣1,0,1,2,3;(2)11 xx-+.【解析】【分析】(1)根据解不等式组的方法可以求得该不等式组的解集,从而可以求得整数解;(2)根据分式的减法和除法可以解答本题.【详解】解:(1)2151132523(2)x xx x-+⎧-≤⎪⎨⎪-<+⎩①②由不等式①得,x≥﹣1,由不等式②得,x<4,∴原不等式组的解集为:﹣1≤x<4,故其整数解为﹣1,0,1,2,3;(2)原式=2 3422(1) (1)(1)(1)(1)(2)x x xx x x x x⎛⎫++--⋅⎪+-+-+⎝⎭=22(1) (1)(1)(2)x xx x x+-⋅+-+=11 xx-+.【点睛】本题考查分式的混合运算、一元一次不等式组的整数解,解答本题的关键是明确它们各自的计算方法.。
2018年中考数学试题分项版解析汇编(第02期)专题2.2 不等式(含解析)
专题2.2 不等式一、单选题1.【山东省聊城市2018年中考数学试卷】已知不等式,其解集在数轴上表示正确的是()A. B.C. D.【答案】A点睛:此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.2.【四川省眉山市2018年中考数学试题】已知关于x的不等式组仅有三个整数解,则a 的取值范围是().A.≤a<1 B.≤a≤1 C.<a≤1 D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.详解:由x>2a-3,由2x>3(x-2)+5,解得:2a-3<x≤1,由关于x的不等式组仅有三个整数:解得-2≤2a-3<-1,解得≤a<1,故选:A.点睛:本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.3.【湖北省恩施州2018年中考数学试题】关于x的不等式的解集为x>3,那么a的取值范围为()A. a>3 B. a<3 C.a≥3 D.a≤3【答案】D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.【台湾省2018年中考数学试卷】如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112 B. 121 C. 134 D. 143【答案】C点睛:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5.【湖北省襄阳市2018年中考数学试卷】不等式组的解集为()A. x> B. x>1 C.<x<1 D.空集【答案】B【解析】【分析】先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.【详解】解不等式2x>1-x,得:x>,解不等式x+2<4x-1,得:x>1,则不等式组的解集为x>1,故选B.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【湖北省孝感市2018年中考数学试题】下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.7.【湖北省荆门市2018年中考数学试卷】已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B. 4<m<7 C.4≤m≤7 D. 4<m≤7【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.【广西钦州市2018年中考数学试卷】若m>n,则下列不等式正确的是()A. m﹣2<n﹣2 B. C. 6m<6n D.﹣8m>﹣8n【答案】B【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【湖南省湘西州2018年中考数学试卷】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组的解集在数轴上表示如下:故选C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.【湖南省长沙市2018年中考数学试题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】C点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【吉林省长春市2018年中考数学试卷】不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】3x﹣6≥0,3x≥6,x≥2,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确求出不等式的解集是解此题的关键.12.【广西壮族自治区贵港市2018年中考数学试卷】若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B. a<﹣3 C. a>3 D.a≥3【答案】A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题13.【贵州省铜仁市2018年中考数学试题】一元一次不等式组的解集为_____.【答案】x>﹣1【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.详解:,由①得:x>-1,由②得:x>-2,所以不等式组的解集为:x>-1.故答案为x>-1.点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.14.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.15.【黑龙江省哈尔滨市2018年中考数学试题】不等式组的解集为_____.【答案】3≤x<4.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.16.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】不等式组的解集是_____.【答案】x<3.【解析】分析:首先把两个不等式的解集分别解出来,再根据“大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解”的原则,把不等式的解集求解出来.详解:由(1)得,x<4,由(2)得,x<3,所以不等式组的解集为:x<3.故答案为:x<3.点睛:本题考查不等式组的解法,一定要把每个不等式的解集正确解出来.17.【北京市2018年中考数学试卷】用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.18.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.19.【山东省菏泽市2018年中考数学试题】不等式组的最小整数解是__________.【答案】0【解析】分析:分别解不等式,找出解集的公共部分,找出嘴角整数解即可.详解:解不等式①,得解不等式②,得原不等式组的解集为原不等式组的最小整数解为0.故答案为:0.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.【贵州省贵阳市2018年中考数学试卷】已知关于x的不等式组无解,则a的取值范围是_____.20.【答案】a≥2【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.21.【黑龙江省龙东地区2018年中考数学试卷】若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.22.【河南省2018年中考数学试卷】不等式组的最小整数解是_____.【答案】-2点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.三、解答题23.【湖南省怀化市2018年中考数学试题】解不等式组,并把它的解集在数轴上表示出来.【答案】不等式组的解为:2<x≤4,在数轴上表示见解析.【解析】分析:分别解两不等式,进而得出公共解集.详解:解①得:x≤4,解②得:x>2,故不等式组的解为:2<x≤4,其解集在数轴上表示为:点睛:此题主要考查了解一元一次不等式组的解法,正确掌握基本解题思路是解题关键.24.【上海市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25.【黑龙江省大庆市2018年中考数学试卷】某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.【解析】【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【详解】(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等关系列出不等式是解题的关键.26.【湖南省湘西州2018年中考数学试卷】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.27.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.28.【湖南省郴州市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】﹣4<x≤0,在数轴上表示见解析.【解析】【分析】先分别求出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.29.【云南省昆明市2018年中考数学试题】(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【答案】(1)每立方米的基本水价是2.45元,每立方米的污水处理费是1元;(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【解析】分析:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米.点睛:本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式.30.【黑龙江省哈尔滨市2018年中考数学试题】春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.31.【浙江省台州市2018年中考数学试题】解不等式组:【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.详解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.32.【江苏省徐州巿2018年中考数学试卷】解不等式组,并写出它的所有整数解.【答案】不等式组的整数解哟﹣1、0、1、2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.33.【浙江省宁波市2018年中考数学试卷】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.34.【湖北省孝感市2018年中考数学试题】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.35.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.详解:==3(x+1)-(x-1)=2x+4,,解①得:x≤1,解②得:x>-3,故不等式组的解集为:-3<x≤1,把x=-2代入得:原式=0.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.36.【湖南省邵阳市2018年中考数学试卷】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【答案】(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.【详解】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得,解得x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥,∵a是整数,∴a≥14,答:至少购进A型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.37.【山东省烟台市2018年中考数学试卷】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?。
2018年全国各省市中考真题不等式(组)及其应用综合提升题测试(附答案)
无解,则 a 的取值范围是
.
ax0
【分析】 本题主要考查了数轴上表示不等式的解集。 进行判别即可得到结论.
根据数轴上表示不等式的解集表示方法
5 3x 1, x 2,
【解答】解:解关于 x 的不等式组
得
由于该不等式组无解, 根据 “小小,
a x 0 x a.
大大无解 ”,所以 a>2.
答案 :a> 2
9.( 2018·凉山州)若不等式组
x a 2 的解集是 -1< x<1,则( a+b) = 2009
.
b 2x 0
【分析】 因为 x=3 是不等式的一个解, 所以将 x=3 代入不等式, 求出 a 的取值范围为 a> 4, 则可取的最小正整数就为 5,该题可解
【解答】 解:解不等式组,得可以用含
a、 b 的式子表示的解集,为 a+2<x< b , 已知解集为 2
故选 B.
6.( 2017?包头)若关于 x 的不等式 x﹣ < 1 的解集为 x< 1,则关于 x 的一元二次方 程 x2+ax+1=0 根的情况是( )
A. 有两个相等的实数根 B. 有两个不相等的实数根 C.无实数根 D.无法确定
【分析】 先解不等式,再利用不等式的解集得到 最后根据判别式的意义判断方程根的情况.
10. 求不等式组 4x-7<5 ( x-1 )的正整数解
x
x-2
3-
3
2
命题点 18 不等式与方程的综合应用
1. 一商店销售某种商品,平均每天可售出 20 件, 每件盈利 40 元,为了扩大销售、增加盈
利,该店采取了降价措施,在每件盈利不少于
25 元的前提下,经过一段时间销售,发现销
2018年全国各地中考数学真题汇编:数与式、方程不等式(江苏专版)(解析版)
2018年全国各地中考数学真题汇编(江苏专版)数与式、方程不等式参考答案与试题解析一.选择题(共3小题)1.(2018•盐城)已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.4解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.2.(2018•淮安)若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k 的值是()A.﹣1 B.0 C.1 D.2解:根据题意得△=(﹣2)2﹣4(﹣k+1)=0,解得k=0.故选:B.3.(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1、x2异号,结论D错误.故选:A.二.填空题(共11小题)4.(2018•广东)分解因式:x2﹣2x+1=(x﹣1)2.解:x2﹣2x+1=(x﹣1)2.5.(2018•南京)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1=﹣2,x2=3.解:∵x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,∴m=1,∴原方程为x2﹣x﹣6=0,即(x+2)(x﹣3)=0,解得:x1=﹣2,x2=3.故答案为:﹣2;3.6.(2018•无锡)方程=的解是x=﹣.解:方程两边都乘以x(x+1),得:(x﹣3)(x+1)=x2,解得:x=﹣,检验:x=﹣时,x(x+1)=≠0,所以分式方程的解为x=﹣,故答案为:x=﹣.7.(2018•淮安)一元二次方程x2﹣x=0的根是x1=0,x2=1.解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2018•无锡)方程组的解是.解:,②﹣①,得:3y=3,解得:y=1,将y=1代入①,得:x﹣1=2,解得:x=3,所以方程组的解为,故答案为:.9.(2018•淮安)若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=4.解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.10.(2018•扬州)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为2018.解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:201811.(2018•扬州)不等式组的解集为﹣3<x≤.解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.12.(2018•扬州)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.13.(2018•泰州)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为3.解:依题意得:,解得∵x≤y,∴a2≤6a﹣9,整理,得(a﹣3)2≤0,故a﹣3=0,解得a=3.故答案是:3.14.(2018•宿迁)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是120棵.解:设原计划每天种树x棵,由题意得:﹣=4,解得:x=120,经检验:x=120是原分式方程的解,故答案为:120棵.三.解答题(共16小题)15.(2018•南京)计算(m+2﹣)÷.=•=2(m+3)=2m+6.16.(2018•连云港)计算:(﹣2)2+20180﹣.解:原式=4+1﹣6=﹣1.17.(2018•南京)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在B.A.点A的左边B.线段AB上C.点B的右边解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.解:原式=4﹣1+2﹣+2×,=4﹣1+2﹣+,=5.19.(2018•无锡)(1)分解因式:3x3﹣27x(2)解不等式组:解:(1)原式=3x(x2﹣9)=3x(x+3)(x﹣3);(2)解不等式①,得:x>﹣2,解不等式②,得:x≤2,则不等式组的解集为﹣2<x≤2.20.(2018•淮安)先化简,再求值:(1﹣)÷,其中a=﹣3.解:原式=(﹣)÷=•=,当a=﹣3时,原式==﹣2.21.(2018•南京)刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=7.经检验,x=7是原方程的解.答:这种大米的原价是每千克7元.22.(2018•淮安)(1)计算:2sin45°+(π﹣1)0﹣+|﹣2|;(2)解不等式组:解:(1)原式=2×+1﹣3+2=+1﹣=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥,得:x≥1,则不等式组的解集为1≤x<3.23.(2018•盐城)解不等式:3x﹣1≥2(x﹣1),并把它的解集在数轴上表示出来.解:3x﹣1≥2(x﹣1),3x﹣1≥2x﹣2,3x﹣2x≥﹣2+1,x≥﹣1;将不等式的解集表示在数轴上如下:24.(2018•盐城)先化简,再求值:,其中x=+1.解:当x=+1时原式=•=x﹣1=25.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.26.(2018•扬州)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.经检验,x=121.8为此分式方程的解.答:货车的速度约是121.8千米/小时.27.(2018•泰州)(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+﹣4=2﹣5;(2)原式=(﹣)÷=•=.28.(2018•泰州)为了改善生态环境,某乡村计划植树4000棵.由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?解:设原计划每天种x棵树,则实际每天种(1+20%)x棵,依题意得:﹣=3解得x=200,经检验得出:x=200是原方程的解.所以=20.答:原计划植树20天.29.(2018•盐城)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为26件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.。
专题2.2 不等式(第01期)-2018年中考数学试题分项版解析汇编
一、单选题1.若a<b,则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【来源】江苏省宿迁市2018年中考数学试卷【答案】D【点睛】本题考查了不等式的基本性质,熟练掌握不等式的性质是解题的关键.不等式性质1:不等式两边同时加上(或减去)同一个数,不等号方向不变;不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以(或除以)同一个负数,不等号方向改变.2.不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【来源】浙江省嘉兴市2018年中考数学试题【答案】A【解析】分析:求出已知不等式的解集,表示在数轴上即可.详解:不等式1﹣x≥2,解得:x≤-1.表示在数轴上,如图所示:故选A.点睛:本题考查了在数轴上表示不等式的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.不等式的解在数轴上表示正确的是()A. B.C. D.【来源】2018年浙江省舟山市中考数学试题【答案】A【解析】【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式的解集,解一元一次不等式,解题的关键是解不等式.4.不等式3x+2≥5的解集是()A. x≥1B. x≥C. x≤1D. x≤﹣1【来源】浙江省衢州市2018年中考数学试卷【答案】A点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.5.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【来源】湖北省孝感市2018年中考数学试题【答案】B点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.不等式组的最小整数解是()A. -1B. 0C. 1D. 2【来源】湖南省娄底市2018年中考数学试题【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组的解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键. 8.不等式组有3个整数解,则的取值范围是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】B点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a的取值范围,解分式方程后根据解为非负数,可得关于a的不等式组,解不等式组求得a的取值范围,即可最终确定出a的范围,将范围内的整数相加即可得.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.二、填空题10.不等式的解集是___________.【来源】安徽省2018年中考数学试题【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.11.不等式组的解是________.【来源】浙江省温州市2018年中考数学试卷【答案】x>4点睛: 考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若不等式组的解集为,则________.【来源】四川省凉山州2018年中考数学试题【答案】-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13.不等式组1<x﹣2≤2的所有整数解的和为_____.【来源】四川省宜宾市2018年中考数学试题【答案】15点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.14.不等式组的解集为__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题15.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【来源】江苏省盐城市2018年中考数学试题【答案】x≥-1,在数轴上表示见解析.将不等式的解集表示在数轴上如下:点睛:此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解集.16.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【来源】天津市2018年中考数学试题【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.17.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【来源】湖北省孝感市2018年中考数学试题【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.18.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【来源】山东省泰安市2018年中考数学试题【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.19.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)【点睛】本题考查了整式的混合运算、解一元一次不等式,熟练掌握整式的运算法则、一元一次不等式的解法是关键.20.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【来源】四川省凉山州2018年中考数学试题【答案】至少涨到每股6.06元时才能卖出.点睛:本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.21.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买两种设备的方案;(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【来源】湖南省娄底市2018年中考数学试题【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.【解析】【分析】(1)设该景区购买A种设备为x台、则B种设备购买(10-x)台,其中0 ≤x ≤10,根据购买的设备日处理能力不低于140吨,列不等式,求出解集后再根据x的范围以及x为整数即可确定出具体方案;(2)针对(1)中的方案逐一进行计算即可做出判断.【详解】(1)设该景区购买设计A型设备为x台、则B型设备购买(10-x)台,其中0 ≤x ≤10,由题意得:12x+15(10-x)≥140,解得x≤,∵0 ≤x ≤10,且x是整数,∴x=3,2,1,0,∴B型相应的台数分别为7,8,9,10,∴共有4种方案:方案一:A型设备3 台、B型设备7 台;方案二:A型设备2 台、B型设备8 台;方案三:A型设备1 台、B型设备9 台;方案四:A型设备0 台、B型设备10 台.【点睛】本题考查了一元一次不等式的应用、最优购买方案,弄清题意,找到不等关系列出不等式是解题的关键.22.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.【解析】分析:原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.详解:原式=•﹣=﹣=,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式=.点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.23.解不等式组:【来源】浙江省金华市2018年中考数学试题【答案】不等式组的解集为3<x≤5.【解析】分析:首先分别解出两个不等式的解集,再求其公共解集即可.详解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x-1),得:x≤5,∴不等式组的解集为3<x≤5.点睛:此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.24.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)40千米;(2)10.【详解】(1)设道路硬化的里程数是x千米,则由题意得:x≥4(50-x),解不等式得:x≥40,答:道路硬化的里程数至少是40千米;(2)由题意得:2017年:道路硬化经费为:13万/千米,里程为:30km道路拓宽经费为:26万/千米,里程为:15km∴今年6月起:道路硬化经费为:13(1+a%)万/千米,里程数:40(1+5a%)km,道路拓宽经费为:26(1+5a%)万/千米,里程数:10(1+8a%)km,又∵政府投入费用为:780(1+10a%)万元,∴列方程:13(1+a%)×40(1+5a%)+26(1+5a%)×10(1+8a%)=780(1+10a%),令a%=t,方程可整理为:【点评】本题考查一元一次不等式的应用,一元二次方程的应用,解决本题的关键是将道路硬化,道路拓宽的里程数及每千米需要的经费求出.25.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2018年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.【解析】分析:(1)设年平均增长率为x,根据:2015年投入资金给×(1+增长率)2=2017年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.详解:(1)设该地投入异地安置资金的年平均增长率为,根据题意得,解得:或(舍),答:从年到年,该地投入异地安置资金的年平均增长率为;点睛:本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系并据此列出方程或不等式是解题的关键.26.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【来源】广东省深圳市2018年中考数学试题【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.27.解不等式组:【来源】江苏省连云港市2018年中考数学试题【答案】﹣3≤x<2点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.28.如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【来源】江苏省南京市2018年中考数学试卷【答案】(1).(2)B.【解析】分析:(1)根据点B在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得.解得.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.。
2018版中考数学《2.4不等式与不等式组》导向(含答案)
§2.4 不等式与不等式组一、选择题1.(改编题)已知a <b ,下列式子不成立的是( )A .a +1<b +1B .3a <3bC .-12a >-12bD .如果c <0,那么a c <bc解析 本题考查不等式的性质,由不等式性质3可知,如果c <0,那么a c >bc ,所以D 不成立.故选D. 答案 D2.(改编题)不等式组⎩⎨⎧2x +1>3,3x -5≤1的解集在数轴上表示正确的是( )解析 解不等式2x +1>3,得x >1;解不等式3x -5≤1,得x ≤2.故选D. 答案 D3.(原创题)若不等式组⎩⎨⎧1+x >a ,2x -4≤0无解,则a 的取值范围是( )A .a ≥3B .a >3C .a >2D .a ≥2解析 解不等式1+x >a ,得x >a -1;解不等式2x -4≤0,得x ≤2.∵不等式组无解,∴a -1≥2,即a ≥3.故选A. 答案 A4.(原创题)若不等式组⎩⎨⎧x -b <0,x +a >0的解集为2<x <3,则a ,b 的值分别为 ( )A .-2,3B .2,-3C .3,-2D .-3,2解析 解不等式组,得⎩⎪⎨⎪⎧x <b ,x >-a 即-a <x <b .∵不等式组的解集是2<x <3,∴-a=2,b =3,即a =-2,b =3.故选A. 答案 A5.(原创题)若关于x ,y 的二元一次方程组⎩⎨⎧3x +y =1+a ,x +3y =3的解满足x +y <505,则a 的取值范围是( )A .a >2 016B .a <2 016C .a >505D .a <505解析 两个方程相加,得4x +4y =4+a ,∴x +y =4+a 4.∵x +y <505,∴4+a4<505,解得a <2 016.故选B. 答案 B6.(改编题)不等式组⎩⎪⎨⎪⎧5x -1>3(x +1),12x -1≤7-32x 的解集是 ( )A .x >2B .x ≤4C .x <2或x ≥4D .2<x ≤4解析 解不等式5x -1>3(x +1),得x >2;解不等式12x -1≤7-32x ,得x ≤4;∴不等式组的解集为2<x ≤4,故选D. 答案 D 二、填空题7.(改编题)已知ab =2,-3≤b ≤-1,则a 的取值范围是________.解析 由ab =2得b =2a ,∵ab =2,-3≤b ≤-1,∴a <0.∴-3≤2a ≤-1.组成不等式组⎩⎪⎨⎪⎧2a ≥-3,2a ≤-1,解这个不等式组得-2≤a ≤-23.答案 -2≤a ≤-238.(原创题)关于x 的不等式(m -2)x >1的解集为x >1m -2,则m 的取值范围是________.解析 根据题意,得m -2>0,∴m >2. 答案 m >29.(改编题)不等式2x +9≥3(x +2)的正整数解是________.解析 去括号得2x +9≥3x +6,移项、合并同类项得-x ≥-3,系数化为1得x ≤3,因此正整数解是1,2,3. 答案 1,2,310.(原创题)若不等式组⎩⎨⎧x >a ,3x +2<4x -1的解集是x >3,则a 的取值范围是________.解析 解3x +2<4x -1得x >3,再由该不等式组的解集是x >3,因此a ≤3. 答案 a ≤3 三、解答题11.(原创题)阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解 ∵x -y =2,∴x =y +2. 又∵x >1,∴y +2>1. ∴y >-1.又∵y <0,∴-1<y <0.① 同理得:1<x <2.②由①+②得-1+1<y +x <0+2,∴x+y的取值范围是0<x+y<2,请按照上述方法,完成下列问题:(1)已知x-y=3,且x>2,y<1,则x+y的取值范围是________.(2)已知y>1,x<-1,若x-y=a成立,求x+y的取值范围(结果用含a的式子表示).解(1)∵x-y=3,∴x=y+3.又∵x>2,∴y+3>2,∴y>-1.又∵y<1,∴-1<y<1.①同理得:2<x<4.②由①+②得-1+2<y+x<1+4,∴x+y的取值范围是1<x+y<5;(2)∵x-y=a,∴x=y+a.又∵x<-1,∴y+a<-1,∴y<-a-1.又∵y>1,∴1<y<-a-1.①同理得:a+1<x<-1.②由①+②得1+a+1<y+x<-a-1+(-1),∴x+y的取值范围是a+2<x+y<-a-2.12.(原创题)某物流公司要同时运输A,B两种型号的商品共13件,A型商品每件体积为2 m3,每件质量为1吨;B型商品每件体积为0.8 m3,每件质量为0.5吨,这两种型号商品的体积之和不超过18.8 m3,质量之和大于8.5吨.(1)求A、B两种型号商品的件数共有几种可能?写出所有可能情况;(2)若一件A型商品运费200元,一件B型商品运费为180元,则(1)中哪种情况的运费最少?最少运费是多少?解 (1)设A 种型号的商品有x 件, 则B 种型号的商品有(13-x )件, 由题意,得:⎩⎨⎧2x +0.8(13-x )≤18.8,1·x +0.5(13-x )>8.5.解这个不等式组,得:⎩⎨⎧x ≤7,x >4,即4<x ≤7.∵x 为正整数, ∴x =5,6,7. ∴13-x =8,7,6.答:共有三种可能,即A 种型号的商品分别为5,6,7件时,对应的B 种型号的商品分别为8,7,6件.(2)∵A 种型号的商品的运费>B 种型号的商品的运费, ∴要使运费最少,则只要A 种型号的商品尽量少.∴当A 种型号的商品为5件,B 种型号的商品为8件时运费最少,最少运费为:200×5+180×8=2 440(元).。
2018年重庆市中考数学《2.4不等式组的解法》测试(含答案)
第4节 不等式(组)的解法及不等式的应用 (必考,1~2道,近3年每年考查1道,4~14分)玩转重庆10年中考真题(2008~2017年)命题点1 一元一次不等式的解法及解集表示(10年4考,与分式化简求值结合考查1次)1. (2008重庆3题4分)不等式2x -4≥0的解集在数轴上表示正确的是( )2. (2013重庆A 卷14题4分)不等式2x -3≥x 的解集是________.3. (2011重庆18题6分)解不等式2x -3<x +13,并把解集在数轴上表示出来.第3题图命题点2 一元一次不等式组的解法(10年11考,与概率结合考查4次) 4. (2010重庆3题4分)不等式组⎩⎨⎧x -1≤32x >6的解集为( )A . x >3B . x ≤4C . 3<x <4D . 3<x ≤45. (2009重庆18题6分)解不等式组:⎩⎨⎧x +3>0 ①3(x -1)≤2x -1 ②.命题点3 一元一次不等式组的解的应用(10年8考,与解分式方程结合和与概率结合考查各4次)6. (2017重庆A 卷12题4分)若数a 使关于x 的分式方程2x -1+a 1-x=4的解为正数,且使关于y 的不等式组⎩⎪⎨⎪⎧y +23-y 2>12(y -a )≤0的解集为y <-2,则符合条件的所有整数a 的和为( )A . 10B . 12C . 14D . 167. (2017重庆B 卷12题4分)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -22≤-12x +2,7x +4>-a 有且仅有四个整数解,且使关于y 的分式方程a y -2+22-y =2有非负数解,则所有满足条件的整数a 的值之和是( )A . 3B . 1C . 0D . -38. (2016重庆A 卷12题4分)从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程xx -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A . -3B . -2C . -23D . 129. (2016重庆B 卷12题4分)如果关于x 的分式方程ax +1-3=1-x x +1有负分数解,且关于x 的不等式组⎩⎪⎨⎪⎧2(a -x )≥-x -43x +42<x +1的解集为x <-2,那么符合条件的所有整数a 的积是( ) A . -3 B . 0 C . 3 D . 9 拓展训练1. 从-2,-1,0,2,5这五个数中,随机抽取一个数,记为m ,若数m 使关于x 的不等式组⎩⎨⎧x>m +2-2x -1≥4m +1无解,且使关于x 的分式方程xx -2+m -22-x =-1有非负整数解,那么这五个数中所有满足条件的m 的个数是( ) A . 1 B . 2 C . 3 D . 4命题点4 一次不等式的实际应用(10年7考,近2年均与一元二次方程应用结合)类型一 不含百分率的实际应用10. (2017重庆A 卷23题节选4分)某地大力发展经济作物,其中果树种植已初具规模.今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?11. (2016重庆A 卷23题节选5分)近期猪肉价格不断走高,引起了民众与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?12. (2014重庆A 卷23题节选5分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?13. (2013重庆A卷23题节选4分)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程.若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)类型二含百分率的实际应用14. (2014重庆B 卷23题10分)某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季,为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a %.预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%.要使得6月份该青椒的总销售额不低于18360元,则a 的最大值是多少?拓展训练2. 某文具店今年1月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量不低于2200本,则2月份售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调价整理,售价比2月份在(1)的条件下的最高售价减少了17m %,结果3月份的销量比2月份在(1)的条件下的最低销量增加了m %,3月份的销售利润达到6600元,求m 的值.答案1. C2. x ≥33. 解:去分母得,3(2x -3)<x +1,(1分) 去括号得,6x -9<x +1,(2分) 移项,合并同类项得:5x <10,(3分) 系数化为1得:x <2.∴原不等式的解集是x <2.(4分) 在数轴上表示如解图:第3题解图(6分)4. D5. 解:将①移项得:x >-3,(1分) 将②去括号得:3x -3≤2x -1,(2分) 移项、合并同类项得:x ≤2,(4分) ∴不等式组的解集为-3<x ≤2.(6分)6. A 【解析】解方程2x -1+a1-x =4得,x =6-a 4且x ≠1,又∵分式方程的解为正数,∴6-a4>0,解得a <6,∵x ≠1,即a ≠2,∴a <6且a ≠2;解不等式组⎩⎪⎨⎪⎧y +23-y 2>1①2(y -a )≤0 ②,解不等式①得,y <-2,解不等式②得,y ≤a ,∵不等式组的解集为y <-2,∴a ≥-2,∴-2≤a <6,且a ≠2,∴整数a 有-2,-1,0,1,3,4,5,∴-2-1+0+1+3+4+5=10.7. B 【解析】解不等式组得,⎩⎪⎨⎪⎧x ≤3x>-a +47,∵原不等式组有且仅有四个整数解,∴-1≤-a +47<0,∴-4<a ≤3;解分式方程得y =a +22,∵原分式方程有非负数解,∴y =a +22≥0,且y =a +22≠2,解得a ≥-2且a ≠2;综上所述,-2≤a ≤3,且a ≠2,∴所有的整数a 为:-2,-1,0,1,3,其和为:-2-1+0+1+3=1.8. B 【解析】解不等式组得,⎩⎨⎧x ≥1x<a ,∵原不等式组无解,∴a ≤1,则a 不能取这五个数中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,则5-a2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,∴满足条件的a 的值的和为-3+1=-2.9. D 【解析】解分式方程得,x =12a -2,∵方程有负分数解,a 为整数,∴12a -2<0,且12a -2为分数,a 为整数,∴a <4,且a 为奇数;解不等式组得,⎩⎨⎧x ≤2a +4x<-2,∵原不等式组的解集为x <-2,∴2a +4≥-2,∴a ≥-3,综上可知a =-3或-1或1或3,则其积为(-3)×(-1)×1×3=9.拓展训练1 B 【解析】不等式组整理得:⎩⎨⎧x>m +2x ≤-2m -1,由不等式组无解,得到m +2≥-2m -1,解得m ≥-1,即m =-1,0,2,5,分式方程去分母得:x -m +2=-x +2,即x =12m ,∵x 有非负整数解,∴12m ≥0且m 为偶数, ∴m =0,2,则所有满足条件的m 的个数是2.10. 解:设该果农今年收获樱桃x 千克,根据题意得 400-x ≤7x ,(3分) 解不等式得x ≥50,答:该果农今年收获樱桃至少50 kg .(4分)11. 解:设今年年初猪肉的价格为每千克x 元,由题意得, (1+60%)x ·2.5≥100,(2分) 解得x ≥25,(4分)答:今年年初猪肉的最低价格为每千克25元.(5分)12. 解:设用于购买书桌、书架等设施的资金为x 元,则用于购买书刊的资金为(30000-x )元,由题意得:30000-x ≥3x ,(3分) 解得x ≤7500.答:最多花7500元购买书桌、书架等设施.(5分)13. 解:设在完成这项工程中,甲队施工m 个月,则乙队施工m2 个月,根据题意得:100m +(100+50)·m2≤1500,(2分)解得m ≤847, ∵m 为整数,∴m 的最大整数值为8.(3分)答:在完成这项工程中,甲队最多施工8个月才能使工程款不超过1500万元.(4分)14. 解:(1)设今年5月份该青椒在市区销售了x 千克,在园区销售了y 千克. 根据题意得:⎩⎨⎧x +y =30006x +4y =16000,解得:⎩⎨⎧x =2000y =1000.答:今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(5分)(2)根据题意,列不等式得:6(1-a %)×2000×(1+30%)+4(1-a %)×1000×(1+20%)≥18360, 15600(1- a %)+4800(1- a %)≥18360, 20400(1- a %)≥18360, 解得a ≤10,∴a 的最大值是10.(10分)拓展训练2 解:(1)设2月份售价应为x 元,依题意得: 2290-15(x -11)0.5≥2200, 解得x ≤14.答:2月份售价应不高于14元;(2)[14(1-17m %)-10(1+10%)]×2200(1+m %)=6600,令m %=t ,化简得2t2-t=0,解得t1=0(舍去),t2=0.5,∴m=50.答:m的值是50.。
2018年浙江省中考数学《第10讲:不等式与不等式组》总复习讲解(含答案)
第10讲不等式与不等式组1.不等式的概念及性质2.一元一次不等式(组)的解法及应用1.(2015·嘉兴)一元一次不等式2(x +1)≥4的解在数轴上表示为( )2.(2015·丽水)如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x >2C .x >-1D .-1<x ≤2 3.(2017·湖州)一元一次不等式组⎩⎪⎨⎪⎧2x>x -1,12x≤1的解集是( )A .x >-1B .x ≤2C .-1<x ≤2D .x >-1或x ≤2 4.(2016·金华)不等式3x +1<-2的解集是____________________. 5.(2017·衢州)解下列一元一次不等式组:⎩⎪⎨⎪⎧12x≤2,3x +2>x.【问题】给出以下不等式:①2x +5<4(x +2), ②x -1<23x , ③1x -1>0, ④x -1≤8-4x .(1)上述不等式是一元一次不等式的是________;(2)上述不等式中,选取其中二个一元一次不等式,并求其公共解. (3)选取其中一个一元一次不等式,使其只有一个正整数解.(4)通过以上问题解答的体会,解一元一次不等式(组)要注意哪些问题?【归纳】通过开放式问题,归纳、疏理解一元一次不等式(组)的一般步骤及注意的问题.类型一 不等式的基本性质例1 (1)若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x 3>y3 C .x +3>y +3 D .-3x >-3y(2)若实数a ,b ,c 在数轴上对应位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a +c >b +cD .a +b >c +b (3)设a 、b 、c 表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )A .c <b <aB .b <c <aC .c <a <bD .b <a <c 【解后感悟】将一个不等式两边同时加上(或减去)同一个数,不等号方向肯定不变;将一个不等式两边同时乘以(或除以)同一个不确定的数,则需要进行分类讨论.对于第(2)、(3)题渗透了数形结合的思想.1.(2016·大庆)当0<x <1时,x 2、x 、1x的大小顺序是( )A .x 2<x <1xB .1x <x <x 2C .1x <x 2<xD .x <x 2<1x类型二 一元一次不等式的解法例2 解不等式:x +12+x -13≤1.【解后感悟】解答这类题学生往往在解题时不注意,在去分母时漏乘没有分母的项.移项时不改变符号而出错;解一元一次不等式的过程与解一元一次方程极为相似,只是最后一步把系数化为1时,需要看清未知数的系数是正数还是负数.如果是正数,不等号方向不变;如果是负数,不等号方向改变.2.(1)(2016·绍兴)不等式3x +134>x3+2的解是____________________.(2)(2015·南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型三 一元一次不等式组的解法例3 解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【解后感悟】求不等式组的解集,不管组成这个不等式组的不等式有几个,都要先分别求解每一个不等式,再利用口诀“大大取大,小小取小,大小小大中间找,大大小小找不到(无解)”或利用数轴求出它们的公共解集,还要确定其中的特殊解.注意不等式中整数解问题.3.解不等式组:(1)(2015·泰州)⎩⎪⎨⎪⎧x -1>2x ,12x +3<-1;(2)⎩⎪⎨⎪⎧3(x +2)>x +8,x 4≥x -13,并把它的解集在数轴上表示出来.类型四 不等式的解的应用例4 (1)(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤2(2)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( )A .m >-23B .m ≤23C .m >23D .m ≤-23【解后感悟】(1)列出不等式是解题的关键;(2)本题是已知不等式组的解集求字母系数,是逆向思维问题,故先求出不等式组的解集,再根据已知解集,列关系式求字母系数.4.(1)(2016·通州模拟)如果不等式(a -3)x >a -3的解集是x >1,那么a 的取值范围是( ) A .a <3 B .a >3 C .a <0 D .a >0(2)(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <5【阅读理解题】(2017·湖州)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.【方法与对策】解答本题的关键是仔细阅读材料,理解例题的解题过程.这类题型复习时应注意给出方法和过程.【求不等式组中字母系数范围出错】如果一元一次不等式组⎩⎪⎨⎪⎧x>3,x<a 关于x 的整数解为4,5,6,7,则a 的取值范围是( )A .7<a ≤8B .7≤a <8C .a ≤7D .a ≤8参考答案第10讲 不等式与不等式组【考点概要】 1.< < > > 【考题体验】1.A 2.A 3.C 4.x <-1 5.-1<x ≤4. 【知识引擎】【解析】(1)①②④ (2)不唯一.选②和④,公共解为x ≤95(3)④ (4)解一元一次不等式(组),注意去分母时,不要漏乘没有分母的项;移项时要改变符号;最后一步把系数化为1时,需要看清未知数的系数是正数还是负数.如果是正数,不等号方向不变;如果是负数,不等号方向改变.【例题精析】例1 (1)D ;(2)B ;(3)A 例2 去分母得:3(x +1)+2(x -1)≤6,去括号得:3x +3+2x -2≤6,解得:x ≤1. 例3 ⎩⎪⎨⎪⎧2x +5≤3(x +2) ①,2x -1+3x2<1 ②,由①得:x ≥-1,由②得:x <3, 不等式组的解集为:-1≤x <3.在数轴上表示为:.不等式组的非负整数解为2,1,0. 例4 (1)C ;(2)解不等式①得,x <2m ,解不等式②得,x >2-m ,∵不等式组有解,∴2m >2-m ,∴m >23.故选C .【变式拓展】 1.A2.(1)x >-3 (2)x ≤-1.3.(1)x <-8. (2)由①得:x >1,由②得:x ≤4,所以这个不等式组的解集是1<x ≤4,用数轴表示为4.(1)B (2)A 【热点题型】【分析与解】(1)根据新定义列出关于x 的方程,2×3-x =-2011,得x =2017;(2)根据新定义列出关于x 的一元一次不等式,2x -3<5,得x <4.【错误警示】 A。
2018年一元一次不等式中考真题(含答案已排版)
2019年01月09日数学03的初中数学组卷.选择题(共16小题)(2018?)—元一次不等式组r2tx+35-4>0IF 的最大整数解是(B. 0 C. D .(2018?广西)若(2018?宿迁)若(2018?)已知点A. a v - 3m > n,则下列不等式正确的是(B+—C.6m v 6n D.-8m >- 8n a v b,则下列结论不一定成立的是(B. 2a v 2b C.-f>-D.P (1 - a, 2a+6)在第四象限,贝U a的取值围是B.- 3 v a v 1C. a>- 3D.a> 1(2018?)关于x的方程3x- 2m= 1的解为正数,则m的取值围是(A. m v-—2B. m>- C.m D.m v—2(2018?株洲)下列哪个选项中的不等式与不等式5x> 8+2 x组成的不等式组的解集为v x v 5A. x+5v 0B. 2x> 10 C.3x- 15 v 0 D.- x- 5>0(2018?)如图,直线y= kx+b (k旳)经过点A(-2 , 4),则不等式kx+b> 4的解集为(7.8 (2018?巴彦淖尔)x v - 2C.x> 4 D. x v 4若关于x,y的方程组2x4y=4s+2y='3ni-l-2的解满足3x- y>-〒,则m的最小整数解为C.- 1D. 0A. - 3B.- 2x的不等式kx+2b v 0的解集为(A. x v 3B. x>3C. x v 6D. x>610 .(2018?聊城)已知不等式¥C. —1_1________ 1__1_,L1___ 1th1_____ - - J -2< 01 234 5 67 8"A.-2-1 012345678 B. D .11. (2018?)若关于x的一元一次不等式组12 . (2018?贵港)若关于x的不等式组B. a v —31 1 1 J 1 111 11..-2012345678"其解集在数轴上表示正确的是(I I I [鼻| i_ 血i _i I-2-1 01234 5678 6-3(K+1J<X-9TC. m v 4^<3a+2的解集是x> 3,则m的取值围是(无解,则a的取值围是(C. a> 313. (2018?)已知关于x的不等式3x- m+1 > 0的最小整数解为2,则实数m的取值围是(A. 4 W n v 7B. 4 v m v 7C. 4w m W714. (2018?德阳)如果关于x的不等式组的整数解仅有x= 2、x= 3,那么适合这个不等式组的整数a、b组成的有序数对(a, b)共有()B. 4个C. 5个D. 6个15 . ( 2018?)不等式组有3个整数解,则a的取值围是(A. - 6 WJV—5B.—6 v a w—5C.—6v a v —5D.—6WK- 516 . (2018?)已知:[x]表示不超过x的最大整数.例:[3.9]= 3 , [—1.8]=—2.令关于k的函数f ( k)=k+14]-[普](k是正整数).例:f(3)=[二^ ]—审]=1.则下列结论错误的是(A. f (1 )= 0 B . f (k+4 ) = f (k)C. f (k+1 )芳(k)D. f (k)= 0 或1二.填空题(共6小题)2 3x+4 ”2I芥—兮18 . (2018?湘西州)对于任意实数a、b,定义一种运算:b = ab—a+b—2.例如,2探5 = 2 X5 —2+5 —17 . ( 2018?)不等式组的非负整数解有个.2 = 11 .请根据上述的定义解决问题:若不等式3探x v 2,则不等式的正整数解是19. (2018?陇南)如图,一次函数y=- x—2与y= 2x+ m的图象相交于点P (n,- 4),则关于x的不等式组『比;I 的解集为1*2 CO -------21 .22. (2018?)已知关于x 的不等式组• 无解,则a 的取值围是(2018?如图,直线y = kx +b 交x 轴于点A ,交y 轴于点B,则不等式x(kx +b ) v 0的解集为 (2018?聊城)是大于x 的最小整数,对任意的实数 x 都满足不等式[x ]致v [x ]+1 .①利用这个不等式 ①,求出满足[x ]=2x - 1的所有解,其所有解为 三.解答题(共4小题)23 . ( 2018?贺州)某自行车经销商计划投入 7.1万元购进100辆A 型和30辆B 型自行车,其中 B 型车单价是A 型车单价的6倍少60元.(1) 求A 、B 两种型号的自行车单价分别是多少元? (2) 后来由于该经销商资金紧,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么24 . ( 2018?市出租车的收费标准是:起步价 5元(即行驶距离不超过 2千米都需付5元车费),超过2 千米以后,每增加 1千米,加收1.8元(不足1千米按1千米计)•某同学从家乘出租车到学校,付了 车费24.8元•求该同学的家到学校的距离在什么围?25 . ( 2018?)如图,在数轴上,点 A 、B 分别表示数1、- 2x +3 .(1) 求x 的取值围;(2) 数轴上表示数-x +2的点应落在 ___________A .点A 的左边 B.线段AB 上 A B---------- * ----------- « --------- >I26 . ( 2018?)小明购买A , B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:A第一次 2 第二次1根据以上信息解答下列问题: (1) 求A , B 两种商品的单价;(2) 若第三次购买这两种商品共 B1 312件,且A 种商品的数量不少于的购买方案,并说明理由.次数 购买数量(件) 购买总费用(元)C .点B 的右边55 65B 种商品数量的2倍,请设计出最省钱【点评】此题主要2019年01月09日数学03的初中数学组卷参考答案与试题解析.选择题(共16小题)【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型. 2. (2018?广西)若 m >n ,则下列不等式正确的是()A . m - 2 v n - 2B .丄C . 6m < 6nD .- 8m >- 8n4 4【点评】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等式的两边同 时乘以(或除以)同一个负数,不等号的方向改变. 3. (2018?宿迁)若a < b ,则下列结论不一定成立的是()A. a - 1< b - 1B . 2a < 2bC .-—>-—D . a 2< b 23 3【点评】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一 个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字 母是否大于0进行分类讨论. 4.(2018?)已知点P (1 - a ,2a +6)在第四象限,贝U a 的取值围是()【点评】本题考查了点的坐标, 一元一次不等式组的解法, 求不等式组解集的口诀: 同大取大,同小取小, 大小小大中间找,大大小小找不到(无解)5. (2018?)关于x 的方程3x - 2m = 1的解为正数,则 m 的取值围是(1. ( 2018?)元一次不等式组B . 0C . 1)D . 2A . a <- 3B . - 3 < a < 1C . a >- 3D . a > 1的最大整数解是【点评】此题主要A . m <-—2B . m >- D . m <—2【点评】本题考查了解一元一次不等式和解一元一次方程、 元一次方程的解,能得出关于m 的不等式是解此题的关键.6. (2018?株洲)下列哪个选项中的不等式与不等式5x > 8+2 x 组成的不等式组的解集为 < x < 5 ( )A . x +5< 0B . 2x > 10C . 3x - 15 < 0D . - x - 5>0 C . m大小小大中间找,大大小小找不着.7. (2018?)如图,直线 y = kx +b (k 旳)经过点 A (- 2 , 4),则不等式kx +b > 4的解集为(【点评】 本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象进行解答.【点评】本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整 数解等知识点,能得出关于m 的不等式是解此题的关键.9. (2018?)若函数y = kx + b 的图象如图所示,则关于 x 的不等式kx +2b v 0的解集为()【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元 次不等式的能力.―I _I_I __I h I _I a 1 ------------------- > A .B. = i ……一'「一C. ■' i '■ ■ ! ■ ■. 7 ■ ■I i i i * i — i 也」【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题x v - 2 C . x >4 D . x v 4&(2018?巴彦淖尔)若关于x,y 的方程组 2x4y=4s+2y ='3ni-l-2的解满足x - y >- —,则m 的最小整数解为( ■—IB .- 2C .- 1D . 0B . x > 3C . x v 6D . x >610 . ( 2018?聊城)已知不等式2-兀上盅-q “ £-1 3 〒, 其解集在数轴上表示正确的是(的关键.f 6-3(x+l) <旷911.( 2018?)若关于x 的一元一次不等式组 的解集是x > 3,则m 的取值围是()IjCFL 〉-1A . m >4B . m 绍C . m v 4D . m 詔【点评】本题考查了解一元一次不等式组, 能根据不等式的解集和已知得出关于 m 的不等式是解此题的关键.fi£<3&+212. ( 2018?贵港)若关于x 的不等式组,= 无解,则a 的取值围是()A . aw — 3B . a < — 3C . a > 3D . a 濾【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键. 13. ( 2018?)已知关于x 的不等式3x - m +1 > 0的最小整数解为2,则实数m 的取值围是()【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应 根据不等式的基本性质.14 . (2018?德阳)如果关于x 的不等式组!k 厘弓)的整数解仅有x = 2、x = 3,那么适合这个不等式组的(3x-b<0整数a 、b 组成的有序数对(a , b )共有( ) A . 3个B . 4个C . 5个D . 6个【点评】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a 的不等式是解题关键.16. ( 2018?)已知:[x ]表示不超过x 的最大整数.例:[3.9] = 3, [ — 1.8] =— 2.令关于k 的函数f (k )= [] — ^-] (k 是正整数).例:f (3)= [”:1 ]—[亍]=1 .则下列结论错误的是( )A . f (1 )= 0B . f (k +4 )= f (k )C . f (k +1 )( k )D . f (k )= 0 或 1【点评】本题考查解一元一次不等式组、函数值,解答本题的关键是明确题意,可以判断各个选项中的结 论是否成立. .填空题(共6小题)A . 4 W n v 7B . 4 v m v 7C . 4W m WD . 4v m W15 . ( 2018?)不等式组有3个整数解,则a 的取值围是(A . - 6 WJV — 5B .— 6 v a w- 5C .— 6v a v — 5D .— 6WK- 52 = 11 .请根据上述的定义解决问题:若不等式3探x v 2,则不等式的正整数解是【点评】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出 19 . ( 2018?陇南)如图,一次函数 y =- x - 2与y = 2x + m 的图象相交于点 P ( n , - 4),则关于x 的不等 17 . ( 2018?)不等式组r2i+7>3f>H-l)2 八-—x -------- 冠—(3 6 3的非负整数解有 4个.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知 同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关18 . ( 2018?湘西州)对于任意实数a 、b ,定义一种运算:b = ab - a + b - 2.例如, 2探 5 = 2 X5 - 2+5 -x v丄是解题的关键.式组-X'2<0的解集为 -2v x v 2【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n 的值,是解答本题的关键.20 . ( 2018?)已知关于x 的不等式组 A T无解,则a 的取值围是 a 支【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小解没了.21 . ( 2018?)如图,直线 y = kx +b 交x 轴于点A ,交y 轴于点B ,则不等式x (kx +b )v 0的解集为 -3v x v 0y = kx+b的值大【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数于(或小于)0的自变量x的取值围;从函数图象的角度看,就是确定直线y= kx+b在x轴上(或下) 方部分所有的点的横坐标所构成的集合.22.(2018制城)若x为实数,则[X]表示不大于x的最大整数,例如[1.6] = 1 ,[ n= 3,[-2.82] = - 3 等. [x]+1 是大于x的最小整数,对任意的实数x都满足不等式[x]<X< [x]+1 .①利用这个不等式①,求出满足[X] =2x- 1的所有解,其所有解为x= 0.5或x= 1 .【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三.解答题(共4小题)23 . (2018?贺州)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧,投入购车的资金不超过 5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.24 . (2018?)市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2 千米以后,每增加1千米,加收1.8元(不足1千米按1千米计)•某同学从家乘出租车到学校,付了车费24.8元•求该同学的家到学校的距离在什么围?【点评】此题主要考查了一元一次不等式的应用,根据题意明确其收费标准分两部分是完成本题的关键.25 . (2018?)如图,在数轴上,点A、B分别表示数1、- 2x+3 .(1)求x的取值围;(2)数轴上表示数-x+2的点应落在 B .A.点A的左边B.线段AB上C.点B的右边A B---------- •---------- •---------- >I 经+3【点评】本题考查了一元一次不等式,解( 1 )的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式;解(2)的关键是利用不等式的性质26 . (2018?)小明购买A, B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A, B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.4 不等式与不等式组
一、选择题
1.(改编题)已知a <b ,下列式子不成立的是
( )
A .a +1<b +1
B .3a <3b
C .-12a >-1
2b
D .如果c <0,那么a c <b
c
解析 本题考查不等式的性质,由不等式性质3可知,如果c <0,那么a c >b
c ,所以D 不成立.故选D. 答案 D
2.(改编题)不等式组⎩⎨⎧2x +1>3,
3x -5≤1
的解集在数轴上表示正确的是
( )
解析 解不等式2x +1>3,得x >1;解不等式3x -5≤1,得x ≤2.故选D. 答案 D
3.(原创题)若不等式组⎩⎨⎧1+x >a ,
2x -4≤0无解,则a 的取值范围是
( )
A .a ≥3
B .a >3
C .a >2
D .a ≥2
解析 解不等式1+x >a ,得x >a -1;解不等式2x -4≤0,得x ≤2.∵不等式组无解,∴a -1≥2,即a ≥3.故选A. 答案 A
4.(原创题)若不等式组⎩⎨⎧x -b <0,
x +a >0的解集为2<x <3,则a ,b 的值分别为 ( )
A .-2,3
B .2,-3
C .3,-2
D .-3,2
解析 解不等式组,得⎩⎨⎧x <b ,
x >-a 即-a <x <b .∵不等式组的解集是2<x <3,∴-
a =2,
b =3,即a =-2,b =3.故选A. 答案 A
5.(原创题)若关于x ,y 的二元一次方程组⎩⎨⎧3x +y =1+a ,
x +3y =3的解满足x +y <505,
则a 的取值范围是
( )
A .a >2 016
B .a <2 016
C .a >505
D .a <505
解析 两个方程相加,得4x +4y =4+a ,∴x +y =4+a 4.∵x +y <505,∴4+a
4<505,解得a <2 016.故选B. 答案 B
6.(改编题)不等式组⎩⎪⎨⎪
⎧5x -1>3(x +1),12x -1≤7-3
2x 的解集是 ( )
A .x >2
B .x ≤4
C .x <2或x ≥4
D .2<x ≤4
解析 解不等式5x -1>3(x +1),得x >2;解不等式12x -1≤7-3
2x ,得x ≤4;∴不等式组的解集为2<x ≤4,故选D. 答案 D 二、填空题
7.(改编题)已知ab =2,-3≤b ≤-1,则a 的取值范围是________. 解析 由ab =2得b =2
a ,∵a
b =2,-3≤b ≤-1,∴a <0.
∴-3≤2a ≤-1.组成不等式组⎩⎪⎨⎪⎧2a ≥-3,2a ≤-1,解这个不等式组得-2≤a ≤-2
3.
答案 -2≤a ≤-2
3
8.(原创题)关于x 的不等式(m -2)x >1的解集为x >1
m -2
,则m 的取值范围是________.
解析 根据题意,得m -2>0,∴m >2. 答案 m >2
9.(改编题)不等式2x +9≥3(x +2)的正整数解是________.
解析 去括号得2x +9≥3x +6,移项、合并同类项得-x ≥-3,系数化为1得x ≤3,因此正整数解是1,2,3. 答案 1,2,3
10.(原创题)若不等式组⎩⎨⎧x >a ,
3x +2<4x -1的解集是x >3,则a 的取值范围是
________.
解析 解3x +2<4x -1得x >3,再由该不等式组的解集是x >3,因此a ≤3. 答案 a ≤3 三、解答题
11.(原创题)阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解 ∵x -y =2,∴x =y +2. 又∵x >1,∴y +2>1. ∴y >-1.
又∵y <0,∴-1<y <0.① 同理得:1<x <2.②
由①+②得-1+1<y +x <0+2, ∴x +y 的取值范围是0<x +y <2, 请按照上述方法,完成下列问题:
(1)已知x -y =3,且x >2,y <1,则x +y 的取值范围是________.
(2)已知y >1,x <-1,若x -y =a 成立,求x +y 的取值范围(结果用含a 的式子表示). 解 (1)∵x -y =3, ∴x =y +3. 又∵x >2,
∴y +3>2,∴y >-1. 又∵y <1,∴-1<y <1.① 同理得:2<x <4.②
由①+②得-1+2<y +x <1+4, ∴x +y 的取值范围是1<x +y <5; (2)∵x -y =a , ∴x =y +a . 又∵x <-1, ∴y +a <-1, ∴y <-a -1. 又∵y >1, ∴1<y <-a -1.① 同理得:a +1<x <-1.②
由①+②得1+a +1<y +x <-a -1+(-1), ∴x +y 的取值范围是a +2<x +y <-a -2.
12.(原创题)某物流公司要同时运输A ,B 两种型号的商品共13件,A 型商品每件体积为2 m 3,每件质量为1吨;B 型商品每件体积为0.8 m 3,每件质量为0.5吨,这两种型号商品的体积之和不超过18.8 m 3,质量之和大于8.5吨. (1)求A 、B 两种型号商品的件数共有几种可能?写出所有可能情况; (2)若一件A 型商品运费200元,一件B 型商品运费为180元,则(1)中哪种情况的运费最少?最少运费是多少? 解 (1)设A 种型号的商品有x 件, 则B 种型号的商品有(13-x )件, 由题意,得:⎩
⎨⎧2x +0.8(13-x )≤18.8,
1·x +0.5(13-x )>8.5.
解这个不等式组,得:⎩⎨⎧x ≤7,
x >4,即4<x ≤7.
∵x 为正整数, ∴x =5,6,7. ∴13-x =8,7,6.
答:共有三种可能,即A 种型号的商品分别为5,6,7件时,对应的B 种型号的商品分别为8,7,6件.
(2)∵A 种型号的商品的运费>B 种型号的商品的运费, ∴要使运费最少,则只要A 种型号的商品尽量少.
∴当A 种型号的商品为5件,B 种型号的商品为8件时运费最少,最少运费为:200×5+180×8=2 440(元).。