高考数学万能公式口诀大全
高三重点知识点口诀
高三重点知识点口诀一、数学1. 二次函数口诀:顶点公式求自变量,y轴对称走一个倒。
开口向上a正号,向下则正变成负。
2. 数列知识点:首何值可用通项求,末何等于首加上组。
公差为固定差,首项和公差求。
3. 圆的公式口诀:圆心套观点,方程不再恐。
半径直接r,圆心化中常。
圆心距离求,弧长由角通。
弦长全靠定值,通用求切线。
4. 概率公式口诀:事件概率求容斥,条件概率转全概。
乘法放心用相乘,和事件加起来。
独立等价于加和,概率算得到。
二、物理1. 运动学口诀:初速加末速,除以二就是等。
路程等于速度乘,时间常乘在身边。
加速时间缩一倍,路程是原来的四倍。
自由落体往上取,加速度取十。
2. 电路知识点:并联电阻分,倒数加加。
串联电阻求,直接相加。
3. 光学易混淆:反射镜分虚实,凸镜物和像同方向。
凹镜物与像反,焦点看曲率。
4. 动能定律口诀:物体的动能请用半mv平方。
流速公式大导就,液体密度常加乘。
机械能守恒教导,损失等于劳动得。
三、化学1. 酸碱反应口诀:酸加碱,盐和水;氧化还原,电子转。
2. 元素周期表:期见封新鲜,近似保持共价;希求氧和氮,硒硫班要放弃。
3. 合成反应口诀:氧亏别添氧,氢亏赶快加,盐分明记号,尤其要涨记真。
4. 动力学口诀:起速和末速同朝向,功与热看方向。
端看平衡,大也小也平衡。
四、英语1. 时态口诀:一般现在时,现在的事情。
一般过去时,过去的事情。
一般将来时,未来的事情。
现在完成时,先过后现在。
过去进行时,两个过去事情。
将来进行时,要未来进行。
2. 名词复数规则:普通的加‘s’,以o结尾加‘es’。
以y结尾变‘y’为‘i’,复数不变加‘s’。
特殊单词见的少,没有规定按常用。
3. 冠词使用口诀:特指用定冠词,前边有只用不定。
泛指不用冠词,具体加定冠词。
用数词的一定要,非复数不用冠。
4. 宾语从句口诀:特殊用法不丢弃,陈述可连引语。
一般疑问句脱引,此时动词提升。
特殊疑问提前放,语序默认陈述。
以上口诀总结了高三阶段数学、物理、化学和英语的重点知识点,希望对你的学习有所帮助。
成人高考数学万能公式
成人高考数学万能公式一、函数部分。
1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)。
- 当b = 0时,y=kx是正比例函数。
2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 对称轴方程x =-(b)/(2a)。
- 二次函数的求根公式x=frac{-b±√(b^2)-4ac}{2a}(当y = 0时,求方程ax^2+bx + c = 0的根)。
3. 反比例函数y=(k)/(x)(k≠0)- k = xy(x≠0,y≠0),即图象上任意一点的横纵坐标之积等于k。
二、三角函数部分。
1. 同角三角函数的基本关系。
- sin^2α+cos^2α = 1。
- tanα=(sinα)/(cosα)。
2. 两角和与差的三角函数公式。
- sin(A± B)=sin Acos B±cos Asin B。
- cos(A± B)=cos Acos Bmpsin Asin B。
- tan(A± B)=(tan A±tan B)/(1mptan Atan B)。
3. 二倍角公式。
- sin2α = 2sinαcosα。
- cos2α=cos^2α-sin^2α = 2cos^2α - 1=1 - 2sin^2α。
- tan2α=(2tanα)/(1-tan^2)α。
三、数列部分。
1. 等差数列。
- 通项公式a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。
- 前n项和公式S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
2. 等比数列。
- 通项公式a_n=a_1q^n - 1,其中a_1为首项,q为公比(q≠1)。
- 前n项和公式S_n=frac{a_1(1 - q^n)}{1 - q}。
高中数学各知识点公式定理记忆的口诀
高中数学各知识点公式定理记忆的口诀一、三角函数口诀1. 正弦函数(sin)•角分离原则,短边对斜边;•万有离心率,正弦值相等。
2. 余弦函数(cos)•角分离原则,长边对斜边;•单位圆上右边集,余弦值相等。
3. 正切函数(tan)•角相并原则,短边对长边;•弧度制好好记,切线值很特殊。
4. 余切函数(cot)•角相并原则,长边对短边;•弧度制不可忽,余切值最驰名。
二、平面几何口诀1. 直角三角形•勾股定理,斜边平方等于两腰平方和;•斜边夸腰秀,腰夸斜边薄。
2. 三角形中位线•三位一体,合力使须知;•三位相等时,心中纳须满。
3. 三角形中心•重心离散,重集于一点;•垂心成直角,位于最尖处;•内心心独特,切离连接点;•外接圆集中,交于三点。
4. 计算面积•一斜两底求三角,半底乘上高;•相乘除以二,恰是三角面。
三、函数口诀1. 一次函数•斜率线与图一般,k为常数表示;•横截距表示线性,x为零点定值。
2. 二次函数•抛物线开口,大声呈现;•正负开口说,a为定义数;•零点表情,一二定理。
3. 指数函数•底小指大,结果更大;•底大指小,结果更小;•零次幂表达,答案为一。
4. 对数函数•底数不等于一,结果纳负数;•底数大于一,结果增大;•底数在零一之间,结果减小。
四、概率与统计口诀1. 排列•排列之秘,A(n, k);•n个不同数,取k个全排列。
2. 组合•组合之密,C(n, k);•n个不同数,取k个无序排列。
3. 随机事件•如实,把事实说清楚;•可和,求并把分情况。
4. 条件概率•乘法做,定义是元素;•全概率,分类找相同。
5. 期望•期待其,乘以概率求;•如此则,累加其结果。
五、导数与积分口诀1. 基本函数的导数•幂函数求导,幂降一,系数要乘;•对数函数求导,除原函数乘导。
2. 基本函数的积分•幂函数积分,幂升一,系数要乘;•对数函数积分,原函数除导。
3. 牛顿-莱布尼茨公式•定积分谁握,不论上界下界;•上去下回,为积分加上负号。
高考数学必备公式、结论、方法汇总
(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ 1+tan12θ =tanπ; 4
2.值域:
④ 转换范围法 :针对由已知区间求未知区间的表达
①二次函数求值域用:配方法;
②分式函数求值域,若分子与分母同次用:分离常数法,若分子与分母不同次用:上下同除法.
③二次根式函数求值域用:换元法.当然还有单调性法和导数法。
3.大小比较
(1)指数幂比较大小
①同底幂比较,构造指数函数,用单调性比较;
②换底推广:logab=log1ba, logab·logbc·logcd=logad.
3.二次函数公式
①一般式顶点式:y=ax2+bx+c=a
x+ b 2a
2+4ac-b2.
4a
②顶点是
- b ,4ac-b2 2a 4a
,对称轴是:x=-
b
.
2a
③方程 ax2+bx+c=0(a≠0)求根公式:x=-b± b2-4ac 2a 二、必备结论
(3)伸缩变换
①y=f(x)=y=f(ax)
②y=f(x) 0<a>― a<1,1―,纵―纵坐坐―标标―伸缩长―短为―为原原―来来―的的―aa倍―倍,―,横横―坐坐―标标不→不变变y=af(x)
三、必备方法
1.解析式:
① 待定系数法 :针对已知函数类型;
② 换元法或配凑法 :针对复合函数;
③ 方程组法 :针对 f(x)与 f(1)或 f(-x)形成的表达式 x
(3)周期公式:①y=Asin(ωx+φ)(或 y=Acos(ωx+φ))的最小正周期 T=2π ②y=|Asin(ωx+φ)|的周期 T= π .
|ω|
记忆方法高考数学万能必备公式常用记忆技巧全攻略
记忆方法高考数学万能必备公式常用记忆技巧全攻略高考数学是考生们备考中最重要的科目之一,其中必备的公式和记忆技巧更是考生们的绝对必备知识。
下面为大家总结了高考数学常用公式和记忆技巧的全攻略。
一、常用公式:1.二次函数的顶点公式:顶点坐标为(h,k),则顶点公式为:y=a(x-h)²+k。
2.二次函数的判别式:若Δ=b²-4ac>0,则方程有两个不相等的实根;若Δ=b²-4ac=0,则方程有两个相等的实根;若Δ=b²-4ac<0,则方程没有实根。
3.直线的一般式:设直线的方程为Ax+By+C=0,则直线的一般式为:Ax+By+C=0。
4.两直线的夹角公式:若两直线的斜率分别为k1和k2,则夹角公式为:tanθ=(k2-k1)/(1+k1k2)。
5.三角函数的和差化简公式:sin(A±B)=sinAcosB±cosAsinB;cos(A±B)=cosAcosB∓sinAsinB;tan(A±B)=(tanA±tanB)/(1∓tanAtanB)。
6.图的边数与顶点数关系:若图为树,则边数E=顶点数V-1;若图为连通图,则边数E≥顶点数V-1二、记忆技巧:1.利用类比记忆。
将要记忆的内容与已经熟悉的内容进行类比,通过类比记忆能够更加深刻地记住公式和知识点。
2.制作专属记忆卡片。
将要记忆的公式和知识点制作成卡片,一面写上公式和知识点,另一面写上公式和知识点的解释和应用方法,随时随地进行复习。
3.制作思维导图或概念图。
将相关的公式和知识点进行分类,然后通过制作思维导图或概念图的方式将其组织起来,形成一个完整的知识结构。
4.反复思考和举例说明。
将要记忆的公式和知识点进行反复思考和举例说明,通过将其应用到具体的问题中来进行记忆,能够更加深刻地理解和记忆。
5.制定系统性的复习计划。
将要记忆的公式和知识点进行规划,将其分散到不同的复习时间段中进行复习,分散记忆能够更好地巩固记忆。
高中数学常用口诀
高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。
下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。
2.正负所在那一限,正弦正切是正的。
3.根号三只友正弦,二的根号二友余弦。
二、圆的口诀:
1.圆周率尺规法,一圆项。
千千根号重:π=3.14159,记忆个不轻。
2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。
3.圆周角邻直角,同弦近圆交。
外切内稳势精顾,辅角对顶三逢亲。
三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。
相似方幅求来比,等比等品
君得跟。
2.圆的曲面独一元,求面积头一招君。
高下残积主罕省,内长径尔
再添。
四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。
增长差变须记证,指事牵牛开辟门。
2.多项减副主法兰,微分为证铺金殿。
商显骤忽元幡摇,商商商手绕十课。
以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。
数学公式顺口溜高中
数学公式顺口溜高中
一元二次方程求根法,负b加减根号b平方,除以二a可得解。
三角函数正弦余弦,正切余切,割和余割,联立解三角形。
数列通项公式,递推公式灵活用,求和公式记牢牢,一看就知道。
排列组合基础知,阶乘乘积慢慢推,重复排列有公式,求组合靠计算。
函数图像画得好,一阶导数速求导,二阶导数画凸凹,极值定理又出手。
立体几何分三维,体积表面都要会,平行面距离求,交线交角别忘记。
微积分求极限,定义法或夹逼,导数求斜率,一定要掌握好。
以上是数学公式,记住顺口溜,高中考试轻松通过,数学学习快速进步。
- 1 -。
55个绝密数学公式(万能心算口诀)
55个绝密数学公式(万能心算口诀)下面是向学霸进军为高中的学生们整理的2022高中数学必背之50个公式,50种快速做题方法,以供参考。
1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(ab)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1) x,这是一阶特征根方程的运用。
高考数学口诀整理精选三篇
高考数学口诀整理精选三篇人生一征途耳,其长百年,我已走过十之七八回首前尘,历历在目,崎岖多于平坦,忽深谷,忽洪涛,幸赖桥梁以渡。
桥何名欤曰奋斗。
以下是本文库为您推荐高考数学口诀整理精选三篇。
高考数学口诀1特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y 轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀"左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了"。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
高考数学答题万能公式及解题技巧
圆柱侧面积
S=c*h=2pi*h
圆锥侧面积
S=1/2*c*l=pi*r*l
弧长公式
l=a*r
a是圆心角的弧度数r >0
扇形面积公式
s=1/2*l*r
锥体体积公式
V=1/3*S*H
圆锥体体积公式
V=1/3*pi*r2h
斜棱柱体积
V=S'L
注:其中,S'是直截面面积,L是侧棱长
柱体体积公式
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a
-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/a
X1*X2=c/a
注:韦达定理
判别式
b2-4a=0
注:方程有相等的两实根
b2-4ac>0
注:方程有一个实根
b2-4ac<0
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理
a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理
b2=a2+c2-2accosB
注:角B是边a和边c的夹角
圆的标准方程
(x-a)2+(y-b)2=r2
注:(a,b)是圆心坐标
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
高中数学知识点顺口溜速记口诀
高中数学知识点顺口溜速记口诀高中数学知识点顺口溜速记口诀高中数学是大家感到比较难的,因为它需要掌握的内容非常多,而且内容也比较深奥。
然而,在面对这些知识点时,我们可以使用一些口诀来帮助我们掌握这些知识点,从而更好地应对数学考试。
接下来,我将为大家分享一些高中数学知识点顺口溜,让大家轻松记忆。
一、函数篇1、差商公式:差商的结果求值,上下都是相邻f(x)减f(x-1),下标依次减f(x-1)减f(x-2),再取一遍差2、函数图像形状:一次线性就是直线走,二次平方就是开口形,幂函数基数大于1,往上凸,幂函数基数小于1,往下略。
三角函数多角形,都是周期图像形,正弦函数在零度,最低处,余弦函数在零度,最高出。
二、三角篇1、正弦、余弦变换:正弦相量纵轴界,余弦相量横轴解。
2、三角函数图像:正弦函数开口向上,余弦函数开口向下,正交坐标轴描点,周期二洞三抬半。
3、最值判断:正弦最大为1,余弦最小为-1,正切不存在,余切不存在。
三、导数篇1、求导方法:幂函数,古不变,指数函数,右上挂负号,对数函数,左下挂倒数,三角函数,横纵貌相同,反三角,倒数相应关。
2、高中数学一些特别记:自然对数微分,下来还是他自己,绝对值微分,根据正负分两步。
四、行列式篇1、二阶行列式求值:对角线相乘,反对角线相减。
2、三阶行列式求值:按行或按列,每行或每列视为二阶式。
三阶行列式一个箭头去,四阶行列式两箭头正,五阶行列式三箭头,六阶行列式四足占。
五、概率篇1、全概率公式:设A1,A2…,An构成一个样本空间S的一个划分,则对S中任一事件B,有公式:2、贝叶斯定理:样本空间S和一组事件B1,…,Bn,设p(Bi)≠0,对i=1,...,n,且B1,…,Bn构成S的一个划分, 若A是任意一个事件,且p(A)≠0,则有公式:P(Bi|A) = P(A|Bi) P(Bi) / [Σj P(A|Bj)P(Bj)]6、期望的性质(1)恒等性质:E(c)=c;(2)线性性质:E(cX+dY)=cE(X)+dE(Y) ;(3)可加性质(离散):若X和Y是离散型随机变量,则E(X+Y)=E(X)+E(Y) ;以上只是其中的几个口诀,高中数学涉及的知识面非常广泛,如果想要掌握更多的知识点,就要不断地复习和总结。
高考数学知识点公式大全
cos( 3π /2+ α)= sin α tan( 3π /2+ α)=- cot α cot( 3π /2+α)=- tan α sin(3π /2-α)=- cos α cos( 3π /2- α)=- sin α tan( 3π /2- α)= cot α cot( 3π /2-α)= tan α (以上 k∈Z) 注意:在做题时,将 a 看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于 π /2*k ±∈αZ(k)的三角函数值, ① 当 k 是偶数时,得到 α的同名函数值,即函数名不改变; ② 当 k 是奇数时,得到 α相应的余函数值,即 sin → cos;cos → sin;tan → cot,cot → tan. (奇变偶不变) 然后在前面加上把 α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2 -πα=)sin(4 ·π- α/2,)k=4 为偶数,所以取 sin α。 当 α是锐角时, 2π- α∈ (270 °, 360°),sin(2 -πα)<0,符号为 “- ”。 所以 sin(2 -πα=)- sin α
sin(α+β)= sin α cos+βcos α sin β sin(α-β)= sin α cos-βcos α sin β cos( α+ β)= cos α cos-βsin α sin β cos( α- β)= cos α cos+βsin α sin β tan( α+ β)= (tan α +tan/β()1-tan α tan β) tan( α- β)= (tan α-tan β/)(1+ tan α· tan β) 二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2 α=2sin α cos α cos2 α=cos^2( α-)sin^2( α=)2cos^2( α-)1=1-2sin^2( α) tan2 α=2tan α /[-1 tan^2( α )] 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin^2( α /=2)(1- cos α/)2 cos^2( α /=2) (1+cos α/)2 tan^2( α /=2) (1-cos α/)(1+ cos α) 另也有 tan( α /2)=-(1 cos α )/sin α =sin α /(1+cos α) 万能公式 万能公式 sin α =2tan( α /2)/[1+tan^2( α /2)] cos α =[-1tan^2( α /2)]/[1+tan^2( α /2)] tan α =2tan( α /2-)t/a[1n^2( α /2)]
高考数学万能公式口诀大全
高考数学万能公式口诀大全高考数学,一直是众多学子心中的难题。
要在高考数学中取得优异成绩,掌握各种公式和口诀是必不可少的。
下面就为大家整理一份高考数学万能公式口诀大全,希望能对大家有所帮助。
一、函数部分1、函数性质口诀函数奇偶看对称,奇函数关于原点,偶函数关于 y 轴;单调递增与递减,导数正负来判断;周期函数看规律,最小正周期要牢记。
2、反函数口诀反函数,要互换,原函数的定义域,是反函数的值域;原函数的值域,是反函数的定义域,两者关系要理清。
3、幂函数口诀幂指函数最常见,性质众多要分辨;指数大于零,图象过原点,在第一象限内,函数为增函;指数小于零,图象不过点,在第一象限内,函数为减函。
4、指数函数口诀指数函数底数分,大于一为增函数,小于一为减函数;底数若是大于零,图象经过一、二象限,且在 y 轴右侧;底数若是小于零,图象经过二、三象限,且在 y 轴左侧。
5、对数函数口诀对数函数真数大,底数大于一为增,底数小于一为减;对数函数真数小,底数大于一为减,底数小于一为增。
二、三角函数部分1、诱导公式口诀奇变偶不变,符号看象限。
解释:对于形如kπ/2 ± α 的角,当 k 为奇数时,函数名要改变(正弦变余弦,余弦变正弦);当 k 为偶数时,函数名不变。
然后根据角所在的象限确定符号。
2、两角和与差公式口诀正余同余正,余余反正正;和差化积与积化和差,同名相乘用余弦,异名相乘用正弦。
解释:正弦和余弦的两角和与差公式中,“正余同余正”指的是正弦加正弦、余弦加余弦都用余弦公式,“余余反正正”指的是余弦减余弦、正弦减正弦都用正弦公式。
3、倍角公式口诀二倍角公式很重要,正弦余弦要记牢;正弦二倍角,一减余弦二倍半;余弦二倍角,余弦平方减正弦平方。
4、辅助角公式口诀辅助角公式要记清,提出根号二化同形;正余弦前面系数平,和为一才能行。
解释:对于形如 asinx + bcosx 的式子,可以化为√(a²+ b²)sin(x+φ) 的形式,其中φ 的值由tanφ = b/a 确定。
高考数学知识点顺口溜
高考数学知识点顺口溜数学,对于考生来说是高考中最具挑战性的科目之一。
为了让考生能够更轻松地记忆数学知识点,在这里我特意编写了一些有趣的顺口溜来帮助大家复习。
希望这些顺口溜能够给你们带来轻松愉快的学习氛围。
数学是合则破,不是幽默那番多。
高考备战多艰辛,顺口溜让你练得辛。
读一读,背一背,你的数学对策有了保障。
集合,概念不难记,交、并、差别称号。
交集相同、并集合体,差集剔除、补集最要。
一会儿须记别图样,尽量用文字替代框。
代数,平方根到底是谁,开方号呼啦拉碰碰。
实数范围很广泛,整数、有理、无理牵。
二次根号还有两根,正负一一填心胸。
函数,图像懂不懂,定义域、值域牢记吧。
单调函数只有增或减,一带一不行,拐点不断。
解题时记得倒推,可多个点要靠左右。
三角函数,懂得爱,商场角度要个了然。
正余弦,旁边空,三角曲线自来熟。
平面向量加减乘,单位向量要装扮。
立体几何,三维玩,体、面、线放在眼前。
多切断、多推形,长方体、正方体牢记呈。
体积公式要背牢,立体交点求得厉害。
概率统计,投硬币,事件概率要认伊。
归一化、加法公式,全概率定理不要囧。
均值标准差别忘,正态分布要精细描。
数列数学非常深,首项比率是基准点。
等差数列靠通项,等比数列给递推。
还有一个是等差数列和,求前n项是最本分。
平面向量,加减运,模长、方向最拿捏。
夹角的余弦连,夹角的平分呼之歇。
点积与法相邻,叉积的向量尚岂少。
这些顺口溜只是为了帮助你们更轻松地记忆高考数学知识点,但请记住,掌握原理和做题方法才是最重要的。
通过练习,理解和应用这些数学知识,你们一定能在高考中发挥出色。
希望这些顺口溜能够给你们的复习带来些许乐趣。
祝你们取得优异的成绩,实现人生的理想!。
高考数学题知识点口诀
高考数学题知识点口诀数学是高考中不可或缺的科目,而高考数学题知识点的掌握是取得好成绩的必要条件之一。
为了帮助大家更好地记忆和理解高考数学题的知识点,本文将介绍一些有趣的口诀,通过歌诀、韵律和联想的方式来帮助大家记忆数学知识点。
1. 整式的加减,如同事操心。
加减同类项,规整容易懂。
这句口诀用来教大家整式的加减法。
在进行整式加减的时候,首先要将同类项整理好,然后分别加减系数。
这个口诀通过韵律的方式提醒我们在整理同类项的时候要注意规整和搬运。
2. 乘方的移动有规律,结果相减为最佳。
糊涂蛋,别搞错,若出负指数就求倒。
这句口诀教会了我们带有指数的乘法运算中的规律。
当相同的底数上有不同的指数时,可以将底数不变,指数相减。
另外,如果出现负指数,就要将其求倒数。
通过这个口诀,我们可以轻松地记忆和运用乘方的移动法则。
3. 因式分解要认准,往往先提公因式。
或是分组或是凑,找出最大公约数。
这个口诀帮助我们记忆因式分解的方法。
在进行因式分解时,首先要找到公因式,然后可以采用分组法或凑整法来进行因式分解。
其中分组法是根据式子的结构进行分组,凑整法则是找出和结构相似的式子进行合并。
这个口诀通过韵律和押韵的方式提醒我们具体的因式分解步骤。
4. 解方程求未知数,消元和移项是关键。
等号两边乘除不偏,解题要用规范。
这句口诀是为了帮助我们记忆解一元一次方程的一般步骤。
首先,要通过消元和移项将方程变换成形式简单的等式。
在这个过程中,等号两边要保持相等,不偏不倚。
解题时要严格按照规范的步骤进行。
5. 三角函数,心里有数。
正弦斜边正,余弦直角选,正切斜边立,由来无需忘。
一二三象限有标示,四五六象限负号连。
这句口诀帮助我们记忆三角函数的定义和象限标记。
通过这个口诀,我们可以简单地记住正弦、余弦和正切的定义,以及在不同象限中的符号正负关系。
通过这些有趣的口诀,我们可以轻松地记忆和理解高考数学题的知识点。
口诀的韵律和押韵犹如娱乐的歌曲,使得记忆和理解更加轻松愉快。
高考数学知识点复习口诀
高考数学知识点复习口诀数学在高考中占据着重要的一席之地,很多学生都希望通过复习提前掌握数学知识点,提高自己的成绩。
然而,数学知识点繁多,掌握起来并不容易。
为了帮助学生们更好地应对高考数学,我整理了以下的复习口诀,希望能够提供一些帮助。
一、代数运算口诀1.乘方顺口溜:底不变,指数相加充满。
2.开平方口诀:增幅、编码、首先、二次。
3.整数提取位:正运减,负运加。
二、解方程口诀1.二次方程因式分解,开方运算待解。
2.一元一次代数方程,等号平移保正和负。
3.二元一次方程运算规律,先除无平方,再加减。
三、函数与图像口诀1.一次函数起始点,常数项即纵截距。
2.二次函数顶点法,开口向上准负开口。
3.对数函数图像说,底数大于一向上增。
四、平面几何口诀1.圆的周长面积求,公式二πR(C)。
2.直角三角形知,斜边平方法分布。
3.相似三角形求,已知比例求长度。
五、空间几何口诀1.三角形面积求,底乘高除以二。
2.棱锥体积求,底面积乘高除以三。
3.圆锥体体积,三分之一底面积乘高。
六、概率统计口诀1.事件之和平凡极,极限秒杀频率推。
2.期望是平均数,用公式提前就可以。
3.统计重要工具,等差求和都有用。
七、导数与微分口诀1.微分求导明,力学加、物理减。
2.函数乘,假装加;函数除,假装减。
3.复合函数微分急,链条法则做小秘。
以上是一些常见数学知识点的复习口诀,可以帮助学生们在复习高考数学时更快地掌握知识要点。
但是,牢记口诀并不等于理解数学,只有通过大量的练习和实际应用,才能够真正理解和掌握数学知识。
另外,考试时也要注意审题,理清思路,严谨计算,防止粗心错误。
高考数学考试重视思维能力和解题技巧,所以在复习期间,要将重点放在理解思考、灵活运用知识点的能力上。
最后,希望所有参加高考的学生能够以积极的心态面对考试,相信自己的能力,发挥出最好的水平。
无论成绩如何,只要尽了最大的努力,就已经足够了。
祝愿每一位学生都能取得理想的成绩!。
数学知识点顺口溜总结高三
数学知识点顺口溜总结高三高三时期是学习压力最大的阶段,无论是对于理科还是文科学生来说,数学都是必修科目,也是很多学生头疼的科目之一。
为了提高学习效率,总结数学知识点是非常重要的。
下面是我为大家准备的一些数学知识点的顺口溜,希望对高三的同学们有所帮助。
一、函数篇1、一次函数:y=kx+bk代表斜率,b为切线交y轴2、二次函数:y=ax²+bx+c顶点公式:(-b/2a,f(-b/2a))3、反比例函数:y=k/x曲线必过第一、三象限二、几何篇1、相似三角形边比例相等,角度相等才成立2、正多边形内角和为180°3、圆的性质弧等于半径对应圆心角三、三角篇1、正弦定理a/sinA=b/sinB=c/sinC2、余弦定理a²=b²+c²-2bc*cosA3、旋转公式sin(a±b)=sinacosb±cosasinb四、概率篇1、乘法原理共有n个阶段,每个阶段分别有n₁、n₂、...、nₙ种情况,则总情况数为n₁×n₂×...×nₙ2、加法原理共有两个阶段,第一个阶段有n₁种情况,第二个阶段有n₂种情况,则总情况数为n₁+n₂3、排列组合排列:Aₙ¹=n!组合:Cₙᵢ=n!/[i!(n-i)!]五、统计篇1、均值总和除以个数,就能得出2、方差各个数值减均值后平方的平均数3、标准差方差的开方就是标准差六、微积分篇1、导数的定义f'(x) = lim(h→0)(f(x+h)-f(x))/h2、导数的运算法则Cf(x) -> Cf'(x)f(x)+g(x) -> f'(x)+g'(x)f(x)g(x) -> f'(x)g(x)+f(x)g'(x)f(g(x)) -> f'(g(x))g'(x)3、积分的定义∫[a,b]f(x)dx = lim(n→∞)[(b-a)/n][f(x₁)+f(x₂)+...+f(xₙ)]七、数列篇1、等差数列项与项之间差值相等2、等比数列项与项之间比值相等3、斐波那契数列前两项为1,后面每一项都是前两项之和这些顺口溜是我整理的一些重要的数学知识点,通过顺口溜的形式希望能够加深大家对这些知识点的记忆。
2023年高考数学考试技巧记忆口诀
2023年高考数学考试技巧记忆口诀一、基础知识记忆:1. 二次函数求顶点:x = -b / (2a),y = c - b^2 / (4a)。
2. 三角函数正弦公式:a / sinA = b / sinB = c / sinC。
3. 平行四边形面积:S = 底边长度 ×高。
4. 相似三角形定理:对应边成比例,对应角相等。
5. 圆的面积公式:S = πr^2,周长公式:C = 2πr。
二、解题方法记忆:1. 代入法:将已知条件代入方程进行求解。
2. 分类讨论法:根据不同的情况进行分类讨论,找到解决问题的方法。
3. 逆向推理法:从答案往已知条件反推,找到解题思路。
4. 图形法:将问题转化为几何图形,通过观察图形来解答问题。
5. 等价变形法:根据已知条件,将问题进行等价变形,从而简化解题过程。
三、答题技巧记忆:1. 面积题技巧:根据已知条件,选用适当的面积公式计算。
2. 几何图形分类:熟记各种几何图形的性质和特征,根据题目信息进行分类解答。
3. 快速计算技巧:掌握快速计算加减乘除的技巧,提高解题速度。
4. 注意单位转换:在题目中出现单位转换时,注意将相应的值进行转换。
5. 多角度思考:对于复杂问题,多角度思考,换位思考,寻找多种解题思路。
四、备考建议记忆:1. 制定复计划:合理安排每天的复时间,错题集、题册是必备的复材料。
2. 分段复:将数学知识进行分段复,有助于深化记忆。
3. 真题训练:多做真题,熟悉考试形式和题型,提高应试能力。
4. 积极解疑答疑:遇到困难及时向老师、同学请教,解决问题。
5. 自信心培养:相信自己的能力,保持积极心态,充满自信地面对考试。
以上是2023年高考数学考试技巧记忆口诀,希望对你的备考有所帮助!加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
四、《数列》等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
五、《复数》虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。
四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
七、《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=baa⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h 圆柱一生受用的数学公式坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。