高考物理动能与动能定理专题训练答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动能与动能定理专题训练答案

一、高中物理精讲专题测试动能与动能定理

1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:

(1)弹簧获得的最大弹性势能;

(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;

(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m

【解析】

【详解】

(1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动

能定理得:−μmgl+W弹=0−m v02

由功能关系:W弹=-△E p=-E p

解得 E p=10.5J;

(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得

−2μmgl=E k−m v02

解得 E k=3J;

(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:

①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得

−2mgR=m v22−E k

小物块能够经过最高点的条件m≥mg,解得R≤0.12m

②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心

等高的位置,即m v12≤mgR,解得R≥0.3m;

设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

−2mgR =m v 12-m v 02

且需要满足 m ≥mg ,解得R≤0.72m ,

综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。 【点睛】

解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2

.

(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥

【解析】 【分析】 【详解】

(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律

由B 到最高点2211

222

B mv mgR mv =+ 由A 到B :

解得A 点的速度为

(2)若小滑块刚好停在C 处,则:

解得A 点的速度为

若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212

h gt =

c s v t =

解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥

3.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离

【答案】(1)160N (2)2 【解析】 【详解】

(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =

1

2

mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:

2B

v N mg m R

-=

联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N

由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:

2D

v mg m R

=

可得:v D =2m/s

设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,

2R=1

2

gt2

解得:x=0.8m

则小物块离开D点后落到地面上的点与D点之间的距离20.82m

l x

==

4.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m的半圆柱体A紧靠挡板放在斜面上,质量为2m的圆柱体B放在A上并靠在挡板上静止。A 与B半径均为R,曲面均光滑,半圆柱体A底面与斜面间的动摩擦因数为μ.现用平行斜面向上的力拉A,使A沿斜面向上缓慢移动,直至B恰好要降到斜面.设最大静摩擦力等于滑动摩擦力,重力加速度为g。求:

(1)未拉A时,B受到A的作用力F大小;

(2)在A移动的整个过程中,拉力做的功W;

(3)要保持A缓慢移动中拉力方向不变,动摩擦因数的最小值μmin.

【答案】(1)F 3(2)

1

(93)

2

W mgR

μ

=-(3)

min

53

μ=

【解析】

【详解】

(1)研究B,据平衡条件,有

F =2mg cosθ解得

F 3mg (2)研究整体,据平衡条件,斜面对A的支持力为

N =3mg cosθ =33

2

mg

f =μN

33

由几何关系得A的位移为

x =2R cos30°3R 克服摩擦力做功

Wf =fx =4.5μmgR 由几何关系得A上升高度与B下降高度恰均为

h

3

相关文档
最新文档