高光谱遥感图像分类共52页文档
高光谱遥感图像分类与分析算法研究
![高光谱遥感图像分类与分析算法研究](https://img.taocdn.com/s3/m/67da254bbfd5b9f3f90f76c66137ee06eef94e5a.png)
高光谱遥感图像分类与分析算法研究摘要:高光谱遥感图像分类与分析算法作为遥感图像处理与分析领域的重要研究内容,具有广泛的应用前景。
本文将介绍高光谱遥感图像分类与分析算法的研究现状,并探讨目前存在的问题与挑战。
然后,我们将讨论最常用的高光谱遥感图像分类与分析算法,并分析其优点和局限性。
最后,我们提出了未来的研究方向和挑战。
1. 研究现状高光谱遥感图像分类与分析算法是遥感图像处理与分析领域的重要研究内容。
随着遥感技术的发展,获取的遥感图像数据量不断增加,而高光谱遥感图像能够提供更加丰富的光谱信息,因此成为研究的热点。
目前,高光谱遥感图像分类与分析算法主要包括特征提取、特征选择、分类器设计等几个方面。
2. 问题与挑战然而,高光谱遥感图像分类与分析算法的研究仍然存在一些问题与挑战。
首先,高光谱遥感图像的数据维度较高,处理和分析起来较为复杂。
其次,不同地物或地表覆盖类型的光谱特征可能存在较大的重叠,导致分类精度下降。
此外,传统的分类算法在处理高光谱遥感图像时往往存在识别错误和误分类率高的问题。
3. 常用算法介绍针对上述问题,研究者提出了许多高光谱遥感图像分类与分析算法。
以下是一些常用的算法:3.1 监督分类算法监督分类算法是一种常用的高光谱遥感图像分类与分析方法。
它基于已知的地物类别的训练样本,通过构建分类模型来对图像进行分类。
常见的监督分类算法包括最大似然分类、支持向量机、随机森林等。
3.2 非监督分类算法非监督分类算法是一种无需先验知识的分类方法。
它主要通过对图像数据进行聚类分析,将相似的像素点归为同一类别。
K-means和谱聚类是常见的非监督分类算法。
3.3 深度学习算法近年来,深度学习算法在高光谱遥感图像分类与分析中取得了显著的进展。
深度学习模型如卷积神经网络(CNN)具有较强的学习能力和特征提取能力,能够有效处理高光谱遥感图像的分类问题。
4. 算法优缺点分析这些算法各有优缺点。
监督分类算法需要大量标记样本进行训练,模型依赖于标记样本的质量;非监督分类算法不需要标记样本,但对初始聚类中心的选择较为敏感;深度学习算法需要大量的计算资源和训练样本,模型复杂度较高。
高光谱遥感图像分类方法综述
![高光谱遥感图像分类方法综述](https://img.taocdn.com/s3/m/0beb8f02fc4ffe473368ab98.png)
高光谱遥感图像分类方法综述张蓓(长安大学理学院陕西·西安710064)摘要高光谱遥感技术已经成为遥感技术的前沿领域,受到国内外的广泛关注。
而地物目标分类是高光谱数据处理的一个基本内容。
文中列举了一些高光谱遥感图像的分类方法,并对每种方法作简要介绍。
关键词高光谱遥感图像处理分类中图分类号:TP751文献标识码:A1高光谱遥感的简介高光谱遥感技术是上世纪80年代发展起来的一种新兴的遥感技术,高光谱遥感利用很多窄的电磁波段(通常波段的宽度小于10nm)从感兴趣的物体中获取图像数据,一般它是在电磁波谱的可见光,近红外,中红外和热红外波段范围内,设置了几十甚至几百个连续波段,其光谱分辨率可高达纳米(nm)数量级。
由于许多地表物质的吸收特性仅表现在20~40nm的光谱分辨率范围内,高光谱遥感图像可以识别在宽波段遥感中不可探测的物质。
现在,遥感应用领域也更加拓宽,涉及全球环境,土地利用,资源调查,自然灾害,以及星际探测等方面。
遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。
2高光谱遥感图像的分类方法依据是否使用类别的先验知识,可分为监督分类和非监督分类。
2.1非监督分类非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭遥感影像地物的光谱特征的分布规律,随其自然地进行盲目的分类;其分类的结果,只是对不同类别达到了区分,但并不确定类别的属性;其类属是通过事后对各类的光谱响应曲线进行分析,以及与实地调查数据相比较后确定的。
非监督分类主要的方法有K-均值聚类,ISODATA分类等。
K均值分类方法属于动态聚类法,其假定被用来表示样本空间的聚类中心的个数是预先知道的,这种假定本身在某种程度上限制了这一类方法的利用,它使聚类域中所有样本到聚类中心的距离平方和最小,这是在误差平方和准则的基础上得到的。
K均值分类方法简便易行。
高光谱遥感分解课件
![高光谱遥感分解课件](https://img.taocdn.com/s3/m/db7cc7903086bceb19e8b8f67c1cfad6185fe951.png)
端元提取的效果直接影响到后续的混合 像元分解和谱间关系分析的精度和可靠 性,因此是高光谱遥感分解中的关键步
骤。
混合像元分解方法
混合像元分解的方法包括基于物理模型的方法和基于 统计模型的方法等。这些方法通过建立地物光谱与像 元光谱之间的数学模型,利用优化算法对模型参数进 行求解,从而得到每个像元的纯组分和丰度信息。
高光谱遥感分解方法
端元提取方法
端元提取是高光谱遥感分解的基础,目 的是从高光谱数据中提取出纯净的地物 光谱,为后续的混合像元分解和谱间关
系分析提供基础。
端元提取的方法包括基于统计的方法、 基于空间的方法和基于变换的方法等。 这些方法通过不同的原理和算法,从高 光谱数据中提取出尽可能纯净的地物光
谱。
矿物与地质应用
总结词
高光谱遥感在矿物与地质应用中具有重要作用,可以用于矿产资源调查、地质构造分析 等。
详细描述
高光谱遥感能够通过分析地物的光谱特征差异,识别不同类型的矿物和地质构造。在矿 产资源调查中,高光谱遥感可以用于发现潜在的矿床和评估矿产资源的分布情况。同时 ,在地质构造分析中,高光谱遥感可以通过分析地物的光谱特征差异,揭示地质构造的
高光谱遥感分解课件
ቤተ መጻሕፍቲ ባይዱ
目录
CONTENTS
• 高光谱遥感概述 • 高光谱遥感技术原理 • 高光谱遥感分解方法 • 高光谱遥感应用实例 • 高光谱遥感技术展望
01
CHAPTER
高光谱遥感概述
高光谱遥感的定义
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测 的技术。它通过卫星或飞机搭载的高光谱成像仪获取地物辐 射的连续光谱信息,进而分析地物的成分、结构和动态变化 。
高光谱遥感技术的挑战与问题
高光谱图像分类方法研究
![高光谱图像分类方法研究](https://img.taocdn.com/s3/m/fcd9c22ca88271fe910ef12d2af90242a995ab49.png)
在高光谱图像分类中,通常采用卷积神经网络(CNN)来处理图像的空间信息 ,采用循环神经网络(RNN)来处理图像的光谱信息。通过将 CNN 和 RNN 进行结合,可以实现高光谱图像的自动分类。
基于深度学习的高光谱图像分类方法
总结词
深度学习是一种机器学习方法,通过构建多层神经网络来学习数据的内在规律和 特征。在高光谱图像分类中,基于深度学习的方法可以更有效地处理复杂的空间 信息和光谱信息。
02
高光谱图像集成了空间、光谱和 时间三个维度的信息,为地物识 别、环境监测、农业、军事等领 域提供了强有力的数据支持。
高光谱图像的特性
高光谱图像具有很高的数据维度 ,通常包含数百甚至数千个波段
。
每个像素包含完整的光谱曲线, 使得高光谱图像能够更精细地表 达地物的空间特征和光谱特征。
高光谱图像的空间分辨率和光谱 分辨率高,能够提供丰富的地物
则化项来实现最优分类。
THANKS
感谢观看
总结词
RF是一种无监督学习算法,通过构 建随机森林进行分类,可以处理多维 度的数据,对高维数据有很好的适应 性。
详细描述
RF通过构建多个决策树,并将它们的 预测结果进行投票来得到最终的分类 结果。在训练过程中,RF通过优化森 林的精度和多样性来实现最优分类。
基于NN的高光谱图像分类实例分析
总结词
NN是一种神经网络模型,通过模拟人脑神 经元的连接方式进行分类,可以处理复杂的 非线性问题。
总结词
SVM是一种监督学习算法,在分类问题 中表现出色,对高维数据有很好的适应 性,可以处理多类别的分类问题。
VS
详细描述
SVM通过找到一个最优的超平面,将不 同类别的样本分隔开,从而实现对高光谱 图像的分类。在训练过程中,SVM通过 最小化分类错误和最大化间隔来实现最优 分类。
标准分数降维的3D-CNN高光谱遥感图像分类
![标准分数降维的3D-CNN高光谱遥感图像分类](https://img.taocdn.com/s3/m/c692580fbdd126fff705cc1755270722192e591b.png)
2021574高光谱遥感图像包含着数百个丰富的空间和光谱信息的波段,可以为对感兴趣的领域进行分类提供依据,因此在农业[1]、医学图像[2-3]、土地管理[4]、生态监测[5]和法医学[6]等领域有着广泛的应用。
随着高光谱成像技术的发展,光谱分辨率大大提升,同时也增加了高光谱图像的复杂度,容易造成所谓的Hughes现象[7]。
因此,在高光谱图像处理过程中,去除数据冗余的过程必不可少。
而降维可分为特征提取和特征选择两种方式。
特征提取用于寻找合适的映射,将高维特征空间转换为低维特征空间,如常见的主成分分析方法[8]、独立成分分析方法[9]等。
另一种是特征选择方法,特征选择是从原始集合中选择最具代表性的特征子集,可以保留原始数据的物理意义,因此应用最为广泛。
如Huang等人根据信息熵理论,量化了各波段的信息量,从而达到降维的目的[10]。
近年来,深度学习已经成功应用到语音识别[11]、自然语言处理[12]和图像识别[13]等领域并取得了显著进标准分数降维的3D-CNN高光谱遥感图像分类佘海龙,解山娟,邹静洁杭州师范大学遥感与地球科学研究院,杭州311121摘要:针对高光谱图像存在Hughes现象,以及空间和光谱特征利用效率低的问题,提出了一种结合标准分数降维和深度学习的高光谱图像分类算法。
利用标准分数对高光谱数据的波段质量进行评价以剔除高光谱遥感图像中的冗余波段,结合优化过的3D-CNN(3D Convolutional Neural Network)分类方法,通过使用大步距卷积层替代池化层,引入L2正则化、批量归一化(Batch Normalization,BN)、Dropout等一系列策略,在减少网络参数的同时有效防止过拟合现象。
通过Pavia Centre和Pavia University两个公开高光谱数据集的实验测试,该算法大幅度降低了网络模型的参数和计算量,取得了99.01%和95.99%的分类精度。
遥感图像分类
![遥感图像分类](https://img.taocdn.com/s3/m/45c0f0c3710abb68a98271fe910ef12d2bf9a953.png)
原始遥感图像
对应的专题图像
用光谱信息 对影像逐个 像元地分类, 在结果的分 类地图上会 出现“噪声”
产生噪声的原因有原始影像本身的噪声,在地类 交界处的像元中包括有多种类别,其混合的幅射 量造成错分类,以及其它原因等
另外还有一种现象,分类是正确的,但某种类别 零星分布于地面,占的面积很小,我们对大面积 的类型感兴趣,因此希望用综合的方法使它从图 面上消失
简单集群分类方法
K-均值法(K-means Algorithm) Cluster分类法 迭代自组织数据分析技术方法(Iterative
Self-Organization Data Analysis Techniques, ISODATA)
通过自然的聚类,把它分成8类
K-均值算法的聚类准则是使每一聚类中,像元到 该类别中心的距离的平方和最小
A. 按照某个原则选择一些初始聚类中心 B. 计算像元与初始类别中心的距离,把像素分配
到最近的类别中
C. 计算并改正重新组合的类别中心 D. 过程重复直到满足迭代结束的条件
仅凭遥感影像地物的光谱特征的分布 规律,即自然聚类的特性,进行“盲 目”的分类
其分类的结果只是对不同类别达到了 区分,但并不能确定类别的属性;其 类别的属性是通过分类结束后目视判 读或实地调查确定的
遥感图像计算机分类
色调、颜色、阴影、形状、纹理、大小、位置、图型、相关布局
基于光谱的
基于空间关系的
遥感图像特征集
遥感图像 遥感图像计算机分类流程框图
将影像数据的连续变化转化为地图模式, 以提供给用户有意义的信息
获得关于地面覆盖和地表特征数据的更深 刻的认识
较目视解译客观,在分析大数据集时比较 经济
基本思想:通过迭代,逐次移动各类的中心,直 至得到最好的聚类结果为止
高光谱遥感图像的分类与识别算法研究
![高光谱遥感图像的分类与识别算法研究](https://img.taocdn.com/s3/m/7772d03ba36925c52cc58bd63186bceb18e8ed42.png)
高光谱遥感图像的分类与识别算法研究摘要:随着高光谱遥感技术的发展,高光谱遥感图像的分类与识别成为了研究的热点之一。
高光谱图像拥有丰富的光谱信息和空间信息,对地物的识别和分类具有较高的准确性和精度。
本文主要介绍了高光谱遥感图像的分类与识别算法的研究现状和发展趋势,并重点讨论了几种常见的分类与识别方法,并对未来的研究方向进行了展望。
1. 引言高光谱遥感技术是一种获取地球物体光谱反射率的近地空间技术。
与传统的遥感技术相比,高光谱遥感技术能够获取更多的连续谱段信息,能够提供更多的反射波段,有助于地物的识别和分类。
传统的遥感图像分类与识别算法在高光谱图像上存在一定的局限性,因此,高光谱遥感图像的分类与识别算法研究成为了一个重要的课题。
2. 高光谱图像分类方法2.1 基于光谱信息的分类方法基于光谱信息的分类方法是最基础的一种分类方法。
光谱信息代表了目标在不同波长下的响应情况,通过光谱信息可以对不同地物进行分类。
常见的方法包括像元分解法、主成分分析法等。
2.2 基于空间信息的分类方法高光谱图像不仅包含了光谱信息,还包含了空间信息。
基于空间信息的分类方法可以充分利用像素点的空间分布特征进行分类。
常见的方法包括最大似然法、支持向量机等。
2.3 基于特征提取的分类方法特征提取是一种将高维数据转化为低维特征向量的方法,可以提取出地物的显著特征。
常见的特征提取方法包括小波变换、主成分分析、线性光谱混合等。
3. 高光谱图像识别方法高光谱图像的识别主要是通过对图像中地物的特征进行提取和匹配,从而实现对地物的自动识别。
常见的识别方法包括主成分分析法、广义Hough变换法等。
4. 研究现状与发展趋势目前,高光谱遥感图像的分类与识别算法已经取得了一些进展。
然而,在实际应用中仍然存在一些挑战,如遥感图像的分辨率、遥感图像的质量等。
因此,未来的研究方向可以从以下几个方面展开:4.1 提高分类和识别的准确性和精度当前的高光谱遥感图像分类与识别算法还存在一些问题,如准确性和精度不高。
第9章遥感图像分类
![第9章遥感图像分类](https://img.taocdn.com/s3/m/e47501eb5a8102d276a22fe9.png)
9.5 非监督分类
4-3-2原始图像 分类结果(10类) 结果合并(5类) 最终结果
9.5 非监督分类
3、监督分类与非监督分类方法比较
➢ 根本区别在于是否利用训练场地来获取先验的类别知识。 ➢ 监督分类的关键是选择训练场地。训练场地要有代表性,
样本数目要能够满足分类要求。此为监督分类的不足之 处。 ➢ 非监督分类不需要更多的先验知识,据地物的光谱统计 特性进行分类,分类方法简单。当两地物类型对应的光 谱特征差异很小时,分类效果不如监督分类效果好。
– 基本思想大体上是给每个类规定一个应保留的最小连 片像素数,然后将小于此数的孤立像素合并到与其相 邻的或包围它的较大的连片像素类中。
9.7 分类后处理
• 9.7.2 类别合并
– 非监督分类前不知道实际有多少地类,在策略上总是 先分出较多的类,然后对照实地情况或根据己有知识, 确定最后需要的类别。
9.4 监督分类
➢ 最大似然比分类法(Maximum Likelihood) 通过求出每个像素对于各类别的归属概率,把该像素分到归
属概率最大的类别中去的方法。
分类图像
原始图像
9.4 监督分类
监督分类的优缺点:
优点:
缺点:
✓ 根据应用目的和区域,有选 ✓ 主观性
择的决定分类类别,避免出 ✓ 由于图像中间类别的光谱差
思考题
1、多波段遥感数字图像最初分发时,通常采用哪几种数 据存贮格式?
2、遥感图像分类方法有哪几类?并简述每种方法的分类 过程。
3、比较监督分类与非监督分类的优缺点。 4、什么是专家系统?它由哪几个组成部分?
思考题
比较监督分类与非监督分类的优缺点。 根本区别在于是否利用训练场地来获取先验的类别知识。 监督分类优点:简单实用,运算量小。缺点:受训练场地个 数和训练场典型性的影响较大。受环境影响较大,随机性大。 训练场地要有代表性,样本数目要能够满足分类要求。 非监督分类优点:事先不需要对研究区了解,减少人为因素 影响,减少时间,降低成本。不需要更多的先验知识,据地物 的光谱统计特性进行分类。缺点:运算量大。当两地物类型对 应的光谱特征差异很小时,分类效果不如监督分类效果好。
《遥感图像分类》课件
![《遥感图像分类》课件](https://img.taocdn.com/s3/m/3e8a253700f69e3143323968011ca300a6c3f685.png)
将原始特征进行变换,生成新的特征,以更好地 反映地物类别之间的差异。
分类器设计
监督分类
利用已知样本的训练集设计分类器,对未知样本进行分类。
非监督分类
对未知样本进行聚类分析,将相似的样本归为同一类。
混合分类
结合监督分类和非监督分类的优势,提高分类精度和稳定性。
分类结果评价
精度评价
通过比较分类结果与实际地物类别, 计算分类精度、混淆矩阵等指标。
THANKS
感谢观看
分类器。
多源遥感数据融合问题
多源遥感数据融合可以提高分类精度和可靠性,但同时也带 来了数据匹配、融合算法选择等问题。
解决多源遥感数据融合问题的策略包括使用先进的融合算法 ,如基于深度学习的融合方法,以及优化数据匹配方法。
遥感图像分类技术的发展趋势
01
遥感图像分类技术正朝着高精度、高效率和自动化的方向发展 。
可靠性评价
评估分类结果的稳定性、可靠性以及 抗干扰能力。
应用价值评价
根据分类结果在实际应用中的价值, 如土地利用、资源调查、环境监测等
,对分类方法进行综合评价。
04
CATALOGUE
遥感图像分类的挑战与展望
数据质量问题
遥感图像常常受到噪声、失真和 模糊等影响,导致数据质量下降
。
数据质量问题还表现在不同传感 器获取的图像之间的差异,以及 不同时间获取的图像之间的变化
遥感图像分类的应用
遥感图像分类在多个领域有广泛应用,如环境保护、城市规划、资源调查、军事 侦察等。
通过遥感图像分类,可以快速获取大范围的地物信息,为相关领域的决策提供科 学依据。
02
CATALOGUE
遥感图像分类的方法
遥感图像分类 PPT
![遥感图像分类 PPT](https://img.taocdn.com/s3/m/5859bddc5fbfc77da269b1d7.png)
五.分类后处理
Majority/Minority分析
无论使用什么方法进行分类,分类结果中不可避 免会存在一些面积很小的图斑,从实际应用的角 度来看,有必要对这些小图斑进行剔除或者重新 分类 Majority/Minorit分析采用类似于卷积滤波的方 法将较大类别中的虚假像元归到该类中,定义一 个变换核尺寸,用变换核中站主要地位的像元类 别替换中心像元的类别
二.监督分类方法
• 首先需要从研究区域选取有代表性的训 练场地作为样本 • 根据已知训练区提供的样本,通过选择 特征参数(如像素亮度均值、方差等), 建立判别函数,据此对样本像元进行分 类,依据样本类别的特征来识别非样本 像元的归属类别
二.监督分类方法
• 选择训练样本区
• 确定类别数 • 对每类选择足够多的有代表性的 样本 • 分类前分析样本区质量
分类步骤: 1. 选择合适的分类算法 2. 用所选算法分割特征空间 3. 根据像元在特征空间中的定位 对每一个像元赋类别值 4. 对分类结果进行精度评价
二.监督分类方法
监督分类方法的思想:
1. 2. 3. 4. 5. 确定每个类别的样区 学习或训练 确定判别函数和相应的判别准则 计算未知类别的样本观测值函数值 按规则进行像元的所属判别
遥感图像分类
目录
1. 图像分类基本概念和原理 2. 监督分类方法 3. 非监督分类方法 4. 分类精度评价 5. 分类后处理
一.图像分类基本概念和原理
• 遥感图像分类是图像信息提取的一种方法 • 遥感图像分类是遥感数字图像处理的重要 环节,也是遥感应用最广泛的领域之一
提取信息的类型
分类
变化检测 物理量的提取
• 混淆矩阵是由n行n列组成的矩阵,用来表示分类结果的 精度 • 混淆矩阵是通过将每个像元的位置和地面参考验证信息 与计算机分类结果中的相应位置和类别来比较计算的
遥感概论第12章 遥感图像的分类 122.12 第12章 遥感图像的分类
![遥感概论第12章 遥感图像的分类 122.12 第12章 遥感图像的分类](https://img.taocdn.com/s3/m/5cefddbb76eeaeaad1f3307f.png)
影像分类是遥感、影像分析和模式识别的重要组成部分
• 影像分类可以作为影像分析的直接目标:如土地利用分类、 农作物种类识别、湿地类型识别等,以分类影像作为成果
• 影像分类也可以作为影像分析的中间环节:如研究森林情 况,需要先提取出森林的范围;研究草地或农业情况,需 要先提取出草地和耕地的范围等
在影像分类过程中,需要用到分类器:即按照一定方法进 行影像分类的计算机程序
• 此时,需要采用距离量算法确定该点究竟属于哪个点集群
• 如果像元A、C间的距离大于B、C间的距离,则像元C属于B ,否则属于A
因此,距离的量算是非监督分类的核心
(3)距离量算的方法
殴几里得距离测量
n
Dab [ (ai bi)2 ]1/ 2 i 1
• i表示波段,a和b表示像元值,Dab表示两像元之间的距离
概念:非监督分类是指在多光谱影像中搜寻和定义自然光 谱集群组的过程,也叫聚类分析或点群分析
• 计算机按照一定的规则自动地根据像元光谱或空间特征进 行像元分类,不需要人工选择训练样本,仅需极少的人工 输入参数
目前,非监督分类已经发展了近百种分类算法,但所有的 算法都是基于像元亮度的相似度
• 相似度一般用距离或相关系数来衡量,距离越小或相关系 数越大,则相似度越大,相似度大的像元归并为一类
• 分类器的种类很多,但还没有一种分类器能够适用于所有 的任务
• 研究人员,只需根据当前的实际需要,选择一种分类器即 可,也可针对自己的需要,设计自己的分类器
• 简单的点分类器 简单、高效,但错误多
• 邻域分类器 设计复杂,但能结合空间
纹理信息,提高了精度
2 信息类别和光谱类别
信息类别是用户使用的对地面事物的信息分类 • 如湿地的不同类型、农田的类型、土地利用的不同类型等 • 这些信息类别可提供给规划者、管理者、研究者参考使用 • 影像不直接记录信息类别,只记录亮度值,分析人员只能
《遥感图像分类》ppt课件
![《遥感图像分类》ppt课件](https://img.taocdn.com/s3/m/e7987a4eb0717fd5370cdc53.png)
训练样区的选择
准确性——确保选择的样区与实践地物的 一致性
代表性——思索到地物本身的复杂性,所 以必需在一定程度上反映同类地物光谱特 性的动摇情况
统计性——选择的训练样区内必需有足够 多的像元
选择训练区
训练区与特征空间的联络
选择样本区域
▪ 植被 老城区 耕地 水 新城区
将样本数据在特征空间进展聚类
分类的总目的是将图像 中一切的像元自动进展 土地覆盖类型或土地覆 盖专题的分类
计算机分类实例
原始遥感图像
对应的专题图像
光谱方式识别
空间方式识别
新方法
统计分类 构造分类 模糊分类 神经网络分类 小波分析 专家系统 遥感图像计算机分类
颜色、颜色、阴影、外形、纹理、大小、位置、图型、相关规划
基于光谱的
非监视分类方法的特点
优点: 不需求预先对待分类区域有广泛的了解 需求较少的人工参与,人为误差的时机减
少 小的类别可以被区分出来 缺陷: 盲目的聚类 难以对产生的类别进展控制,得到的类别
不一定是想要的类别
非监视分类与监视分类的结合
监视分类的缺陷在于,必需在分类前确定 样本,难度大、效率低
主要的非监视分类方法
K-均值法〔K-means Algorithm〕 迭代自组织数据分析技术方法〔
Iterative Self-Organization Data Analysis Techniques,ISODATA〕
K-均值法
经过自然的聚类,把它分成8类
K-均值法
K-均值算法的聚类准那么是使每一聚类中,像元 到该类别中心的间隔的平方和最小
最大似然分类法
最大似然分类法
地物类数据在特征空间中构成特定的点群 每一类的每一维数据都在本人的数轴上为正态分
遥感图像分类ppt课件
![遥感图像分类ppt课件](https://img.taocdn.com/s3/m/5d7c5827c5da50e2524d7f66.png)
– 假设遥感图像有K个波段,则(i,j)位置的像素在
每个波段上的灰度值可以构成表示为X=(x1,
T
5
8.1 概述
• 8.1.2 分类方法
– 根据是否需要分类人员事先提供已知类别及其 训练样本,对分类器进行训练和监督,可将遥 感图像分类方法划分为监督分类和非监督分类。
– 事先己经知道类别的部分信息(即类别的先验知 识),对未知类别的样本进行分类的方法称之为 监督分类(Supervised Classification)。事先没 有类别的先验知识,对未知类别的样本进行分 类的方法称之为非监督分类(Unsupervised Classification)
14
8.4 非监督分类
• 非监督分类,是指人们事先对分类过程不
施加任何的先验知识,仅凭据遥感影像地 物的光谱特征的分布规律,随其自然地进 行盲目的分类。其分类的结果,只是对不 同类别进行了区分,并不确定类别的属性, 其属性是通过事后对各类的光谱响应曲线 进行分析,以及与实地调查相比较后确定 的。
• 非监督分类的理论依据:遥感图像上的同
4
8.1 概述
• 8.1.1 基本原理
– 同类地物在相同的条件下(光照、地形等)应该 具有相同或相似的光谱信息和空间信息特征。 不同类的地物之间具有差异根据这种差异,将 图像中的所有像素按其性质分为若干个类别 (Class)的过程,称为图像的分类。
– 遥感图像分类以每个像素的光谱数据为基础进 行。
9
8.2 相似性度量
3.马氏(Mahalanobis)距离
马氏距离是一种加权的欧氏距离,它通 过协方差矩阵来考虑变量的相关性。这 是由于在实际中,各点群的形状是大小 和方向各不相同的椭球体,如图所示, 尽管K点距MA的距离DA比距MB的距离 DB小,即DA<DB ,但由于B点群比A点 群离散得多,因而把K点划入B类更合 理。加权可以这样理解,计算的距离与 各点群的方差有关。方差愈大,计算的 距离就愈短。如果各个点群具有相同的 方差,则马氏距离是欧氏距离的平方。
遥感数字图像处理第九章 遥感图像分类
![遥感数字图像处理第九章 遥感图像分类](https://img.taocdn.com/s3/m/8b442ff4700abb68a982fb4a.png)
gi ( x) p(wi | x) p(wi x) p(wi | x) p( x) p( x | wi ) p(wi ) gi ( x) p(wi | x) p( x | wi ) p(wi ) / p( x)
对于同一个像素来说,p(x)是相同的,因此可以约掉
最大似然方法
训练区:已知类别的区域,用于训练分类算法
样本区域类别的确定:实地观测,航片解译、 地图分析、个人经验等
监督分类的步骤
(1)提取样本区的光谱特性 (2)确定判别准则(最小距离?),生成判别函数 (3)将类型未知的样本值代入到判别函数中,根 据函数值对样本进行分类
样本区的选择
样本区类型:点、线、面 样本区的选择: 具有代表性(典型性) 时间或空间上的一致性 像元要足够多
A.图像预处理
确定工作范围 多源图像的几何配准 噪声处理 辐射校正 几何精校正 多图像融和(高空间分辨率和高光谱分辨率的图像)
C.特征选择和提取
特征:用于测量的属性 特征选择:变量:数据
波段数据、波段代数运算后的数据 图像变换之后的数据 非遥感图像数据
特征提取:地物光谱与图像亮度的先验关系
可分性、可靠性、独立性、数量少
XY ( X ) (Y )
2 2
p
பைடு நூலகம்
p
分类方法
(1)监督分类 (2)非监督分类 (3)其它的综合性分类方法:
模糊聚类、神经网络、决策树、专家系统分类、面 向对象的分类
工作流程
A.图像预处理 B.选择分类方法 C.特征选择和提取 D.选择合适的分类参数进行分类 E.分类后处理 F.成果输出
平行管道方法(盒式分类器,平行六面体分类器)
分类原理:每个训练区的样本的特征向量生成一个盒子,盒子 的中心为均值向量,边界为标准差的倍数(1、2、1.73等)。未 分类的向量落到哪个盒子就属于哪个类,即