磁传感器PPT课件

合集下载

磁电磁敏式传感器课件

磁电磁敏式传感器课件

多功能化与智能化发展
总结词
磁电磁敏式传感器正朝着多功能化和智能化方向发展。
详细描述
多功能化是指传感器能够同时检测多种物理量,如磁场、温度、压力等。这可以通过在传感器结构中集成多个敏 感元件和信号处理电路来实现。智能化则是指传感器具备自校准、自诊断和自适应能力,能够根据环境变化进行 自动调整,提高测量精度和可靠性。
温度特性
温度稳定性
磁电磁敏式传感器在温度变化时,其 输出值的变化程度较小,具有较好的 温度稳定性。
温度补偿
为了减小温度对传感器输出的影响, 通常需要进行温度补偿,如采用热敏 电阻等元件实现温度补偿。
03
磁电磁敏式传感器的设计与 制造
设计原则
精度与灵敏度
稳定性与可靠性
设计时应考虑传感器精度和灵敏度,以确 保其能够准确、快速地响应磁场变化。
05
磁电磁敏式传感器的性能指 标与评价
灵敏度与分辨率
灵敏度
衡量传感器输出变化量与输入变化量之比, 是传感器的一项重要性能指标。磁电磁敏式 传感器的灵敏度高,能够检测微弱的磁场变 化。
分辨率
传感器能够分辨的最小输入变化量,反映传 感器的测量精度。磁电磁敏式传感器的分辨
率较高,能够准确测量磁场微小变化。
详细描述
磁电磁敏式传感器能够测量磁场的大小和方向,通过测量地球磁场或人工磁场,可以用于地质勘查、 矿产资源勘探等领域。在航空航天领域,磁力计可以用于检测和导航,而在电机控制中,它可以检测 电机的磁场强度和位置,实现精准控制。
电流测量
总结词
磁电磁敏式传感器能够非接触地测量电流,具有高精度、高灵敏度和宽测量范围的特点 。
工作原理
通过测量磁场的变化,将磁场的 变化转换为电信号,从而实现对 物理量的检测。

磁敏式传感器.课件

磁敏式传感器.课件

06
磁敏式传感器的发展趋势与展望
新材料的应用
高磁导率材料
01
利用具有高磁导率的材料,提高磁敏式传感器的灵敏度和响应
速度。
稀有金属材料
02
采用稀有金属材料,如稀土元素,以改良传感器的性能和稳定
性。
复合材料
03
通过将不同材料的优点结合,开发出具有优异性能的复合磁敏
材料。
新工艺的研发
薄膜工艺
利用薄膜工艺制备超薄、高灵敏度的磁敏元件, 提高传感器的精度和稳定性。
磁通元件
利用磁通效应,将磁场变化转化为 电压变化,从而检测磁场强度。
信号处理电路
01
02
03
放大器
将磁敏元件输出的微弱信 号进行放大,提高信号的 信噪比。
滤波器
对信号进行滤波处理,去 除噪声干扰,提高信号的 稳定性。
调制解调器
将磁敏元件输出的模拟信 号转换为数字信号,便于 后续处理。
输出装置
显示器
位置检测
位置检测概述
位置检测是控制系统中不可或缺的一环,磁 敏式传感器可用于位置检测。
位置检测原理
磁敏式传感器通过检测磁场的变化,判断物 体的位置和运动轨迹。
位置检测应用
在机器人、自动化生产线、医疗器械等领域 ,位置检测的应用越来越广泛。
位置检测优缺点
磁敏式传感器具有非接触、精度高等优点, 但也存在对环境磁场干扰敏锐等缺点。
具有较高的灵敏度。
线性输出
磁敏式传感器的输出信号与磁 场强度成线性关系,使得测量 结果更为准确可靠。
稳定性好
经过特殊工艺处理,磁敏式传 感器具有较好的温度特性和长 期稳定性。
抗干扰能力强
由于磁场不易受到电场、温度 等因素的干扰,因此磁敏式传 感器在复杂环境下仍能保持较

磁敏传感器PPT课件

磁敏传感器PPT课件
通常采用预极化方法或辅助磁场方法来建立质子宏观 磁矩,以增强信号幅度。
具体作法是:用圆柱形玻璃容器装满水样品或含氢质子液 体,作为灵敏元件,在容器周围绕上极化线圈和测量线 圈或共用一个线圈,使线圈轴向垂直于外磁场T方向。
在垂直于外磁场方向加一极化场H(该场强约为外磁场 的200倍)。在极化场作用下,容器内水中质子磁矩沿 极化场方向排列,形成宏观磁矩,如下图所示。
磁敏传感器的种类
▪质子旋进式磁敏传感器 ▪光泵式磁敏传感器 ▪SQUID(超导量子干涉器)磁敏传感器 ▪磁通门式磁敏传感器 ▪感应式磁敏传感器 ▪半导体磁敏传感器
霍尔器件、磁敏二极管、磁敏三极管、磁敏电阻
▪机械式磁敏传感器 ▪光纤式磁敏传感器
第一节 质子旋进式磁敏传感器
质子旋进式磁敏传感器是利用质子在外磁场 中的旋进现象,根据磁共振原理研制成功的。
二、磁场的测量与旋进信号
在核磁共振中,共振信号的幅度与被测磁场T3/2成正比。
当被测磁场很弱时,信号幅度大大衰减。对微弱的被测 磁场,用一般的核磁共振检测方法是接收不到旋进信号 的。为了测得质子磁矩M绕外磁场的旋进频率 f 信号, 必须采取特殊方法: 使沿外磁场方向排列的质子磁矩,在极化场的激励下,建立 质子宏观磁矩,并使其方向于外磁场方向垂直或接近垂直
在自由旋进的过程中,磁矩M的横向分量以t2(横向弛 豫时间)为时间常数并随时间逐渐趋近于零;在测量 线圈中所接收的感应信号,也是以t2为时间常数按指数 规律衰减的。
y
υ
感应信号衰减示意图
M衰减示意图
t2
M
x
t ω=γ T
质子旋进式磁敏传感器的组成
核心:500cc左右有机玻璃容器,在容器外面绕以数百匝
dM y dt

磁电式传感器课件

磁电式传感器课件

34
2. 工作原理
空穴
电子
磁场H = 0:
(a)
P
→ →→
i
←←←
N 电流
少量电子和空穴

复合区 H=0
I 区、r区复合
(b) P
i
H+
N 电流
正向磁场 H+ : 电子和空穴偏向 r 区, 电流因复合增大而减小
(c)
P
i
H-
N 电流
反向磁场 H- : 电子和空穴偏向 I 区, 电流因复合减少而增大
这种传感器工作磁场恒定,线圈和磁铁两者间 产生相对运动,切割磁场线而产生感应电势。
动圈式
动铁式
4
恒磁通式磁电传感器的结构原理图
e WBLvsin
e WBLvsin
e WBAsint
5
(二)变磁通式磁电式传感器(磁阻式)
线圈和磁铁部分都是静止的,与被测物连 接而运动的部分是用导磁材料制成的,在运动 中,它们改变磁路的磁阻,因而改变贯穿线圈 的磁通量,在线圈中产生感应电动势。
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
结构: 稳压器、霍尔片、 差分放大器,施 密特触发器和输
地 2 出级等部分组成。
24
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
工作原理:
有磁场:UH >开启阈值,
高电平,VT导通 开状态
磁场减弱:UH <断开阈值,
地 2 低电平,VT截止 关状态
45
谢谢!
46
2. 已知某霍尔元件尺寸为长L=10mm,宽 b=3.5mm,厚d=1mm。沿L方向通以电流 I=1.0mA,在垂直于L×b方向上加均匀磁场 B=0.3T,输出霍尔电势UH=6.55mV。求该霍尔 元件的灵敏度系数KH和载流子浓度n是多少?

《霍尔传感器 》课件

《霍尔传感器 》课件
防电击
确保传感器外壳接地良好,避免因漏电等原因造成电 击危险。
操作规范
遵循安全操作规范,避免在未经授权的情况下擅自拆 卸、改装传感器。
04
霍尔传感器的发展趋势与未来 展望
技术创新与改进
微型化
多功能化
随着微电子技术的不断发展,霍尔传 感器的尺寸逐渐减小,性能不断提高 ,应用范围更加广泛。
未来霍尔传感器将逐渐实现多功能化 ,能够同时检测多种物理量,满足不 同领域的需求。
《霍尔传感器》PPT课件
目录
• 霍尔传感器简介 • 霍尔传感器的类型与特点 • 霍尔传感器的使用与注意事项 • 霍尔传感器的发展趋势与未来展望 • 案例分析与实践应用
01
霍尔传感器简介
霍尔传感器的定义
霍尔传感器是一种基于霍尔效应的磁 感应传感器,能够检测磁场变化并转 换为电信号输出。
它利用霍尔效应原理,通过测量磁场 中导体或半导体的电压或电流变化来 检测磁场。
开关型霍尔传感器具有低功耗、高可靠性、快速响应等优点,广泛应用于无刷电机 、电磁阀等电子设备的控制系统中。
开关型霍尔传感器通常由霍尔元件、放大器和比较器等组成,具有较小的体积和重 量。
温度补偿型霍尔传感器
温度补偿型霍尔传感器主要用 于消除温度对霍尔元件的影响 ,提高测量精度和稳定性。
温度补偿型霍尔传感器通常 采用热敏电阻或集成温度传 感器来实现温度补偿功能。
物联网
随着物联网技术的不断发展,霍 尔传感器在智能家居、智能农业 、智能安防等领域的应用前景广 阔。
市场前景与展望
全球霍尔传感器市场规模不断扩大,预计未来几年将继续保持增长态势。
随着技术的不断创新和应用的不断拓展,霍尔传感器的应用领域将越来越 广泛,市场前景十分看好。

磁电感应式传感器的应用课件

磁电感应式传感器的应用课件
工作原理
磁电感应式传感器通过磁场的变 化来感应被测物体的状态或变化 ,并将感应信号转换为电信号输 出,以供后续处理或控制使用。
类型与特点
类型
磁电感应式传感器有多种类型,如霍 尔传感器、磁阻传感器、磁通门传感 器等。
特点
磁电感应式传感器具有高灵敏度、高 分辨率、低噪声、长寿命等优点,同 时对温度、湿度等环境因素具有较强 的适应性。
04
磁电感应式传感器的优势与局限 性
优势分析
高灵敏度与分辨率
磁电感应式传感器能够精确地 检测微弱磁场变化,适用于对
微小信号有高要求的场合。
快速响应
由于其工作原理,磁电感应式 传感器能够迅速响应磁场变化 ,适合动态测量。
宽测量范围
通过调整设计参数,磁电感应 式传感器可以覆盖很宽的磁场 范围,满足多种应用需求。
磁电感应式传感器能够测量磁场强度 和方向,常用于地质勘查、机、发电机等设备的运行过程中 ,磁电感应式传感器可以检测磁场变 化,确保设备正常运行。
电机与发电机控制
电机控制
磁电感应式传感器可用于控制电机的启动、停止、正反转等操作,提高电机运行效率和稳定性。
发电机调节
柱形线圈等,以满足不同测量范围和精度要求。
磁路结构设计
02
优化磁路结构,减小磁阻,提高磁场利用率,从而提高传感器
的灵敏度和线性度。
封装与防护设计
03
考虑传感器的封装和防护设计,以提高其环境适应性和使用寿
命。
性能提升与改进
信号处理与放大
采用适当的信号处理电路和放大 器,对传感器输出信号进行放大 和滤波,以提高信号质量和测量 精度。
信号处理与
信号处理电路
磁电感应式传感器输出的感应电动势信号非常微弱,需要通过信号处理电路进行 放大、滤波等处理,以便更好地进行测量和输出。

磁电感应式传感器PPT课件

磁电感应式传感器PPT课件

1.被测旋转体 2.测量轮 3.线圈
4.软铁
5.永久磁铁 开磁路变磁通式传感器结构示意图
它与软铁4之间构成的磁路磁阻变化一次,磁通也就 变化一次,线圈3中产生的感应电动势的变化频率等 于测量齿轮2上齿轮的齿数和转速的乘积。
这种传感器结构简单,但需在被测对象上加装齿轮,
使用不方便,且因高速轴上加装齿轮会带来不平衡而
上述工作原理可知,磁电感应式传感器只适用于
动态测量。
.
5
5.2 磁电感应式传感器的类型
按磁场方式分类,磁电感应式传感器分为变磁通式 和恒定磁通式两大类,每类还有不同型式。
1.变磁通式
变磁通式传感器又称为变磁阻磁电感应式传感器或
变气隙磁电感应式传感器。这类传感器的线圈和磁
铁固定,利用铁磁性物质制成齿轮(或凸轮)与被
不宜测高转速。
.
7
(2)闭磁路变磁通式传感器
如测图量,轮被2在测磁旋场转气体隙1带中动等速椭圆转形动,1.被测物体 使气隙平均长度周期性地变化,
2.测量轮 3.线圈
因而磁路磁阻也周期性地变化,
4.软铁
磁通同样周期性地变化,则在线
圈3中产生感应电动势,其频率f
与测量轮2的转速n(rad/m)成
N
S
正比,即f=n/30。在这种结构中,
e N d dt
.
3
当线圈垂直于磁场方向运动以速度 v切割磁力线时,
感应电动势为: eNBlv
式中,l:每匝线圈的平均长度;
B:线圈所在磁场的磁感应强度(T)。
若线圈以角速度 转动,则感生电动势可写为:
eNBS
式中,S:每匝线圈的平均截面积。
.
4
只要磁通量发生变化,就有感应电动势产生,可 实现的方法很多,主要有:

磁栅式传感器课件

磁栅式传感器课件

05
磁栅式传感器的未来发展 与展望
技术创新与改进
精度提升
随着材料科学和制造工艺的进步,磁栅式传感器的精度有望得到 进一步提升,以满足更精确的测量需求。
集成化与微型化
通过将多个传感器集成到一个芯片上,实现微型化,使得磁栅式传 感器更加便携和易于集成到各种设备中。
智能化
借助人工智能和机器学习技术,磁栅式传感器将具备自学习和自适 应能力,能够根据不同应用场景进行智能调整和优化。
动控制。
自动化生产线
用于测量生产线上的物 体位移和速度,实现自
动化控制和检测。
其他领域
如汽车、航空航天、能 源等领域也有应用。
02
磁栅式传感器的组成与结 构
磁头
磁头是磁栅式传感器的主要组 成部分,它负责读取磁带上的
磁场信息。
磁头通常由高磁导率的软磁材 料制成,如坡莫合金或铁氧体 ,以增强磁场感应的灵敏度。
影响因素
稳定性受到传感器内部电路、磁性材料、机械结构以及环境条件等因素的影响。
04
磁栅式传感器的使用与维 护
使用注意事项
确保磁栅式传感器安装在稳 定的工作台上,避免受到振 动和冲击。
确保传感器与读数装置之间 的连接坚固,避免出现信号 传输问题。
在使用前,检查传感器是否 完好无损,确保没有明显的 物理损伤。
输出接口的种类和规格根据实际应用需求而定,常见的有模拟输出和数字输出两种 类型。
输出接口需要具备抗干扰能力和良好的电气性能,以确保传输的信号准确无误。
03
磁栅式传感器的性能指标
分辨率
分辨率
分辨率是磁栅式传感器能够检测到的最小变化量,通常以角 度、长度或电流等单位表示。高分辨率的传感器能够更精确 地测量微小的变化。

传感器课件(PPT)可修改全文

传感器课件(PPT)可修改全文
传感器
一传感器
1、有时被称为检测器、探测器或变换器
传感器:检测非电信号,并按一定规律使之转换 成电信号的器件或装置。
2、传感器结构
敏感元件:对某些非电信号的改变很敏感的元器 件 处理电路:对敏感元器件输出电信号进行放大和 去干扰的电路 2、敏感元件的工作原理
(1)热敏电阻 电阻的阻值对温度的变化 很敏感
B、环境监控,火灾报警装置
三、生活中的传感器 1、洗衣机中的传感器 (1)水位传感器 (2)负载传感器 (3)水温传感器 (4)赃物程度传感器等等 2、电冰箱中的传感器 靠传感器进行:温度控制、除霜温度控制、 过热及过电流保护。
3、家用报警器
火警报警器、 测温度,测流体流量
C、热敏电阻传感器(半导体) 随温度升高而电阻减小的热敏电阻 随温度升高而电阻增大的热敏电阻 特殊热敏电阻:在某特定温度电阻聚聚变化
应用:测温度,温度控制、过热保护 2、光传感器
用受到光照时能产生电压(电流)的金属或 半导体材料制成。
光传感器的应用: A、自动水龙头、自动旋转门:红外线传感器
(2)磁敏感元件 对磁感应强度变化敏感
传感器的简单应用
二、常用传感器 1、温度传感器
A、热双金属片传感器
将膨胀系数差别大的不 同金属片焊接或轧制成 一体
工作原理:受热后,双金 属片产生变形
B、热电阻传感器
金属的电阻R与温度t的关系 R R0 (1 t)
选材要求:要求 值(温度系数)稳定不因为

磁敏传感器PPT课件

磁敏传感器PPT课件
l b
形状效应系数 磁敏元件的长度
磁敏元件的宽度△
这种由于磁敏元件的几何尺寸变化而引起的磁阻 大小变化的现象,叫形状效应。
.
32
磁阻元件是利用半导体的磁阻效应和形状效应研制 而成。
(1)长方形磁阻元件
其长度L大于宽度b,在两端部制成电极,构成两端器件
.
33
在电场和磁场相互垂直得固体中电子的运动
.
UB、IB——磁场为B时, 磁敏二极管两端流过的 电压和电流
.
11
3.温度补偿及提高灵敏度的措施
①互补式电路
温度特性曲线
.
12
②差分式电路
.
13
③全桥式电路
要求:灵敏度高
用交流电源或脉冲电压源
.
14
二.磁敏三极管的工作原理和主要特性
1.结构和原理 电路符号:
结构:
.
15
工作原理:
a.无磁场: 集电极电流小,基极电流大
⑥工作电压 3V ~ 几十V
.
20
3.温度补偿及提高灵敏度的措施 ①负温度系数管
用正温度系数普通硅三极管
.
21
②正温度系数管(3BCM)
.
22
③选择特性一致,磁性相反
差分式补偿电路
.
23
三﹑磁敏管的应用
漏磁探伤仪的原理如图:
a.钢棒被磁化局部表面时,若无缺陷,探头附近没有泄漏磁通, 无信息输出 b.缺陷处的泄漏磁通将作用于探头上,使其产生输出信号
b.加正向磁场 洛仑兹力,基极电流加大, 集电极电流更小
c.加反向磁场 洛仑兹力,集电极电流加大
.
16
2.磁敏三极管主要特性 ①伏安特性
.

《磁敏传感器介绍》课件

《磁敏传感器介绍》课件

磁敏传感器在工厂自动化、机器人技术和生 产线控制中起到关键作用。
2 汽车行业
用于车辆导航、制动系统、空调系统和倒车 雷达等汽车应用中。
3 医疗设备
4 消费电子
应用于MRI机器、心脏起搏器和血液测量等医 疗设备中。
用于智能手机、平板电脑和游戏手柄等消费 电子产品中。
磁敏传感器的性能评价指标
1 灵敏度
磁敏传感器的分类和类型
磁电传感器
利用磁电效应将磁场转换为电信号,如霍尔传感器和磁电电流传感器。
磁阻传感器
根据磁场的磁阻变化来测量磁场强度,如磁阻式位置传感器和磁阻角度传感器。
磁感应传感器
利用磁感应效应测量磁场强度和方向,如磁感应式位置传感器和磁感应式角度传感器。
磁敏传感器的应用领域
1 工业自动化
磁敏传感器介绍
欢迎来到《磁敏传感器介绍》PPT课件。本课程将为您详细介绍磁敏传感器的 定义、原理和应用领域,以及评价指标和创新技术。让我们一起探索这个引 人入胜的领域!
磁敏传感器的定义和原理
磁敏传感器是一种能够检测和测量磁场强度和磁场变化的设备。它们基于磁敏效应工作,如霍尔效应、磁电效 应和磁致伸缩效应。这些传感器在广泛的应用中发挥着关键的作用。
3
低功耗
优化电路设计和材料选择以降低功耗。
磁敏传感器的创新技术
量子磁敏传感器
利用量子效应实现更高灵敏度和 更低功耗的磁敏传感器。
人工智能应用
结合人工智能算法分析传感器数 据,提高复杂环境下的性能。
物联网集成
将磁敏传感器与物联网技术相结 合,实现智能化和远程监测。
总结和展望
通过本课程,我们了解了磁敏传感器的定义、原理、分类、应用领域、性能 评价指标以及创新技术。未来,随着技术的不断发展,磁敏传感器将在更多 领域发挥关键作用,带来更多惊喜和突破。

磁敏传感器讲PPT课件

磁敏传感器讲PPT课件
设霍尔元件为N型半导体,其长度为l,宽度为b,厚度为 d。又设电子以均匀的速度v运动,则在垂直方向施加的磁感应 强度B的作用下,空穴受到洛仑兹力
fL qvB q—电子电量(1.62×10-19C); v—载流子运动速度。
.
11
根据右手螺旋定则,电子运动方向向上偏移,则在上端产生 电子积聚,下端失去电子产生正电荷积聚。从而形成电场。
17
I
B
V
R E
IH R3 VH
霍尔元件的基本电路
控制电流I;
霍耳电势VH; 控制电压V;
输出电阻R2; 输入电阻R1; 霍耳负载电阻R3; 霍耳电流IH。
图中控制电流I由电源E供给,R为调节电阻,保证器件内所 需控制电流I。霍耳输出端接负载R3,R3可是一般电阻或 放大器的输入电阻、或表头内阻等。磁场B垂直通过霍耳 器件,在磁场与控制电流作用下,由负载上获得电压。
VH=KHBI KH——Hall元件灵敏度,表示霍耳电势VH与磁感应强 度B和控制电流I乘积之间的比值,mV/(mA·KGs)。因为
霍耳元件的输出电压要由两个输入量的乘积来确定, 故又称为乘积灵敏度。
.
21
若控制电流值固定,则: VH=KBB
KB——磁场灵敏度,通常以额定电流为标准。磁场灵敏 度等于霍耳元件通以额定电流时每单位磁感应强度对应 的霍耳电势值。常用于磁场测量等情况。
VH= KH I B cosθ
.
15
设 KH=RH / d VH= KH I B
KH—霍尔元件灵敏度。它与材料的物理性质和几何尺寸有关, 它决定霍尔电势的强弱。
若磁感应强度B的方向与霍尔元件的平面法线夹角为θ时, 霍耳电势应为:
VH= KH I B cosθ

第十章磁栅式传感器-PPT课件

第十章磁栅式传感器-PPT课件

滑尺尺寸 (mm)
100×73×9.5 74×35×9.5 -
测量周期 (mm)
2 2
精度 (μ m)
1.5~2.5 2.5~5 10
标准型 窄 带 型 型
2
带型感应同步器外形图(参考东方仿真)
二、感应同步器的工作原理
感应同步器原理动画演示
在定尺绕组上加上激励电流,于是滑尺绕组 中便产生感应电势,其值为
设置两个磁头的 意义何在?
磁尺与磁头接触,使用寿命 不如光栅,数年后易退磁。
(2)鉴幅方式 利用输出信号的幅值大小来反映磁头的位移 量或与磁尺的相对位置的信号处理方式。经检波
器去掉高频载波后可得 :
2 x E E = 1 m cos W
2 x E 2 E msin W
与光栅的信号辨向、细分一致。
2.磁尺检测专用集成芯片(SF6114) 主要功能:对磁尺励磁信号的低通滤波和功率放大; 供给磁头的励磁信号;对放大器输出信号 经滤波后进行放大、限幅、整形为矩形 波;接受反馈信号对磁尺检出信号进行相 位微调。
3.磁尺细分专用集成芯片(SIM-011)
主要功能:对磁尺的节距W=200μm实现200或40 或20等分的电气细分,从而获得1、5、 10μm的分辨力(最小显示值)。 4.可逆计数芯片(WK50395)
一、感应同步器的结构和类型 1.结构
直线式感应同步器示意图
圆盘式感应同步器示意图
定尺与滑尺绕组关系图
感应同步器的解剖图
2.类型
标准型
直线式 窄型 带型 旋转式(圆盘式)
直线式感应同步器的尺寸和精度一览表 种 类 定尺尺寸 (mm)
250×58×9.5 250×30×9.5 (200~ 2000)×19

磁敏式传感器 ppt课件

磁敏式传感器 ppt课件
第7章
磁敏式传感器
1
主要内容
7.1 磁电感应式传感器 7.2 霍尔式传感器
2
3
7.1 磁电感应式传感器
磁电感应式传感器又称感应式或电动式传感器, 是利用电磁 感应原理将被测量(如振动、位移、转速等)转换成电信号的一种 传感器
它不需要辅助电源, 就能把被测对象的机械量转换成易于测量 的电信号,是一种有源传感器
7
变磁通式磁电传感器(用于角速度测量)
43 2 1 NS
31 7
A 6
A
5
5
6
(a)
(b)
主要靠改变磁路的磁通大小进行测量,即改变磁路的磁阻
8
图(a)为开磁路变磁通式:线圈、磁铁静止不动, 测量 齿轮安装在被测旋转体上,随被测体一起转动。每转动一个齿, 齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次, 线圈中 产生感应电势,其变化频率等于被测转速与测量齿轮上齿数的 乘积。
传感器线圈产生感应电动势,接上负载后,线圈中有电流流过 而发热。
12
测量误差
当传感器的工作温度发生变化或受到外 界磁场干扰、受到机械振动或冲击时, 其灵敏度将发生变化,从而产生测量误 差,其相对误差为:
dSI dBdLdR
SI B L R
SI
I0 v
NBL RRf
即其测量误差来源于B、L、R三个方面
10
7.1.2
当测量电路接入磁电传感器电路时,磁电传感器的输出电
流Io为:
I0
E RRf
NBLv RRf
式中: Rf——测量电路输入电阻; R——线圈等效电阻。
I0
传E

器R
指示器
Rf
传感器的电流灵敏度为

磁阻传感器分解课件

磁阻传感器分解课件
保测量精度和稳定性。
分辨率
考虑所需的测量精度,选择具 有足够分辨率的磁阻传感器,
以区分微小的磁场变化。
线性度
选择线性度较好的磁阻传感器 ,以减小测量误差,提高测量
准确性。
环境适应性
根据实际应用环境,选择能够 在恶劣环境下稳定工作的磁阻
传感器。
使用注意事项
安装位置
确保磁阻传感器安装在磁场干扰较小、温度和湿度适宜的位置,以提 高测量精度和稳定性。
PART 02
磁阻传感器的组成与结构
磁阻元件
磁阻元件是磁阻传感器中的核 心元件,其作用是感应磁场的 变化,并将磁场变化转换为电 信号输出。
磁阻元件的原理是基于磁阻效 应,即当电流在磁性材料中流 动时,磁场的变化会导致材料 的电阻值发生变化。
磁阻元件的常见类型有各向异 性磁阻元件和巨磁阻元件等。
信号处理电路
详细描述
噪声和干扰可能来源于多种因素,如电路噪声、电磁干扰、温度波动等。为了提高磁阻传感器的性能,需要采取 一系列措施来降低噪声和干扰的影响,如优化电路设计、选用高稳定性材料、加强电磁屏蔽等。同时,合理选择 和使用磁阻传感器也可以降低其对外部噪声和干扰的敏感性,提高测量的稳定性和可靠性。
PART 04
信号处理电路的作用是对磁阻元 件输出的电信号进行放大、滤波 、整形等处理,以便更好地提取
有用的信息。
信号处理电路通常包括放大器、 滤波器、比较器等电子器件。
信号处理电路的设计和优化对于 提高磁阻传感器的性能和稳定性
至关重要。
接口电路
接口电路的作用是将经过处理的 电信号输出到外部设备或系统中

接口电路通常包括差分信号输出 、电流输出、电压输出等多种形
以上是对磁阻传感器分解课件 中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、主要特性参数
(2)最大激励电流IM 由于霍尔电势随激励电流增大而增大,故在应用中总希望
选用较大的激励电流。但激励电流增大,霍尔元件的功耗增大, 元件的温度升高,从而引起霍尔电势的温漂增大,因此每种型 号的元件均规定了相应的最大激励电流,它的数值从几毫安至 十几毫安。
总目录 章目录 返回 上一页 下一页
桑塔纳汽车霍尔式分电器示意图
a)带缺口的触发器叶片 b)触发器叶片与永久磁铁及霍尔集
成电路之间的安装关系
c)叶片位置与点火正时的关系
1-触发器叶片 2-槽口 3-分电器转轴 4-永久磁铁 5-霍尔集成电路(PNP型霍尔IC)
总目录 章目录 返回 上一页 下一页
霍尔式无触点汽车电子点火装置(续)
汽车电子点火电路及波形
(2)霍尔式无刷电动机
霍尔式无刷电动机取消了换向器和 电刷,而采用霍尔元件来检测转子和定 子之间的相对位置,其输出信号控制电
枢电流的换向,维持电动机的正常运转。普通直流电动机使 由于无刷电动机不产生电火花及电 用的电刷和换向器
刷磨损等问题,所以它在录像机、CD 唱机、光驱等家用电器中得到越来越广 泛的应用。
5.1.1 霍尔元件的工作原理及特性
1、霍尔效应
磁感应强度B 较大时 作用在半导体薄片上的磁场强度B越强,霍尔电势也就越 高。霍尔电势EH可用下式表示:
EH=KH IB
磁感应强度B不为零时的情况总目录 章目录 返回 上一页 下一页
5.1.1 霍尔元件的工作原理及特性
1、霍尔效应
霍尔效应动画演示
d
5.1.2 霍尔集成电路
霍尔集成电路可分为线性型和开关型两大类。 (1)线性型
线性型集成电路是将霍尔元件和恒流源、线性差动放大器 等做在一个芯片上,输出电压为伏级,比直接使用霍尔元件方 便得多。较典型的线性型霍尔器件如UGN3501等。
线性型三端霍尔集成电路 总目录 章目录 返回 上一页 下一页
线性型霍尔元件输出特性曲线
总目录 章目录 返回 上一页 下一页
电动自行车的无刷电动机及控制电路
利用
PWM 调速
去速度 控制器
总目录 章目录 返回 上一页 下一页
无刷电动机在电动自行车上的应用
电动自行车
无刷电动机
可充电 电池组
总目录 章目录 返回 上一页 下一页
无刷电动机在电动自行车上的应用
无刷直流电动机的 外转子采用高性能钕铁 硼稀土永磁材料;三个 霍尔位置传感器产生六 个状态编码信号,控制 逆变桥各功率管通断, 使三相内定子线圈与外 转子之间产生连续转矩。 具有效率高、无火花、 可靠性强等特点。
右图示出了具有 双端差动输出特性的 线性霍尔器件的输出 特性曲线。当磁场为 零时,它的输出电压 等于零;当感受的磁 场为正向(磁钢的S极 对准霍尔器件的正面) 时, 输出为正;磁场 反向时,输出为负。
总目录 章目录 返回 上一页 下一页
5.1.2 霍尔集成电路
(2)开关型 开关型霍尔集成电路是将霍尔元件、稳压电路、放大器、
Vcc
霍尔 元件
施密特 触发电路
OC门
双端输入、
.单端输出运放
总目录 章目录 返回 上一页 下一页
开关型霍尔集成电路(OC门输出)的接线 请按以下电路,将下一页中的有关元件连接起来。
总目录 章目录 返回 上一页 下一页
开关型霍尔集成电路的史密特输出特性
回差越大,抗振动 干扰能力就越强。
当磁铁从远到近地接近霍尔IC,到多少特斯拉时输出翻转? 当磁铁从近到远地远离霍尔IC,到多少特斯拉时输出再次翻 转?回差为多少特斯拉?相当于多少高斯(Gs)?
施密特触发器、OC门(集电极开路输出门)等电路做在同 一个芯片上。当外加磁场强度超过规定的工作点时,OC门 由高阻态变为导通状态,输出变为低电平;当外加磁场强度 低于释放点时,OC门重新变为高阻态,输出高电平。较典 型的开关型霍尔器件如UGN3020等。
总目录 章目录 返回 上一页 下一页
开关型霍尔集成电路的外形及内部电路
总目录 章目录 返回 上一页 下一页
5.1.1 霍尔元件的工作原理及特性
1、霍尔效应
金属或半导体薄片置于磁感应强度为B 的磁场中,磁场 方向垂直于薄片,当有电流I 流过薄片时,在垂直于电流和 磁场的方向上将产生电动势EH,这种现象称为霍尔效应。 该电动势称为霍尔电动势。
磁感应强度B为零时的情况 总目录 章目录 返回 上一页 下一页
总目录 章目录 返回 上一页 下一页
5.1.2 霍尔传感器的应用
霍尔电势是关于I、B、 三个变量的函数,即 EH=KHIBcos 。
利用这个关系可以使其中两个量不变,将第三个量作 为变量,或者固定其中一个量,其余两个量都作为变量。 这使得霍尔传感器有许多用途。
霍尔传感器主要用于测量能够转换为磁场变化的其他 物理量。
c
当磁场垂直于薄片时,电子受到洛仑兹力的作用,向d侧偏 移,在半导体薄片c、d方向的端面之间建立起霍尔电势。
总目录 章目录 返回 上一页 下一页
5.1.1 霍尔元件的工作原理及特性
2、主要特性参数
(1)最大磁感应强度BM
线性区
总目录 章目录 返回 上一页 下一页
5.1.1 霍尔元件的工作原理及特性
a)电路 b)霍尔IC及点火线圈高压侧输出波形
1—点火开关 2—达林顿晶体管功率开关 3—点火线圈低压侧 4—点火线圈铁心 5—点火线圈高压侧 6—分火头 7—火花塞
总目录 章目录 返回 上一页 下一页
汽车电子点火装置使用的点火控制器、霍尔传感器 及点火总成
磁铁
点火总成
总目录 章目录 返回 上一页 下一页
第5章 磁传感器
5.1 霍尔传感器 5.2 其他磁传感器 5.3 综合应用技能实训
总目录 章目录 返回 上一页 下一页
5.1 霍尔传感器
霍尔传感器所依赖的物理基础为霍尔效应。 霍尔传感器应用广泛。广泛用于无刷电动机、高斯 计、接近开关、微位移测量等。 它的最大特点是非接触测量。
霍尔元件是一种四端元件
总目录 章目录 返回 上一页 下一页
(12V低压电源输入接头
采用霍尔式无触点 电子点火装置能较好地 克服汽车合金触点点火 时间不准确、触点易烧 坏、高速时动力不足等
缺点。
总目录 章目录 返回 上一页 下一页
霍尔式无触点汽车电子点火装置工作原理
相关文档
最新文档