用比例解决问题教学设计1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用比例解决问题》教学设计
榆中县三角城小学张喜东
【教学内容】义务教育课程标准实验教材(人教版)数学六年级下册第三单元“用比例解决问题”(教科书P59—60的例5、例6,以及P60页做一做的内容,练习九3—7题。)【教材分析】
这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。
正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。判断过程也是正反比例意义实际应用的过程。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。
【学情分析】
学生在学习这部分知识之前,已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归一、归总的实际问题。本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。同时,由于解决问题时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。
【设计思路】
新课程理念非常重视数学应用意识的培养。学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用,才能真正实现数学的价值。要培养学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。在学习本节课之前,生活中的一些数量关系,学生用自己的知识已经会解决了。本节课要让学生用另一种数学眼光,从比例知识的角度寻找一种新的解决这种特殊数量关系的方法。从而丰富学生解决问题的策略,加强数学应用意义的培养。在教学设计和实践上,能否真正有效的培养学生的应用
意识,其关键重要的一环是,如何引导启发学生面对实际问题,能主动尝试着从数学的角度运用比例的知识去解决问题。要为学生运用比例知识解决实际问题创造条件和机会。
【教学目标】
1.知识与技能
学会用正、反比例的方法解决问题,并掌握用比例解决问题的思路和一般步骤。
2.过程与方法
(1)通过知识迁移,在复习用正比例解决问题的基础上,探究用反比例解决问题的方法。
(2)借助对比练习,总结用正、反比例解决问题的方法步骤,培养学生分析解决问题的能力。
(3)通过策略多样化的训练,培养学生的发散性思维。
3.情感态度和价值观
感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。
【教学重点】用比例知识解答比较容易的归一、归总应用题。
【教学难点】掌握用比例知识解决问题的思路和一般步骤,准确判断题中数量之间存在的比例关系,根据正、反比例的意义正确列式。
【教学关键】弄清题中两种量的变化情况。
【教学准备】多媒体课件;小组学习记录卡。
【教学方法】尝试教学法、引导发现法等。
【教学过程】
一、铺垫孕伏,建立表象。(课件出示)
1.判断下面每题中的两种量成什么比例?
(1)单价一定,总价和数量.
(2)全校学生做操,每行站的人数和站的行数.
2.下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?
(1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。
(2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。
[设计意图]本节课的教学内容是正、反比例的应用,因此通过本环节的教学,使学生加深对正、反比例的意义理解,能正确判断成正、反比例的量。
二、创设情境,探索新知
(一)回顾旧知,激发兴趣
1.出示例5情景图,说一说图意,了解数学事例。
2.让学生自己解答,然后交流解答方法。
[设计意图]用以往学过的方法解决问题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。
引导过渡:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。
(二)探究新法,感知策略
1.梳理两种相关联的量。
师:用比例解决问题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数)
2.小组合作探究用比例解题的方法。
发放学习记录卡(每个学习小组一张),小组合作学习。
找出题中两种相关联的量,以及对应的数据,填写下表(未知的量用“x”表示)。
从上表可以知道()一定,所以()和()成()比例。也就是说,两家的()和()的()相等。
[设计意图]教师提出小组合作学习的要求,明确学习的目标和任务、组织学生如何开展学习,是小组合作学习必不可少的部分。“学习记录卡”的应用既突出了学习的重点,又把用比例解决问题的探究过程清晰地呈现出来,有利于学生建构用比例解决问题的策略。
(三)形成策略,展示成果
从上表可以知道(每吨水的价钱)一定,所以(水费)和(用水量)成正比例。也就是说,两家的(水费)和(用水量)的(比值)相等。设李奶奶家上个月的水费是x元。列出比例是:(或12.8:8=x:10),比例的解是x=16。(板书解法)
[设计意图]注重学生在教学活动中的主体性,留给学生充分的时间和空间。先让学生自己解答,再组织、引导学生合作、交流自己发现方法。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力,探究能力。使学生增强学习的自信。
(四)检验反思,提炼策略
师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?
启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方