4.7 中心对称图形练习题
中心对称 练习题
中心对称练习题中心对称是几何学中常见的概念,它是指一个物体与其关于某个点的对称物体完全相同。
在这个练习题中,我们将探讨一些与中心对称相关的问题,并通过解析和说明来帮助读者更好地理解这一概念。
下面是一些练习题:练习题一:1. 在平面xy上,画一个中心在原点O的圆,并标记该圆的半径r。
解析:要画一个中心在原点O的圆,我们需要以O为圆心,r为半径画一个圆。
在平面xy上,我们可以使用一个圆规和一支铅笔来完成这个绘图任务。
首先将圆规的一个脚放在O点,然后利用铅笔调整圆规的另一个脚的长度为r,接着固定住这个长度,绕着O点转动圆规画出圆的轨迹。
最后将这个轨迹用一条曲线连接起来,就得到了一个中心在原点O的圆。
2. 给定一个点A(3, 4),请找出关于点A的中心对称点A'的坐标。
解析:关于点A的中心对称点A'的特点是,点A在O点的中垂线上,并且与O点的距离等于点A与A'的距离。
根据这个特点,我们可以确定A'在平面xy上的坐标。
首先,考虑点A到原点O的距离,根据勾股定理,这个距离为√(3^2 + 4^2) = √(9 + 16) = √25 = 5。
因此,A'与O的距离也必须为5。
O的中心对称点,所以点A与A'之间的连线与x轴的夹角可以看作是x轴与OA的夹角的两倍。
而点A的坐标为(3, 4),所以OA与x轴的夹角为arctan(4/3)。
因此,点A'与x轴的夹角为2 * arctan(4/3)。
最后,通过这个夹角和A'与O的距离,我们可以得到A'在平面xy上的坐标。
由于A'与O的距离为5,那么A'的坐标可表示为(5 * cos(2* arctan(4/3)), 5 * sin(2 * arctan(4/3)))。
将这个表达式计算出来,就可以得到A'的坐标。
练习题二:1. 在平面xy上,画一个以(2, 3)为中心的圆,并标记该圆的半径为r。
中心对称 练习题
中心对称练习题中心对称练习题中心对称是数学中一个重要的概念,它在几何学和代数学中都有广泛的应用。
在几何学中,中心对称指的是一个图形关于某个点对称,即该点作为对称中心。
而在代数学中,中心对称则是指一个函数关于某个点对称,即该点作为对称中心。
中心对称的概念在解题中经常出现,下面将给出一些中心对称的练习题,帮助读者更好地理解和应用这一概念。
1. 在平面直角坐标系中,点A(2, 4)关于原点O对称,求点A'的坐标。
解析:由于点A关于原点O对称,所以点A'与点A的横坐标和纵坐标符号相反,即A'的坐标为(-2, -4)。
2. 在平面直角坐标系中,点B(3, 5)关于直线y = x对称,求点B'的坐标。
解析:由于点B关于直线y = x对称,所以点B'与点B的横坐标和纵坐标互换,即B'的坐标为(5, 3)。
3. 在平面直角坐标系中,点C(4, -2)关于y轴对称,求点C'的坐标。
解析:由于点C关于y轴对称,所以点C'与点C的横坐标符号相反,纵坐标不变,即C'的坐标为(-4, -2)。
4. 在平面直角坐标系中,点D(1, -3)关于直线y = -x对称,求点D'的坐标。
解析:由于点D关于直线y = -x对称,所以点D'与点D的横坐标和纵坐标互换并取相反数,即D'的坐标为(3, 1)。
通过以上练习题,我们可以看出中心对称的特点:关于某个点对称时,横坐标和纵坐标的变化规律。
在解题中,我们可以利用这一特点来求解关于中心对称的问题。
除了点的中心对称,我们还可以将线段、图形等进行中心对称。
下面给出一个例子:5. 在平面直角坐标系中,已知线段AB的起点为A(2, 3),终点为B(5, 7),求线段AB关于原点O的中心对称线段A'B'的起点和终点坐标。
解析:由于线段AB关于原点O对称,所以线段A'B'与线段AB的起点和终点坐标分别关于原点O对称。
中心对称练习题及答案学习资料
3 中心对称(2)班级:__________ 姓名:__________ 得分:__________一、选择题(共10小题;共30.0分)1. 如图所示的图形中,是中心对称图形的有A. 1个B. 2个C. 3个D. 4个2. 下面4张扑克牌中,属于中心对称的是 ( )A. B. C. D.3. 下列图形中是中心对称图形是 ( )A. B. C. D.4. 观察下列图形,是中心对称图形的是 ( )A. B. C. D.5. 下列图形中,中心对称图形的个数是.A. 1个B. 2个C. 3个D. 4个6. 如图汽车标志中不是中心对称图形的是 ( )A. B. C. D.7. 在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是 ( )A. B. C. D.8. 观察下列银行标志,从图案看是中心对称图形的有个.A. 1个B. 2个C. 3个D. 4个9. 点P(2,3)关于原点对称的点的坐标是 ( )A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)10. 如图,把图中的△ABC经过一定的变换得到△A?B?C?,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P?的坐标为A. (a-2,b)B. (a+2,b)C. (-a-2,-b)D. (a+2,-b)二、填空题(共6小题;共18.0分)11. 已知六边形ABCDEF是中心对称图形,AB=1,BC=2,CD=3,那么EF=.12. 如图,在2×2的正方形网格纸中,有一个以格点为顶点的△ABC,请你找出网格纸中所有与△ABC成中心称且也以格点为顶点的三角形共有个.(不包括△ABC本身)13. 已知△ABC和△A?B?C?关于点O对称,且点A与A?、点B与B?是对应点.下列结论:①;④CO=BO.其中成立的有(填序AO=A?O;②AB∥A?B?;③∠BAC=∠B?A?C?号).14. 设将一张正方形纸片沿图中虚线剪开后,能拼成图中的四个图形,则其中是中心对称图形的是(填序号).15. 在平面直角坐标系中,点M坐标为(3,-4),点M关于原点成中心对称的点记作M?,则两点M与M?之间的距离为.16. 如图所示,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD,BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为.三、解答题(共5小题;共52.0分)17. 在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-4,5),C(-5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.18. 如图所示,已知△ABC和图形外一点O,画出△ABC关于点O的对称图形.19. 在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并写出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并写出B2、C2两点的坐标.20. 实践与操作:如图 1 是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图 2 是以图 1 为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图 1,用两段相等的圆弧(小于或等于半圆),在图 3 中重新设计一个不同的轴对称图形;(2)以你在图 3 中所画的图形为基本图案,经过图形变换在图 4 中拼成一个中心对称图形.21. 如图,已知O是坐标原点,A、B、C三点的坐标分别为(1,1)、(4,0)、(3,2).(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1;(2)画出与△A1B1C1关于原点成中心对称的△A2B2C2,并写出A2、B2、C2三点的坐标.答案第一部分1. C2. D3. B4. C5. B6. B7. D8. C9. C 10. C第二部分11. 212. 213. ①③14. (2)15. 1016. 3第三部分17. (1) 如图:17. (2) 如图:18. (1) (1)连接OA,并反向延长到A?,使OA?=OA,于是得到点A的对称点A?;(2)同样画出点B,C的对称点B?,C?;(3)顺次连接A?B?,B?C?,C?A?.则△A?B?C?即为所求,如图所示.19. (1) 如图所示19. (2) 如图所示A(0,1),C(-3,1)19. (3) 如图所示B2(3,-5),C2(3,-1).20. (1) 在图 3 中设计出符合题目要求的图形.如图,20. (2) 在图 4 中画出符合题目要求的图形.如图,21. (1) 如图.21. (2)如(1)中图.A2(1,-1),B2(0,-4),C2(2,-3).。
中心对称练习题目
中心对称练习题1. 下列说法中,不正确的是()A.轴对称图形的对称轴是对称点连线的垂直平分线B.中心对称图形的对称中心是对称点连线的中点C.成轴对称的两个图形中,对应线段相等D.成中心对称的两个图形中,对应线段平行且相等2.在线段,等腰梯形,平行四边形,矩形,菱形,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个3. 选出下列图形中的中心对称图形()①②③④A ①②B ①③C ②③D ③④4.在等腰三角形,等边三角形,菱形,等腰梯形中是轴对称,但不是中心对称的图形个数是( C )A. 1个B. 2个C. 3个D. 4个5.下列图形中,不是中心对称图形的是()A. 菱形B. 矩形C. 正方形D. 等边三角形6.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.等腰梯形C.正方形D.平行四边形7. 下列图形绕某点旋转180°后,不能与原来图形重合的是()A. B. C. D.8. 下列说法正确的是( )A.两个会重合的三角形一定成轴对称B.两个会重合的三角形一定成中心对称C.成轴对称的两个图形中,对称线段平行且相等D.成中心对称的两个图形中,对称线段平行(或在同一条直线是)且相等9. 下列正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是()A. B. C. D.10.如果一个图形有两条互相垂直的对称轴,那么这个图形()A.只能是轴对称图形B.不可能是中心对称图形C.一定是轴对称图形,也一定是中心对称图形 D.一定是轴对称图形,但无法判别是中心对称图形11.以下是来自现实生活中的三个商标(图1、2、3)⑴以上三个图中轴对称图形有________,中心对称图形有__________;(写序号)⑵请在图4中画出是轴对称图形但不是中心对称图形的新图案;在图5中画出是轴对称图形又是中心对称图形的新图案.12. 关于点M成中心对称的两个四边形ABCD和DEFG,AD、BE、CF、DG都过______,并被点M所____________,AB∥_______,BC∥_______,EF∥______,FG∥______.13. 下列语句中,不正确的是()A.图形的平移是由移动的方向和移动的距离所决定的B.图形的旋转是由旋转中心和旋转角度所决定的C.中心对称图形是旋转角度为180°的旋转对称图形D.旋转对称图形是中心对称图形14. 右图可以看作是由基本图形经得到的.15. 如图所示,图形①经过_______变化成图形②,图形②经过______变化成图形③,图形③经过________变化成图形④.(轴对称,平移,旋转)16.如图,线段AB、CD互相平分于点O,过O作EF交AC于E,交BD于F,则这个图形是中心对称图形,对称中心是O.指出图形中的对应点_______,对应线段_______,对应三角形_______.17.在如图的12×24的方格形纸中(每个小方格的边长都是1个单位)有一ΔABC. 现先把ΔABC分别向右、向上平移8个单位和3个单位得到ΔA1B1C1;再以点O为旋转中心把ΔA1B1C1按顺时针方向旋转90º得到ΔA2B2C2. 请在所给的方格形纸中作出ΔA1B1C1和ΔA2B2C2.18.如图,一块方角形的木板,能不能在图中画出一条直线,将其分成面积相等的两部分,(不写作法,在图中直接画出,保留痕迹),试试看,并尽可能多的把你的想法画出来. (分图形、定中心、连线)19.作出与已知△ABC关于顶点A成中心对称图形的△AB′C′,你能说明四边形B′C′BC 是平行四边形吗?20.如图,线段AC、BD相交于点O,且AB∥CD,AB=CD,此图形是中心对称图形吗?试说明你的理由.21.如图,四边形ABCD是关于点O的中心对称图形,请你说明四边形ABCD一定是平行四边形.22.请你设计两个有意义的图案,且每个图案中至少由以下三种图形中的两种图形组成.完成后与同学进行交流,并说明图案的意义.(1)是轴对称图形,而不是中心对称图形.(2)是中心对称图形,而不是轴对称图形.(3)既是中心对称图形,又是轴对称图形.23.如图,已知△ABC及点P,求作△AˊBˊCˊ,使△AˊBˊCˊ与△ABC关于点P对称24、用9根一样长的小捧搭成如图所示的图形,移动若干根小棒,使这9根小棒搭成的图形成中心对称图形。
初中数学中心对称图形专题训练50题(含答案)
初中数学中心对称图形专题训练50题含参考答案一、单选题1.在平面直角坐标系中,点(2-,6)关于原点对称的点坐标是()A.(6-,2)B.(2,6-)C.(2,6)D.(2-,6-)2.下列图标中,既是中心对称又是轴对称的图标是()A.B.C.D.3.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.(2,5)B.(-3,2)C.(3,-2)D.(3,2)4.我国已经进入5G时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中,属于中心对称图形的是()A.B.C.D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.正五边形C.正六边形D.正七边形8.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形9.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1B.2C.3D.410.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个12.在下列四个图形中,是中心对称图形的是()A.B.C.D.13.这四个汽车标志图中,既是中心对称图形又是轴对称图形的是()A.B.C.D.14.下列①平行四边形,①矩形,①菱形,①正方形四个图形中,是中心对称图形,但不是轴对称图形是()A.①B.①C.①D.①15.下列图形中,可以看作是中心对称图形的有()A.0个B.1个C.2个D.3个16.下列图案中不是中心对称图形的是()A.B.C.D.17.下列图形中,是中心对称图形,但不是轴对称图形的是()A.(A)B.(B)C.(C)D.(D)18.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.19.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A .B .C .D .二、填空题20.平面直角坐标系内一点(5,3)P -,关于原点对称的点的坐标为____________. 21.在平面直角坐标系中点M (2,﹣4)关于原点对称的点的坐标为 _____. 22.在平面直角坐标系中,点()2,3A 关于x 轴的对称点是_____;关于y 轴的对称点是_____;关于原点的对称点是_____.23.点(2,1)P -与点Q 关于原点对称,则点Q 的坐标为__________.24.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b =_____.25.将点()2,3P 绕原点O 旋转180°后P 点的对应点坐标为______.26.已知点(,1)A a 与点(3,1)B --关于原点对称,则=a __ .27.点A (-1,2)关于原点中心对称点的坐标是___________28.在平面直角坐标系中,已知点(),2A a -和点()3,B b 关于原点对称,则a b +=________.29.在平面直角坐标系中,若点(),3A a 与点()4,B b 关于原点O 对称,则ab =__________.30.在四张完全相同的卡片上,分别画有:线段、正三角形、矩形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是____.31.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.32.已知点(2,)A m -与点(,3)B n 关于原点对称,则n m 的值为____________________. 33.已知实数a 、b 是方程22530x x --=的两根,a b <,则点(),P a b 关于原点的对称点Q 的坐标是___________.34.下列图形中,其中是中心对称图形有_____个.①圆;①平行四边形;①长方形;①等腰三角形.35.在直角坐标系中,点(﹣1,2)关于原点对称的点的坐标是___.36.点2(1)A -,关于x 轴对称的点的坐标是_____;点A 关于原点对称的点的坐标是_____.37.平面直角坐标系中,点(31)P a -,与点(23)Q b ,+关于原点对称,则a b +=_____. 38.如图,在平面直角坐标系中,11OA B 是边长为1的等边三角形,作122B A B 与11B AO 关于点1B 成中心对称,再作233B A B 与221B A B 关于点2B 成中心对称,继续作344B A B 与332B A B 关于点3B 成中心对称,….按此规律作下去,则202120222022B A B 的顶点2022A 的坐标是__________.39.如图,C 是线段AB 的中点,B 是线段CD 的中点,线段AB 的对称中心是点__,点C 关于点B 成中心对称的点是点__.三、解答题40.如图,已知①ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)画出①ABC 关于原点成中心对称的三角形①A′B′C′;(2)将①ABC 绕坐标原点O 逆时针旋转90°,画出图形,直接写出点B 的对应点B″的坐标;(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.41.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,.(1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △;(2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.42.利用图甲所示的地板砖各两块,在图乙(1)中铺成一个只是轴对称的图形;在图乙(2)铺成一个只是中心对称的图形,在图乙(3)中铺成既是轴对称图形,又是中心对称的图形.43.如图:在网格中按题目要求画图(1)把ABC 先向右平移5格,再向上平移3格得到111A B C △;(2)作ABC 关于原点对称的图形得到222A B C △.44.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,①ABC 的顶点都在格点上.(1)将①ABC 向右平移6个单位长度得到①A 1B 1C 1,请画出①A 1B 1C 1;(2)画出①ABC 关于点O 的中心对称图形①A 2B 2C 2;(3)若将①A 1B 1C 1绕某一点旋转可得到①A 2B 2C 2,请直接写出旋转中心的坐标:_________.45.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,①ABC 的顶点均在格点上,点C 的坐标为(0,1),请按要求画图与作答:(1)请画出①ABC关于原点成中心对称的①A1B1C1;(2)请画出①ABC绕着点C顺时针旋转90°后的①A2B2C2;(3)求①A2B2C2的面积.46.如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.47.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB 扫过的面积.48.如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1) 请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.49.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF①x轴于点F,设EF=m,问:当m为何值时,①BFE与①DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案:1.B【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:B.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.2.A【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.既是中心对称又是轴对称,符合题意;B.不是中心对称,是轴对称,不符合题意;C.不是中心对称,是轴对称,不符合题意;D.既不是中心对称也不是轴对称,不符合题意;故选:A.【点睛】本题考查了轴对称图形与中心对称图形的识别,牢记轴对称图形和中心对称图形的概念是解答本题的关键.3.A【详解】①P(m,m-n)与点Q(-2,3)关于原点对称,①m=2,n=5,①点P的坐标为(2,5).故选A.4.C【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项不合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不合题意;C.是中心对称图形,但不是轴对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.5.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】根据中心对称图形的概念进行求解即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,解题的关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.A【分析】根据中心对称图形和轴对称图形的概念,即可得出正确选项.【详解】解:A.此图既是轴对称图形又是中心对称图形,故此选项符合题意;B.此图不是中心对称图形,是轴对称图形,故此选项不合题意;C.此图是中心对称图形,不是轴对称图形,故此选项不合题意;D.此图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题考查中心对称图形和轴对称图形的概念,属于基础题,熟练掌握概念是本题的关键.11.A【详解】试题分析:根据轴对称图形与中心对称图形的概念求解.解:既是轴对称图形又是中心对称图形的图形为:矩形、圆,正方形,共3个.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是轴对称图形,不是中心对称图形,故本选项错误,C、不是中心对称图形,故本选项错误,D、是中心对称图形,故本选项正确.故选D.13.C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,也是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形,故此选项正确;B、矩形既是轴对称图形,又是中心对称图形,故此选项错误;C、菱形既是轴对称图形,也是中心对称图形,故此选项错误;D、正方形既是轴对称图形,也是中心对称图形,故此选项错误.故答案为:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.C【详解】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:①、旋转180°,与原图形不能够重合,不是中心对称图形,故错误;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,不是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;综上可得有两个正确.故选C.此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.16.D【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,对四个选项分别进行判断,即可得出结论.【详解】解:A、B、C三个选项的图形都是中心对称图形,D不是中心对称图形.故选:D.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义并能运用定义对图形进行准确判断是解题的关键.17.B【详解】分析:根据轴对称图形与中心对称图形的概念进行判断即可.详解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选B .点睛:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.18.B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.D【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A 、不是中心对称图形,故本选项不符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、是中心对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.20.(-5,3).【详解】试题分析:关于原点对称的点的坐标横、纵坐标均互为相反数,所以P (5,-3)关于原点对称点的坐标是(-5,3).故答案为(-5,3).考点:关于原点对称点的坐标.21.()2,4-【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.【详解】解:点M (2,﹣4)关于原点对称的点的坐标为()2,4-故答案为:()2,4-【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.22. ()2,3- ()2,3- ()2,3--【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可直接写出答案.【详解】解:在平面直角坐标系中,点()2,3A 关于x 轴的对称点是()2,3-;关于y 轴的对称点是()2,3-;关于原点的对称点是()2,3--.故答案为:()2,3-;()2,3-;()2,3--.【点睛】此题主要考查了关于x 轴、y 轴、以及关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.23.(21)-,【详解】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),所以点Q 的坐标为(−2,1).,故答案为()21-, 24.1【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b .【详解】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数, ①a=4且b=-3,①a+b=1.故答案为125.()2,3--【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【详解】点()2,3P 绕原点O 旋转180°后,P 点的对应点与点P 关于原点对称,则其坐标为()2,3--.故答案为:()2,3--.【点睛】本题考查了平面直角坐标系中关于原点对称的两点的坐标特征,掌握这一特征是关键.26.3【分析】直接利用关于原点对称点的性质即可得出答案. 【详解】解:点(,1)A a 与点(3,1)B --关于原点对称,3a ∴=.故答案为:3【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.1,2【详解】根据关于原点成中心对称的两个点的横、纵坐标互为相反数即可得出答案. 解:点A (-1,2)关于原点中心对称点的坐标是(1,-2).故答案为(1,-2).28.-1【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a 、b 即可求得答案.【详解】①点(),2A a -和点()3,B b 关于原点对称,①a=-3,b=2,①a+b=-3+2=-1,故答案为:-1.【点睛】此题考查原点对称点的性质,熟记性质并运用解题是关键.29.12【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:①点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,①a=-4,b=-3,则ab=12.故答案为:12.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.30.3 4【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对线段、正三角形、矩形、圆进行判断,然后求概率即可.【详解】解:由题意知,既是中心对称图形又是轴对称图形的为线段、矩形、圆,①卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是34,故答案为:34.【点睛】本题考查了中心对称图形,轴对称图形的定义,概率等知识.解题的关键在于熟练掌握中心对称图形,轴对称图形的定义.31.(﹣3,﹣4),(3,4),(3,﹣4)【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,①点A关于x轴对称的点的坐标是(﹣3,﹣4),①关于y轴对称时,横坐标为相反数,纵坐标不变,①点A关于y轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.32.9【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数求得,m n的值,进而求得n m 的值. 【详解】解:点(2,)A m -与点(,3)B n 关于原点对称,3,2m n ∴=-=∴n m ()239=-= 故答案为:9【点睛】本题考查了关于原点对称的点的坐标特征,有理数的乘法,掌握关于原点对称的点的坐标特征是解题的关键.33.1,32⎛⎫- ⎪⎝⎭【分析】先利用因式分解法解一元二次方程求出,a b 的值,进而利用关于原点对称点的坐标性质得出即可.【详解】①实数a 、b 是方程22530x x --=的两根,a b <,()()2130x x ∴+-=,1,32a b ∴=-=, 1,32P ⎛⎫∴- ⎪⎝⎭, ①点1,32P ⎛⎫- ⎪⎝⎭关于原点的对称点Q 的坐标是1,32⎛⎫- ⎪⎝⎭, 故答案为:1,32⎛⎫- ⎪⎝⎭. 【点睛】本题考查了关于原点对称的点的坐标和解一元二次方程-因式分解法,熟练掌握知识点是解题的关键.34.3【分析】根据中心对称图形的特点进行分析即可.【详解】解:①圆;①平行四边形;①长方形是中心对称图形,共3个,①等腰三角形不是中心对称图形.故答案为:3.【点睛】本题考查中心对称图形的识别,熟练掌握中心对称图形的特点是解题关键. 35.1,2【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可【详解】点(﹣1,2)关于原点对称的点的坐标是1,2故答案为:1,2【点睛】本题考查了关于原点对称的点的坐标的特点,掌握平面直角坐标系中对称点的坐标特点是解题的关键.36. (1,2) (﹣1,2)【详解】解:点P (m ,n )关于x 轴对称点的坐标P′(m ,﹣n ),关于原点对称点的坐标P″(﹣m ,﹣n );所以点A (1,﹣2)关于x 轴对称的点的坐标为(1,2),关于原点对称的坐标是(﹣1,2).故答案为:(1,2);(﹣1,2)37.﹣1【分析】根据原点对称的点,横坐标和纵坐标都互为相反数,即可得到答案.【详解】解:①P 与Q 关于原点对称,故3=-(b +2),1-a =-3,解得:a =4,b =-5,①a +b =-1,故答案为-1.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.38.40432⎛ ⎝⎭【分析】首先根据11OA B 是边长为1的等边三角形,可得A 1的坐标为1,2⎛ ⎝⎭,B 1的坐标为(1,0);然后根据中心对称的性质,分别求出点A 2、A 3的坐标各是多少;最后总结出An 的坐标的规律,求出A 2n +1的坐标是多少即可.【详解】解:①11OA B 是边长为1的等边三角形,①A 1的坐标为:1,2⎛ ⎝⎭,B 1的坐标为:(1,0), ①233B A B 与221B A B 关于点2B 成中心对称,①点A 2与点A 1关于点B 1成中心对称, ①132122⨯-=,①点A 2的坐标是:32⎛ ⎝⎭,①①B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,①点A 3与点A 2关于点B 2成中心对称, ①153122⨯-=①点A 3的坐标是:5,2⎛ ⎝⎭,①An 的横坐标是:n −12,当n 为奇数时,An 的纵坐标是:,当n 为偶数时,An 的纵①2022是偶数,14043202222-=①2022A 的坐标是40432⎛ ⎝⎭,故答案为:40432⎛ ⎝⎭. 【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出An 的横坐标和纵坐标是解题的关键.39. C D【详解】根据中心对称图形的对称中心的定义,点C 是线段AB 的中点,点B 是线段CD 的中点,线段AB 的对称中心是点C ;点C 关于点B 成中心对称的对称点是点D. 故答案为C ;D.40.(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D 坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【分析】(1)根据网格结构找出点A 、B 、C 关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 绕坐标原点O 逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 的对应点的坐标;(3)分AB 、BC 、AC 是平行四边形的对角线三种情况解答.。
中心对称图形练习题
中心对称图形练习题中心对称图形是指一个图形关于某一点对称,这个点称为中心对称点。
以下是关于中心对称图形的练习题:1. 判断题:中心对称图形的中心对称点是唯一的。
()2. 选择题:下列哪个图形不是中心对称图形?A. 正方形B. 等边三角形C. 圆形D. 矩形3. 填空题:若一个图形关于点O对称,且点A(2,3)在该图形上,则其对称点的坐标是()。
4. 简答题:请描述中心对称图形的性质,并给出一个生活中的例子。
5. 计算题:若一个中心对称图形的中心对称点坐标为(a,b),图形上一点P(x,y)关于该点对称,求点P的对称点坐标。
6. 作图题:给定一个中心对称点O(0,0),请画出一个中心对称的五角星图形。
7. 应用题:在一个中心对称图形中,已知点A(-3,4)和点B(3,-4),求这两点关于中心对称点的对称点坐标。
8. 证明题:证明对于任意一个中心对称图形,其上任意两点关于中心对称点的对称点连线都经过中心对称点。
9. 探索题:如果一个图形既是轴对称图形又是中心对称图形,这个图形可能是什么形状?请给出理由。
10. 综合题:在一个中心对称图形中,已知点C(1,1)和点D(-1,-1),若点E(x,y)在该图形上,且点E关于中心对称点的对称点为点F(-x,-y),请找出点E的所有可能坐标。
答案提示:1. 正确。
中心对称图形的中心对称点是唯一的。
2. 选项B。
等边三角形不是中心对称图形,因为它没有中心对称点。
3. 答案:(-2,-3)。
根据中心对称的性质,对称点的横纵坐标与原点坐标互为相反数。
4. 中心对称图形的性质包括:图形上任意一点关于中心对称点的对称点都存在,且对称点连线经过中心对称点。
生活中的例子可以是雪花图案。
5. 答案:点P的对称点坐标为(2a-x, 2b-y)。
6. 作图时,以O点为中心,画出五角星的一半,然后根据中心对称的性质画出另一半。
7. 答案:点A的对称点为(3,-4),点B的对称点为(-3,4)。
初中数学中心对称图形专题训练50题含答案
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列各图中为中心对称图形的是()A.B.C.D.3.下列四个图形中,是中心对称图形的是()A.B.C.D.4.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下面四个交通标志中,是中心对称图形的是()A.B.C.D.7.下列图形中,是中心对称图形的是()A.B.C.D.8.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图形属于中心对称图形的是()A.B.C.D.10.下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .11.在平面直角坐标系中,点()2,4P -关于原点对称的点的坐标是( )A .()2,4-B .()2,4C .()2,4--D .()4,2- 12.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 13.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .15.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 16.已知点()31,21P a a -+关于原点的对称点在第四象限,则a 取值范围是( )A .13a >B .12a <-C .1123a -<<D .无解集17.已知点A (1x ,1y )与点B (2x ,2y )关于原点对称,若112x y +=,则22x y +的值为( )A .2B .12C .12-D .2-18.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D . 19.下列新能源汽车的标志中,是中心对称图形的是( )A .B .C .D .二、填空题20.将点(3,1)B -绕坐标原点O 旋转180︒,则点B 的对应点B '坐标为______.21.如图,ABCD 的对角线AC 、BD 交于点O ,则图中成中心对称的三角形共有______对.22.在平面直角坐标系内,点A (a ,﹣3)与点B (1,b )关于原点对称,则a +b 的值_________.23.在平面直角坐标系中,点 A(﹣4,1)关于原点的对称点的坐标为_____24.点(a ,2)与点(b ,﹣2)关于原点中心对称,则a +b 的值是__.25.若点P (m ,-2)与点Q (3,n )关于原点对称,则2019()m n +=______.26.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.27.在直角坐标系中,点()3,5-M 关于原点O 对称的点N 的坐标是(),x y ,则x y +=_____________;28.点P(1,-1)关于原点对称的点的坐标是_________.29.如图,所示的美丽图案中,既是轴对称图形又是中心对称图形的有_____个.30.在平面直角坐标系中,点()11P a -,与点()15Q b +,关于原点对称,ab = _______.31.已知三点A 、B 、O .如果点A'与点A 关于点O 对称,点B'与点B 关于点O 对称,那么线段AB 与A'B'的关系是_____________.32.平面直角坐标系内一点P (3,-1)关于原点对称的坐标为_____33.若点P 的坐标为()1,1x y +-,其关于原点对称的点'P 的坐标为()3,5--,则(),x y 为________.34.在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为__________.35.已知()12P a -,和()23P b ,关于原点对称,则()2021a b +的值为 ___________.36.有下列图形:①线段,①三角形,①平行四边形,①正方形,①圆,①等腰梯形.其中不是中心对称图形的是__.(填序号)37.平面直角坐标系中,点1A 是点()2,3A -关于原点对称点;点1A 的坐标是________.38.三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.39.一辆汽车车牌的最后两个数字刚好组成一个中心对称图形,并且这两个数字不相等,则这两个数字的和是_____.三、解答题40.如图,已知三角形ABC 、直线l ,点O 是线段AB 的中点.(不写画法,保留画图痕迹,并写出画图结论)(1)画出三角形ABC关于直线l的轴对称的图形;(2)画出三角形ABC关于点O的中心对称的图形.41.如图,平面直角坐标系中,①ABC三个顶点的坐标分别为A(﹣3,5),B(﹣5,3),C(﹣2,2)平移到①A1B1C1,其中点A的对应点A1的坐标为(3,3).(1)请在图中画出①A1B1C1;(2)若将①ABC到①A1B1C1的过程看成两步平移,请描述平移过程:;(3)已知①A1B1C1与①A2B2C2关于原点O中心对称,请在图中画出①A2B2C2,此时①A2B2C2与①ABC关于某点中心对称这一点的坐标为.42.①ABC在平面直角坐标系xOy中的位置如图所示,A,B,C的坐标分别是(﹣2,3),(﹣1,1),(0,2).(1)作①ABC关于原点对称的①A1B1C1,并写出点A1的坐标.(2)求①ABC的面积.43.如图,已知ABC 和直线MN ,点O 在直线MN 上.(1)画出111A B C △,使111A B C △与ABC 关于直线MN 成轴对称;(2)画出222A B C △,使222A B C △与ABC 关于点O 成中心对称.44.在下列网格图中,每个小正方形的边长均为1个单位,在,90,3,4Rt ABC C AC BC ︒∆∠===.(1)在图中画出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,点C 的坐标为()3,1-,在图中建立直接坐标系,并画出ABC ∆关于原点对称的图形222A B C .45.(1)请画出①ABC 关于直线l 的轴对称图形①A 1B 1C 1.(2)将①ABC 绕着点B 旋转180°得到①A 2B 2C 2,并画出图形.(保留作图痕迹,不写画法,注明结论)46.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为(4,2),(3,0),(1,2)A B C ---.(1)将ABC ∆先向右平移4个单位长度,再向上平移2个单位长度,得到111A B C ∆,画出111A B C ∆;(2)222A B C ∆与ABC ∆关于原点O 成中心对称,画出222A B C ∆;(3)111A B C ∆和222A B C ∆关于点M 成中心对称,请在图中画出点M 的位置.47.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出ABC 关于原点O 的对称图形111A B C △;(2)将ABC 绕点C 顺时针旋转90︒得到22A B C ,画出22A B C ,并求2AA 的长度; 48.(1)解方程:2430x x -+=(2)已知点P (a +b ,-1)与点Q (-5,a -b )关于原点对称,求a ,b 的值.49.如图,在网格图中建立平面直角坐标系,ABC 的顶点坐标为(2,3)A -、(3,2)B -、(1,1)C -.(1)若将ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C ∆;(2)画出111A B C ∆绕C 1顺时针方向旋转90°后得到的221A B C ∆;(3)A B C '''∆与ABC 是中心对称图形,请写出对称中心的坐标: ;并计算ABC 的面积: .参考答案:1.D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,也是中心对称图形,故本选项不符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选B.【点睛】考核知识点:中心对称图形的识别.3.A【分析】根据中心对称图形的定义,逐项判断即可求解.【详解】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.C【分析】根据轴对称图形和中心对称图形的概念判断即可.答案第1页,共19页【详解】A.图为轴对称图形不是中心对称图形,不满足题意;B.图为轴对称图形不是中心对称图形,不满足题意;C.图为中心对称图形不是轴对称图形,满足题意;D.图为轴对称图形不是中心对称图形,不满足题意;故选C.【点睛】本题考查轴对称图形和中心对称图形的判别,关键在于熟记基础概念.5.C【分析】根据轴对称和中心对称图形的概念可判别.【详解】A、既不是轴对称也不是中心对称,不合题意;B、是轴对称但不是中心对称,不合题意;C、是轴对称和中心对称,符合题意;D、是中心对称但不是轴对称,不合题意故选:C6.A【分析】根据中心对称图形的概念判断即可.【详解】A:图形旋转180°后能与原图形重合,故是中心对称图形;B:图形旋转180°后不能与原图形重合,故不是中心对称图形;C:图形旋转180°后不能与原图形重合,故不是中心对称图形;D:图形旋转180°后不能与原图形重合,故不是中心对称图形;故选:A.【点睛】本题考查了中心对称图形的概念,绕对称中心旋转180°后能与原图形重合是中心对称图形,熟知其概念是解题的关键.7.A【分析】根据中心对称图形的概念即可作出判断.【详解】A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意.故选:A.【点睛】本题考查了中心对称图形的概念,正确把握相关定义是解题关键.8.A【分析】根据各个选项中的图形,可以写出是否为中心对称图形或轴对称图形,然后即可判断哪个选项符合题意.【详解】解: A .是中心对称图形,又是轴对称图形,故选项A 符合题意;B .不是轴对称图形,是中心对称图形,故选项B 不符合题意;C .是轴对称图形,不是中心对称图形,故选项C 不符合题意;D .不是中心对称图形,是轴对称图形,故选项D 不符合题意;故选:A .【点睛】本题考查中心对称图形、轴对称图形,解答本题的关键是明确题意,写出各个图形是否为中心对称图形或轴对称图形.9.C【详解】解:A .是轴对称图形,不是中心对称图形,故选项错误;.B .不是中心对称图形,故选项错误;.C .是中心对称图形,故选项正确;.D .是轴对称图形,不是中心对称图形,故选项错误.故选C .10.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .是轴对称图形,不是中心对称图形,故本选项符合题意;B .是中心对称图形但不是轴对称图形,故本选项不符合题意;C .是轴对称图形,也是中心对称图形,故本选项不符合题意;D .不是轴对称图形,也不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.A【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点()2,4P -关于原点对称的点的坐标是()2,4-,故选:A.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12.C【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.【详解】解:①点(-2,3)关于原点对称,①点(-2,3)关于原点对称的点的坐标为(2,-3).故选:C.13.C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 既是轴对称图形,又是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.14.B【分析】根据轴对称和中心对称图形的定义判断即可;【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了轴对称图形和中心对称图形的判定,准确判断是解题的关键.15.D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不合题意;B 、不是轴对称图形,不是中心对称图形,不合题意;C 、是轴对称图形,不是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,符合题意.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.C【分析】直接利用关于原点对称点的性质以及第四象限内点的坐标特点得出关于a 的不等式组进而得出答案.【详解】解:①点()31,21P a a -+关于原点对称的点为:()'13,21P a a ---在第四象限,①130210a a ->⎧⎨--<⎩解得:1123a -<< 故选:C.【点睛】此题主要考查了关于原点对称点的性质以及解一元一次不等式组,正确解不等式组是解题关键.17.D【分析】首先根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得2x ,2y 的值,进而得到答案.【详解】解: ①A (1x ,1y )与点B (2x ,2y )关于原点对称,①2x = -1x , 2y = -1y ,①1x +1y =2,①2x +2y = -1x -1y = -(1x +1y )=-2,故选D.【点睛】本题考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 18.A【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.19.D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意,C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故选项符合题意.故选:D .【点睛】本题考查了中心对称图形,熟记定义是解答本题的关键.20.(3,1)-【分析】将点(3,1)B -绕坐标原点O 旋转180︒,即点B 关于原点对称,则点B 坐标与对应点B '坐标的横纵坐标互为相反数,由此即可求解.【详解】解:根据题意得,点B 坐标与对应点B '坐标的横纵坐标变为相反数, ①1()3,B '-,故答案是:(3,1)-.【点睛】本题主要考查求绕原点旋转一定角度的点的坐标,理解点关于原点对称的特点是解题的关键.21.4【分析】▱ABCD 是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.【详解】解:图中成中心对称的三角形有①AOD 和①COB ,①ABO 与①CDO ,①ACD 与①CAB ,①ABD 和①CDB 共4对.故答案为:4【点睛】本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.22.2【分析】根据点关于原点对称的坐标特点即可完成.【详解】①点A (a ,﹣3)与点B (1,b )关于原点对称①13a b ,①132a b +=-+=故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.23.(4,-1)【分析】根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可得出结论.【详解】解:点 A(﹣4,1)关于原点的对称点的坐标为(4,-1)故答案为:(4,-1).【点睛】此题考查的是求一个点关于原点对称点的坐标,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解题关键.24.0.【分析】直接利用关于原点对称点的性质得出答案.【详解】①点(a ,2)与点(b ,﹣2)关于原点中心对称,①a+b =0.故答案为:0.【点睛】本题主要考查了关于原点对称的点的坐标,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--. 25.-1【分析】根据坐标的对称性求出m,n 的值,故可求解.【详解】依题意得m=-3,n=2①2019()m n +=2019)1(1-=-故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点. 26. (﹣3,﹣4), (3,4), (3,﹣4)【分析】根据在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数,关于y 轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数, ①点A 关于x 轴对称的点的坐标是(﹣3,﹣4),①关于y 轴对称时,横坐标为相反数,纵坐标不变,①点A 关于y 轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A 关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x 轴,y 轴及原点对称时横纵坐标的符号,难度适中.27.2-【分析】根据关于原点对称的点的坐标特点求出x 、y ,计算即可.【详解】点()3,5-M 关于原点O 对称的点N 的坐标是()3,5M -,①3x =,5y =-,则2x y +=-,故答案为:2-.【点睛】本题考查的是关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--.28.(-1,1)【详解】点P (1,-1)关于原点对称的点的坐标是(-1, 1).故答案为(-1, 1).点睛:平面直角坐标系中若两个点关于原点对称,那么这两个点的横坐标互为相反数,纵坐标也互为相反数.29.3.【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:(1),(3),(4)是轴对称图形,也是中心对称图形.(2)是轴对称图形,不是中心对称图形.故答案为:3.【点睛】本题考查了轴对称与中心对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 30.12-【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.【详解】①点()11P a -,与点()15Q b +,关于原点对称, ①11b -=+,15a -=-,解得:6a =,2b =-,①()6212ab =⨯-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.31.平行且相等【详解】根据中心对称的性质,对应线段AB 与A'B'的关系是平行且相等,故答案为平行且相等.32.(-3,1)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ),进而得出答案.【详解】点P(3,−1)关于原点对称的点的坐标是:(−3,1).故答案为(−3,1)【点睛】此题考查关于原点对称的点,解题关键在于掌握关于原点对称的点的坐标. 33.()2,6【分析】根据两个点关于原点对称时,它们的坐标符号相反可得13x +=,15y -=,解可得x 、y 的值,进而可得答案.【详解】由题意得:13x +=,15y -=,解得:2x =,6y =,则(),x y 为()2,6.故答案为:()2,6.【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 34.12【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,先判断4张卡纸中是中心对称图形的是线段、平行四边形,再由概率公式解题即可.【详解】解:在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,是中心对称图形的是线段、平行四边形, 所以抽到的图形是中心对称图形的概率为21=42, 故答案为:12.【点睛】本题考查中心对称图形、概率公式等知识,是基础考点,难度较易,掌握相关知识是解题关键.35.1-【分析】点1P 和点2P 关于原点对称,则它们的横坐标互为相反数,纵坐标互为相反数. 【详解】解:因为()12P a-,和()23P b ,关于原点对称, 所以32a b =-=,,将32a b =-=,代入()2021a b +, 原式=()2021321-+=-,故答案为:1-.【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.36.①①【分析】根据中心对称图形的特点即可依次判断求解.【详解】线段,平行四边形,正方形,圆是中心对称图形,三角形,等腰梯形不是中心对称图形.故答案为:①①.【点睛】此题主要考查中心对称图形的识别,解题的关键是熟知中心对称图形的特点. 37.()2,3-【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:①点1A 是点A (−2,3)关于原点对称点,①点1A 的坐标是(2,−3).故答案为(2,−3).【点睛】本题主要考查关于原点对称的点的坐标,熟悉掌握是关键.38.)3- 【分析】如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA()11209030,18012030,2MOE MBO MOB ∴∠=︒-︒=︒∠=∠=︒-︒=︒ 60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON∴三点共线,,,A O B∴关于O对称,,A BA3,3.故答案为:)3.-【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.39.15【分析】逐个对0—9这十个数字进行分析即可,同时要满足两个数字不相等.【详解】解:逐个对0—9这十个数字进行分析,由题意可知,这两个数字同时要满足组成一个中心对称图形和两个数字不相等,故只有6和9,两个数字的和为15,故答案为15【点睛】理解中心对称的定义是解题的关键.40.(1)图形见解析;(2)图形见解析【分析】(1)分别作出点A、B、C关于直线l的对称点F、H、G,再依次连接即可画出三角形ABC关于直线l的轴对称的图形;(2)延长CO至E使OE=OC,则①ABE即为三角形ABC关于点O的中心对称的图形.【详解】(1)如图所示,①ABC关于直线l的轴对称的图形为①FHG;(2)如图所示,①ABC关于点O的中心对称的图形①BAE;【点睛】本题考查的是作图-轴对称作图和作中心对称图形,熟知轴对称和中心对称的性质是解答此题的关键.41.(1)见解析;(2)点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)画图见解析,()3,1-【分析】(1)根据平移的性质得出坐标,进而画出图形即可;(2)根据平移的性质即可求解;(3)根据中心对称的性质作出对称点,连接即可.(1)解:由题意知:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置, ①①ABC 平移到①A 1B 1C 1时,点B 、C 对应的点B 1(1,1)、C 1(4,0),连接A 1B 1、B 1C 1、A 1C 1,如下图,则①A 1B 1C 1即为所求;(2)解:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)解:①①A 1B 1C 1与①A 2B 2C 2关于原点O 中心对称,点A 2(-3,-3)、B 2(-1,-1)、C 2(-4,0),连接A 2B 2、B 2C 2、A 2C 2,如图,则①A 2B 2C 2即为所求;连接AA 2、BB 2、CC 2交于点(-3,1).故答案为:(-3,1).【点睛】本题主要考查中心变换和平移变换,熟练掌握中心变换和平移变换的定义是解题的关键.42.(1)图见解析,(2,﹣3);(2)32. 【分析】(1)根据网格结构找出点A 、B 、C 旋转后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据所作图形得出点A 1坐标;(2)利用割补法即可求①ABC 的面积.【详解】解:(1)如图,①A 1B 1C 1即为所求;点A 1的坐标为(2,﹣3);(2)①ABC 的面积=2×2﹣12×1×2﹣12×1×1﹣121×2=32. 【点睛】本题考查基本作图-中心对称图形、三角形的面积公式,熟练掌握中心对称图形的性质,会利用网格特点个割补法求解图形面积是解答的关键.43.(1)见解析(2)见解析【分析】(1)根据对称轴垂直平分对应点连线,可找到各点的对称点,顺次连接即可得到111A B C △;(2)根据中心对称点平分对应点连线,可得各点的对称点,顺次连接可得222A B C △.【详解】(1)解:111A B C △即为所求;;(2)解:222A B C △即为所求.【点睛】本题考查了中心对称作图及轴对称作图的知识,解答本题的关键是掌握轴对称及中心对称的性质.44.(1)见解析;(2)见解析【分析】(1)根据旋转的性质找出B 、C 的对应点B 1、C 1的位置,顺次连接即可;(2)首先根据点B 、C 的坐标建立直角坐标系,然后分别找出点A 、B 、C 关于原点对称的对应点A 2、B 2、C 2的位置,顺次连接即可.【详解】解:(1)11AB C ∆如图所示;(2)直角坐标系和222A B C ∆如图所示.【点睛】本题考查了作图—旋转变换和中心对称,准确找出对应点的位置是解题的关键. 45.(1) 答案见解析;(2)答案见解析.【分析】(1)分别作出点A ,B ,C 关于直线l 的对称点,再首尾顺次连接可得;(2)作出点A 与点C 绕着点B 旋转180°得到的对应点,再与点B 首尾顺次连接可得.。
初中数学中心对称图形专题训练50题(含参考答案)
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.下列四边形中,是中心对称但不是轴对称的图形是()A.矩形B.等腰梯形C.正方形D.平行四边形4.下列选项中的垃圾分类图标,属于中心对称图形的是()A.B.C.D.5.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等腰三角形B.矩形C.平行四边形D.正五边形6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.下列汽车车标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D .10.如图,将ABC ∆绕点()1,1C 旋转180︒得到''.A B C ∆设点A 的坐标为(,)a b , 则点'A 的坐标为( )A .()1,1a b -+-+B .()1,1a b ----C .()2,2a b -+-+D .2,2()a b ----11.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线相等且互相垂直D .矩形的对角线不能相等12.下列图案中,既是中心对称又是轴对称图形的个数有( )A .1个B .2个C .3个D .4个 13.对于等边三角形,下列说法正确的为( )A .既是中心对称图形,又是轴对称图形B .是轴对称图形,但不是中心对称图形C .是中心对称图形,但不是轴对称图形D .既不是中心对称图形,又不是轴对称图形14.在平面直角坐标系中,点(2,1)-关于原点对称的点的坐标是( )A .(2,1)B .(2,1)-C .(1,2)-D .(2,1)-- 15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .16.下列图形中,是轴对称图形不是中心对称图形的有( )A .1个B .2个C .3个D .4个 17.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .18.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5-- 19.如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .//AD EF =,//AB GF =B .BO GO =C .B 、O 、G 三点在一条直线上D .DO HO =20.下列图形中既是轴对称图形又是中心对称图形的是( )A .AB .BC .CD .D二、填空题21.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.22.请写出一个是轴对称图形但不一定是中心对称图形的几何图形名称:____________________.23.已知点()4,3P -和点(),Q x y 关于原点对称,则x y +=______.24.下列图形:①平行四边形;①菱形;①等边三角形;①正方形,其中既是轴对称图形,又是中心对称图形的有_____(填序号).25.在平面直角坐标系中,点(-1,2)关于x 轴对称的点的坐标是____________,关于y 轴对称的点的坐标是____________,关于原点对称的点的坐标是_____________.26.已知点A (a ,1)与点B (﹣3,b )关于原点对称,则ab 的值为_____. 27.在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.28.数轴上A B 点表示-2,则A 点关于B 点的对称点A '表示的数为_______________.29.成中心对称的两个图形________,对应点的连线都经过________,并且被对称中心________.30.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P '的坐标是P '___.31.直线2y x =+上有一点()1,,P m 则P 点关于原点的对称点为P'________________(不含字母m ).32.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段AB ,求作线段AB 的垂直平分线.小明的作法如下:(1)分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧交于点C ; (2)再分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于点D ; (3)作直线CD ,直线CD 即为所求的垂直平分线.同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC ,BC ,AD ,BD由作图可知:AC BC =,AD BD =①点C ,点D 在线段的垂直平分线上(依据1:______)①直线就是线段的垂直平分线(依据2:______)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A ,B ,C ,D 恰好均在格点上,依次连接A ,C ,B ,D ,A 各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.33.若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;①()0m y m x =≠;①31y x =-;①2y x .其中是“H 函数”的为________.(填上序号即可)34.旋转对称图形______________(填“一定是”、“一定不是”或“不一定是”)中心对称图形;中心对称图形________(填“一定是”、“一定不是”或“不一定是”)旋转对称图形.35.给出下列5种图形:①平行四边形①菱形①正五边形、①正六边形、①等腰梯形中,既是轴对称又是中心对称的图形有________个.36.若点P (﹣m ,3﹣m )关于原点的对称点在第四象限,则m 满足_____. 37.在下列字型的数字中,既是轴对称图形又是中心对称图形的有______________.38.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.39.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题40.(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O . (2)如图①所示,已知①ABC 的三个顶点的坐标分别为A (4,﹣1),B (1,1),C (3,﹣2).将①ABC 绕原点O 旋转180°得到①A 1B 1C 1,请画出①A 1B 1C 1,并写出点A 1的坐标.41.如图,ABC 的三个顶点都在正方形网格的格点上,其中点A 的坐标为()1,0-.(1)在网格中作A B C ''',使A B C '''与ABC 关于原点O 成中心对称.(2)如果四边形BCDE 是以BC 为一边,且两条对角线相交于原点O 的平行四边形,请你直接写出点D 和点E 的坐标.42.如图,在85⨯的正方形网格中,每个小正方形的边长均为1,ABC 的三个顶点均在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使ABD △与ABC 全等,且点D 在直线AB 的下方(点D 不与点C 重合);(2)在图2中画ABE △(点E 在小正方形的顶点上),使ABE △与ABC 全等,且//AC BE ;(3)请直接写出ABC 的面积.43.如图,有三张背面相同的纸牌A B C 、、,其正面分别画有三个不同的图形,将这三张纸牌背面朝上洗匀后随机摸出一张,记下图案放回洗匀后再随机摸出一张.求两次摸出的纸牌正面图形都是中心对称图形的概率,(纸牌用A B C 、、表示)44.如图,在平面直角坐标系内,已知①ABC 的三个顶点坐标分别为A (1,3)、B (4,2)、C (3,4).(1)将①ABC 沿水平方向向左平移4个单位得①A 1B 1C 1,请画出①A 1B 1C 1; (2)画出①ABC 关于原点O 成中心对称的①A 2B 2C 2;(3)若①A 1B 1C 1与①A 2B 2C 2关于点P 成中心对称,则点P 的坐标是45.如图,D 是△ABC 边BC 的中点,连接AD 并延长到点E,使DE=AD ,连接BE .(1)图中哪两个图形成中心对称;(2)若△ADC 的面积为4,求△ABE 的面积.46.如图所示的正方形网格中,ABC ∆的顶点均在格点上,在所给直角坐标系中解答下列问题;(1)作出ABC ∆关于坐标原点成中心对称的111A B C ∆;(2)分别写出点11,A B 两点的坐标;47.作出下列图形的对称中心.48.如图,在ABC 中,D 为BC 上任一点,//DE AC 交AB 于点//E DF AB ,交AC 于点F ,求证:点E F ,关于AD 的中点对称.49.由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.参考答案:1.D【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,但不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.3.D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合的图形,依次进行判定即可.【详解】A、既是轴对称图形,也是中心对称图形,故不符题意;B、是轴对称图形,不是中心对称图形,故不符题意;C、既是轴对称图形,也是中心对称图形,故不符题意;D、是中心对称图形,不是轴对称图形,故符合题意;故选:D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是熟练掌握轴对称和中心对称图形的概念.4.C【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是中心对称图形,故选项错误,不符合题意;B.不是中心对称图形,故选项错误,不符合题意;C.是中心对称图形,故选项正确,符合题意;D.不是中心对称图形,故选项错误,不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形对各选项进行判断即可.【详解】解:①等腰三角形,正五边形均为轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;故A,C,D不符合题意;矩形既是轴对称图形又是中心对称图形故B符合题意;故选B.【点睛】本题考查了轴对称图形与中心对称图形.解题的关键在于熟练掌握轴对称图形与中心对称图形的定义.6.B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A是轴对称图形,不是中心对称图形.不符合题意;B既是轴对称图形,又是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D既不是轴对称图形,又不是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误,故选:C.【点睛】本题考查两种对称图形,掌握轴对称图形与中心对称图形的概念是解决问题的关键.8.A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【分析】中心对称图形定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,根据定义逐项判定即可得出结论.【详解】解:A、是轴对称图形,不是中心对称图形,故选项不符合题意;B、是轴对称图形,也是中心对称图形,故选项符合题意;C 、是轴对称图形,不是中心对称图形,故选项不符合题意;D 、不是轴对称图形,是中心对称图形,故选项不符合题意;故选:B .【点睛】本题考查中心对称图形与轴对称图形的定义,熟练掌握中心对称图形与轴对称图形的定义是解决问题的关键.10.C【分析】根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A’的坐标是(x ,y ), 则12a x +=,12b y +=, 解得x =−a+2,y =−b+2,①点A’的坐标是()2,2a b -+-+.故选:C .【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方. 11.C【分析】根据菱形、平行四边形、正方形、矩形的性质逐项判断即可得出答案.【详解】解:菱形的对角线互相垂直,但不一定相等,故选项A 说法错误,不合题意; 平行四边形不是轴对称图形,是中心对称图形,故选项B 说法错误,不合题意; 正方形的对角线相等且互相垂直,故选项C 说法正确,符合题意;矩形的对角线一定相等,故选项D 说法错误,不合题意;故选C .【点睛】本题考查菱形、平行四边形、正方形、矩形的性质,以及轴对称、中心对称图形的识别,属于基础题,熟练掌握特殊平行四边形的特点是解题的关键.12.B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B .【点睛】本题考查了轴对称图形,中心对称图形的识别,解题的关键是掌握轴对称图形,中心对称图形的定义.13.B【分析】根据中心对称图形与轴对称图形的概念分析即可.【详解】等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查判断轴对称图形与中心对称图形.掌握轴对称图形和中心对称图形的概念是解答本题的关键.14.B【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(2,1)-关于原点对称的点的坐标是(2,1)-,故选:B .【点睛】本题考查了关于原点对称的点的坐标,掌握两个点关于原点对称时,它们的坐标符号相反是解题的关键.15.D【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】①不是中心称图形,①不符合题意;①不是对称图形,①不符合题意;①不是轴对称图形,①不符合题意;①是轴对称图形,也是中心对称图形,①符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.16.A【分析】利用轴对称图形和中心对称图形的定义即可求解.【详解】解:等腰三角形是轴对称图形,不是中心对称图形,符合题意;菱形既是轴对称图形,又是中心对称图形,不符合题意;圆既是轴对称图形,又是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查识别轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解题的关键.17.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.B【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】①菱形是中心对称图形,且对称中心为原点,①A、C坐标关于原点对称,2,5-,①C的坐标为()故选C.【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.19.D【分析】根据中心对称的性质即“中心对称的两个图形全等,对称点到对称中心的距离相等”可得到结论.【详解】解:①四边形ABCD与四边形FGHE关于点O成中心对称,=,B、O、G三点在一条直线① AD与EF、AB GF与的关系是相等并且平行,BO GO=,上,DO EO①A、B、C选项正确,D选项错误.故选D.【点睛】本题考查中心对称的图形性质,得出对应顶点、对应边是解题关键.20.D【详解】根据轴对称图形又和中心对称图形的定义,易得D.21.中心对称圆心【分析】圆是一种比较特殊的几何图形,圆既是轴对称图形,又是中心对称图形,对称中心是圆心.【详解】解:圆是轴对称图形,圆也是中心对称图形,圆心是其对称中心,故答案为中心对称,圆心.【点睛】此题考查的知识点是中心对称图形,关键是结合中心对称图形和轴对称图形的概念对圆的认识.22.等腰三角形(答案不唯一)【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:是轴对称,但不是中心对称的几何图形名称:如等腰三角形或正三角形(答案不唯一).故答案为:等腰三角形(答案不唯一).【点睛】本题考查的是中心对称图形与轴对称图形的含义.掌握“轴对称图形与中心对称图形的概念”是解本题的关键.23.1-【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(﹣x ,﹣y ),进而得出答案.【详解】解:①点()4,3P -和点(),Q x y 关于原点对称,①4,3x y =-=,则1x y +=-.故答案为:1-.【点睛】此题主要考查了关于原点对称点的性质,解题的关键是正确掌握横纵坐标的符号关系.24.①①【分析】根据中心对称图形及轴对称图形的定义即可解答.【详解】①只是中心对称图形;①、①两者都既是中心对称图形又是轴对称图形,①只是轴对称图形.故答案为①①.【点睛】本题主要考查了中心对称与轴对称的概念.轴对称的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.25. (-1,-2) (1,2) (1,-2)【详解】试题分析:根据关于x 轴、y 轴、原点对称的点的坐标的特征即可得到结果. 点(-1,2)关于x 轴对称的点的坐标是(-1,-2),关于y 轴对称的点的坐标是(1,2),关于原点对称的点的坐标是(1,-2).考点:本题考查的是关于x 轴、y 轴、原点对称的点的坐标的特征点评:解答本题的关键是熟练掌握关于x 轴对称的点的横坐标不变,纵坐标变为相反数;关于y 轴对称的点的纵坐标不变,横坐标变为相反数;关于原点对称的点的横、纵坐标均变为相反数.26.-3【分析】根据关于原点对称的两个点横纵坐标互为相反数得出,a b 的值,代入计算即可.【详解】解:①点A (a ,1)与点B (﹣3,b )关于原点对称,①a =3,b =﹣1,故ab =﹣3.故答案为:﹣3.【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.(-3,5)【分析】根据旋转180°后的对应点与点A 关于原点对称进行求解即可.【详解】解:①将点A 绕原点逆时针旋转180°后,点A 的对应点B 与点A 关于原点对称, ①点B 的坐标为(-3,5),故答案为:(-3,5).【点睛】本题主要考查了绕原点旋转一定角度的点的坐标特征,熟知绕原点旋转180度对应点关于原点对称是解题的关键.28.4-【分析】根据对称中心是对应点的中点,可得答案.【详解】①点A 和点A '关于点B 对称,①B 是A 与A '连线的中点,设A '表示的数是x ,则)122x =-,解得:4x =-故答案为:4-.【点睛】本题考查了实数与数轴,利用对称中心是对应点的中点得出方程是解答本题的关键.29. 全等 对称中心 平分【分析】根据中心对称的性质直接填空得出即可.【详解】成中心对称的两个图形全等,对应点的连线都经过对称中心,并且被对称中心平分.故填:全等,对称中心,平分.【点睛】此题主要考查了中心对称的定义,熟练掌握中心对称的定义是解题关键.30.(3,-1)【详解】试题分析:根据中心对称的性质,得点P(﹣3,1)关于原点对称的点的坐标是(3,﹣1).故答案为(3,-1).考点:关于原点对称的点的坐标.31.(-1,-3).【分析】根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.【详解】解:①直线y=x+2上有一点P(1,m),①x=1,y=1+2=3,①P(1,3),①P点关于原点的对称点P′的坐标为:(-1,-3).故答案为:(-1,-3).【点睛】此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.32.(1)到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)见解析【分析】(1)根据线段的垂直平分线的判定进行解题即可.(2)根据题意用基本图形设计中心图案即可.【详解】解:(1)连接AC,CB,AD,DB.由作图可知:AC=BC,AD=BD.①点C,点D在线段的垂直平分线上(到一条线段两个端点距离相等的点在这条线段的垂直平分线上).①直线就是线段的垂直平分线(两点确定一条直线).故答案为:到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)如图所示:【点睛】本题考查利用旋转设计图案,线段的垂直平分线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.33.①①【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --, ①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;①将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ①将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;①将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①①,故答案为:①①.【点睛】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 34. 不一定是; 一定是【分析】根据中心对称的定义及旋转对称的定义:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;即可得出答案.【详解】旋转对称图形不一定是中心对称图形,中心对称图形一定是旋转对称图形. 故答案为:不一定是;一定是。
中心对称与中心对称图形--习题精选及答案(二)知识分享
中心对称与中心对称图形--习题精选及答案(二)中心对称与中心对称图形习题精选(二)一、基础识记题1.连结成中心对称的两个图形中的每两个对称点的线段都经过,并且被对称中心。
2.菱形是中心对称图形,对称中心是,菱形也是轴对称图形,共有条对称轴。
3.一条线段的对称中心是。
二、单项方法题4.下列结论错误的是()。
A.关于中心对称的两个图形中,对应线段平行(或在同一直线上)且相等B.关于中心对称的两个图形中,对称中心在两对称点的连线上C.关于中心对称的两个图形中,对称中心到两对称点的距离相等D.两个全等形一定关于某点成中心对称。
5.如图20-28,△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC与点E、F,下面的结论正确的个数是()。
(1)点E和F,B和D是关于中心O的对称点。
(2)直线BD必经过点O。
(3)四边形与ABCD是平行四边形状。
(4)△AOE与△COF必全等。
A.1个B.2个C.3个D.4个6.如图20-29,在平行四边形ABCD中,对角线AC、BD交于点O,E、F在AD、BC 上且AE=CF。
则图中关于O点成中心对称的全等三角形对数是()A.7对B.6对C.5对D.4对7.下列图形中是轴对称图形但不是中心对称图形的是()。
A.矩形B.平行四边形C.圆D.等边三角形8.在如图20-30所列的图形中,是中心对称图形的有()。
A.1个B.2个C.3个D.4个9.图20-31中,既是中心对称又是轴对称图案的是()。
三、综合方法题10.如图20-32,已知△ABC和△ABC外的一点O。
(1)画△A'B'C',使△A'B'C'与△ABC分别关于点A、点B、点C成中心对称;(2)画△DEF,使△DEF与△ABC关于点O成中心对称。
11.如图20-33,已知四边形ABCD,点M为BA上一点,求作四边形ABCD关于点M 的中心对称图形。
答案:1.对称中心平分2.对角线的交点两3.这条线段的中点4.D5.D6.B7.D8.C9.A10.略11.略。
中心对称图形练习题
来源于网络 1.平面图形的旋转一般情况下改变图形的( )
A 、位置
B 、大小
C 、形状
D 、性质
2、等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.
3、下列命题中的真命题是( )
A 、全等的两个图形是中心对称图形.
B 、关于中心对称的两个图形全等.
C 、中心对称图形都是轴对称图形.
D 、轴对称图形都是中心对称图形.
4、下列图形中,既是轴对称图形又是中心对称图形的是( )
56ABF 的
A C 7
10的坐标.
1190°12、O 沿逆时针方向旋转90︒得到11OA B ∆.
(1)线段1OA 的长是_____________,1AOB ∠的度数
是_____________; (2)连结1AA ,求证:四边形11OAA B 是平行四边形.
13.已知如图所示,AOB ∆与COD ∆关于点O 成中心对称,连接BC ,AD .
(1)求证:四边形ABCD 是平行四边形;
(2)若AOB ∆的面积为152cm ,求四边形ABCD 的面积.。
中心对称练习题
中心对称练习题中心对称是几何学中的一个重要概念,指的是图形中存在一条中心轴,使得对称轴两侧的部分完全一致。
在几何学中,研究中心对称的性质和特点对于理解和解决问题非常有帮助。
下面将给出一些中心对称的练习题,帮助读者更好地理解和掌握这个概念。
练习题1:镜像图形给出下面图形,找出其中的对称轴,并标出对称轴的位置。
[图形]解析:解题思路是观察图形的特点,判断图形中是否存在对称轴。
通过观察,我们可以发现图形中存在一条竖直的中心轴,将图形分为左右两部分,两侧完全对称。
因此,这条竖直线就是图形的对称轴。
练习题2:找出对称图形给出下列图形,选出其中是中心对称的图形。
[图形]A. ○B. △C. ■D. ★解析:解题思路是观察每个选项图形的特点,判断是否存在中心对称。
A选项是圆形,圆形拥有无限多个对称轴,但没有一个明显的中心对称线,因此排除。
B选项是三角形,三角形没有中心对称性,排除。
C选项是正方形,正方形拥有4条对称轴,其中两条为中心对称线,因此满足条件。
D选项是星形,星形没有中心对称性,排除。
所以,选项C是中心对称的图形。
练习题3:图形绘制根据下列描述,绘制图形,使其满足中心对称的条件。
描述:图形由一个边长为4cm的正方形和一个边长为2cm的等腰直角三角形组成,正方形的一个顶点与三角形的直角顶点相连。
解析:解题思路是通过具体描述绘制图形,观察图形是否满足中心对称。
首先,绘制一个边长为4cm的正方形。
然后,从正方形的一个顶点画出一条长度为2cm的线段,并将其与正方形对应边的中点相连。
我们将得到一个等腰直角三角形。
通过观察,我们可以发现正方形和三角形在连接线的一侧完全对称。
因此,这个图形满足中心对称。
练习题4:图形判断给出下列描述,请判断其是否满足中心对称。
描述1:一个边长为5cm的正方形;描述2:一个等腰梯形,上底长为6cm,下底长为4cm,高为3cm。
解析:解题思路是通过观察图形的描述,判断是否满足中心对称。
初中数学中心对称图形专题训练50题含参考答案
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,是中心对称的图形是()A.B.C.D.【答案】B【详解】某个图形绕着它的中心旋转180°能够重合的图形是中心对称图形,以上四个图形中,图B符合题意,故选B2.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称与中心对称图形的概念求解即可.【详解】解:A.该图形是中心对称图形,但不是轴对称图形,不符合题意;B.该图形是轴对称图形,但不是中心对称图形,不符合题意;C.该图形是轴对称图形,但不是中心对称图形,不符合题意;D.该图形既是中心对称图形又是轴对称图形,符合题意.故选:D.【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,则四幅图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【分析】利用轴对称图形和中心对称图形的定义逐一判断即可得解;【详解】解:A、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是中心对称图形,也不是轴对称图形,故本选项不合题意;故选:A.【点睛】本题主要考查轴对称图形和中心对称图形,解题的关键是明确轴对称图形和中心对称图形的特征.5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.下列图形中既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等边三角形C.正方形D.正五边形【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.平行四边形是中心对称图形,但不是轴对称图形,故此选项错误;B.等边三角形是轴对称图形,但不是中心对称图形,故此选项错误;C.正方形是中心对称图形,又是轴对称图形,故此选项正确;D.正五边形是轴对称图形合,但不是中心对称图形,故此选项错误.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.下列图形是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A.不是中心对称图形,故该选项不正确,不符合题意;B. 是中心对称图形,故该选项正确,符合题意;C. 不是中心对称图形,故该选项不正确,不符合题意;D. 不是中心对称图形,故该选项不正确,不符合题意;故选:B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.正五边形B.平行四边形C.矩形D.圆【答案】A【分析】根据轴对称图形与中心对称图形的概念结合正五边形、平行四边形、矩形、圆的性质求解.【详解】解:A、正五边形是轴对称图形,不是中心对称图形,故此选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;C、矩形是轴对称图形,也是中心对称图形,故此选项错误;D、圆是轴对称图形,也是中心对称图形,故此选项错误.故选:A【点睛】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.10.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、不是轴对称图形,是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项合题意;故选C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.11.垃圾分类人人有责.下列垃圾分类标识是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】A. 不是中心对称图形,不符合题意;B.是中心对称图形,符合题意;C. 不是中心对称图形,不符合题意;D. 不是中心对称图形,不符合题意;故选B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.12.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【答案】A【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意;故选:A.【点睛】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.下列命题中,真命题的个数为()①一个锐角和一条边分别相等的两个直角三角形全等;①定理的逆定理一定成立;①经过旋转,对应线段平行且相等;①等腰三角形的角平分线和中线重合;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数.A.1B.2C.3D.4【答案】A【分析】利用全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点分别判断后即可确定正确的选项.【详解】解:①一个锐角和一条边分别相等的两个直角三角形不一定全等,故错误,是假命题,不符合题意;①定理的逆定理不一定成立,故错误,是假命题,不符合题意;①经过旋转,对应线段相等,但不一定平行,故错误,是假命题,不符合题意;①等腰三角形的顶角平分线和底边中线重合,故错误,是假命题,不符合题意;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数,正确,是真命题,符合题意,综上分析可知,真命题有1个,故A正确.故选:A.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点,难度不大.15.下列图形中,既是轴对称图形,又是中心对称图形的是()A.角B.平行四边形C.矩形D.等边三角形【答案】C【分析】根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.【详解】A.角是轴对称图形,不是中心对称图形,故本选项错误;B.平行四边形不轴对称图形,是中心对称图形,故本选项错误;C.矩形既是轴对称图形也是中心对称图形,故本选项正确;D.等边三角形是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形和轴对称图形的概念,属于基础题.16.下列图形中,可以看作既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、不是轴对称图形,是中心对称图形,故选项A不符合题意;B、不是轴对称图形,是中心对称图形,故选项B不符合题意;C、是轴对称图形,不是中心对称图形,故选项C不符合题意;D、是轴对称图形,也是中心对称图形;故选项D符合题意;故选:D.【点睛】本题考查中心对称图形以及轴对称图形的识别,掌握它们的定义是解题的关键.17.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形及中心对称图形定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫轴对称图形,逐项验证即可得到答案.【详解】解:A、该图形不是轴对称图形,是中心对称图形,不符合题意;B、该图形既是轴对称图形,又是中心对称图形,符合题意;C、该图形是轴对称图形,不是中心对称图形,不符合题意;D、该图形是轴对称图形,不是中心对称图形,不符合题意;故选:B.【点睛】本题考查轴对称图形及中心对称图形的定义与判断,熟练掌握轴对称图形及中心对称图形的定义是解决问题的关键.18.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】D【详解】试题解析:A、是轴对称图形,但不是中心对称图形.故错误;B、既不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,但不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.19.点 P (2,﹣3)关于原点对称的点的坐标是_________. 【答案】(-2,3)【分析】根据平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数.【详解】解:已知点P (2,-3),则点P 关于原点对称的点的坐标是(-2,3),故答案为:(-2,3).【点睛】本题主要考查了关于原点的对称点的性质,正确把握横纵坐标的关系是解题关键. 20.将点()1,2P -绕坐标原点旋转180︒后点的坐标为________.【答案】()1,2-【分析】根据中心对称图形的性质即可解答.【详解】解:点()1,2P -绕坐标原点旋转180︒后点的坐标为()1,2-,故答案为:()1,2-.【点睛】本题主要考查了中心对称图形的性质,熟记关于原点对称横、纵坐标都变为相反数是解题的关键.21.已知(,3)M a -和(4,)N b 关于原点对称,则a b +=______.【答案】-1【分析】根据关于原点对称点的坐标特征,求出a b 、的值,相加即可;【详解】解:(,3)M a -和(4,)N b 关于原点对称,则=-4=3a b 、,-4+3=-1a b +=;故答案为:-1【点睛】本题考查了关于原点对称点的坐标变化规律,解题关键是求出a b 、的值. 22.在如图方格纸中,选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是__________.【分析】根据中心对称的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形即可解答.【详解】当涂黑4时,将图形绕O旋转180°,与原图重合,阴影部分为中心对称图形.故答案为:4.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义是关键.23.点A(-6,m)与点A′(n,3)关于原点中心对称,则m+n的值是____ .【答案】3【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】①点A(−6,m)与点A′(n,3)关于原点中心对称,①n=6,m=−3,①m+n=3,故答案为3.【点睛】考查关于原点对称的点的坐标特征,横坐标和纵坐标都互为相反数.24.如图,以平行四边形ABCD对角线的交点O为原点,平行于BC边的直线为x 轴,建立如图所示的平面直角坐标系.若D点坐标为(5,3),则B点坐标为__________.【答案】(-5,-3)【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD对角线的交点O 为原点和点D的坐标,即可得到点B的坐标.【详解】解:①坐标原点O为平行四边形ABCD对角线的交点①B 、D 两点关于点O 对称①D (5,3)①B (-5,-3)故答案为:(-5,-3)【点睛】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.25.在平面直角坐标系中,已知点()4,3A -与点B 关于原点对称,则点B 的坐标是______. 【答案】(-4,3)【分析】根据关于原点对称的点横纵坐标都互为相反数即可得到答案.【详解】解:①点()4,3A -与点B 关于原点对称,①点B 的坐标是()4,3-,故答案为:()4,3-.【点睛】本题考查了点的坐标,掌握关于原点对称的点的横纵坐标都互为相反数,是解题的关键.26.若点(),2P a 与点()5,Q b 关于原点对称,则=a _____,b =_____. 【答案】 5- 2-【分析】根据平面直角坐标系中关于原点对称的点的坐标特征:相应坐标互为相反数,即可得到答案.【详解】解:①点(),2P a 与点()5,Q b 关于原点对称,①52a b =-=-,,故答案为:5,2--.【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标特征,熟练掌握关于原点对称的点的坐标特征:相应坐标互为相反数是解决问题的关键.27.已知点A (a ,5)与点B (-3,b )关于原点对称,则a +b 的值是______.【答案】2-【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),根据这一结论求得a ,b 的值,再进一步计算.【详解】解:①点A (a ,5)与点B (-3,b )关于原点对称,①35a b =⎧⎨=-⎩, ①a +b=3-5=-2;故答案为:2-.【点睛】本题主要考查了关于原点对称的点的坐标,掌握关于原点对称的点的坐标特征是解题的关键.28.若点()1,5P a -与点()5,1Q b -关于原点成中心对称,则a b -=______. 【答案】10-【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:点()1,5P a -与点()5,1Q b -关于原点成中心对称,15,15a b ∴-=--=-,解得4,6a b =-=,则4610a b -=--=-,故答案为:10-.【点睛】本题主要考查了关于原点对称点的性质(点的横、纵坐标均互为相反数),正确得出a ,b 的值是解题关键.29.若点M (3,a ),N (b ,﹣5)关于原点对称,则a +b =____.【答案】2【分析】根据关于原点对称的点的坐标特征,得到a ,b 的值,进而求a +b 即可求解.【详解】解:①点M (3,a ),N (b ,﹣5)关于原点对称,①b =-3,a =5,①a +b =-3+5=2.故答案是: 2.【点睛】本题主要考查关于原点对称的点的坐标特征,掌握关于原点对称的两点的横纵左边分别互为相反数,是解题的关键.30.直角坐标系中,直线y =2x+3关于原点对称的解析式为_____.【答案】y =2x ﹣3【分析】若两条直线关于原点对称,则这两条直线平行,即k 值不变;与y 轴的交点关于原点对称,即b 值互为相反数.【详解】解:直线y =2x+3关于原点对称的解析式为y =2x ﹣3,故答案为:y =2x ﹣3.【点睛】本题考查一次函数,能够数形结合来分析此类型的题,根据图形,发现k 和b 值之间的关系.31.已知点()2,2A -关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,则四边形ABCD 的面积为_____. 【答案】16【分析】根据关于x 轴、y 轴、原点对称的点的坐标特征可得出B 、C 、D 点的坐标,可得四边形ABCD 是边长为4的正方形,进而可得面积.【详解】①关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,①()2,2B --,()2,2C -,()2,2D .①四边形ABCD 是边长为4的正方形,①其面积为16,故答案为16【点睛】本题考查关于原点对称的点的坐标;关于x 轴、y 轴对称的点的坐标,关于x 轴的对称点,横坐标不变,纵坐标变成相反数;关于y 轴的对称点,纵坐标不变,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.32.在等腰直角ABC 中,90C =∠,2BC cm =,如果以AC 的中点D 为旋转中心,将这个三角形旋转180°,点B 落在点B '处,则DB '的长度为______.1133.将二次函数y =x 2+2x -3的图象绕原点旋转180°,若得到的新的函数图象上总有两个点在直线y =x -m 上,则m 的取值范围是____.34.若点(,2)P a -与点(3,)Q b 关于原点对称,则b a =_____________.【答案】9【分析】根据关于原点的对称点的特征计算即可.【详解】解:①点(,2)P a -与点(3,)Q b 关于原点对称,①3a =-,2b =,①239b a ==,故答案为:9.【点睛】本题主要考查了关于原点对称的点的有关计算,解题的关键是熟知直角坐标系中两点的坐标关于原点对称,这两个点横坐标互为相反数,纵坐标互为相反数.35.如图所示,△ABC与△A'B'C'关于点O成中心对称,则下列结论成立的是__.(填序号)①点A与点A'关于点O对称;①BO=B'O;①AC①A'C';①①ABC=①C'A'B'.【答案】①①①【分析】根据中心对称的性质解答.【详解】①①ABC与△A′B′C′关于点O成中心对称,①点A与点A′是对称点,BO=B′O′,①ABC=①A′B′C′,△ABC①①A′B′C′,△BOC①①B′OC′,①①ACB=①A′C′B′,①OCB=①O′C′B′,①①ACO=①A′C′O,①AC①A'C'①结论①ACB=①C′A′B′错误.故答案为①①①【点睛】本题考查了中心对称的性质,熟记性质并准确识图是解题的关键.36.在同一直角坐标系中,点A、B分别是函数y=x−2与y=−2x−1的图象上的点,且点A、B关于原点对称,则点A的坐标是______.【答案】(1,−1)【详解】解:设点A的坐标为(m,n),则点B的坐标为(−m,−n).根据题意得:221 n mn m=-⎧⎨-=-⎩,解得:11 mn=⎧⎨=-⎩,①点A的坐标为(1,−1).故答案为(1,−1).【点睛】本题考查了一次函数图象上点的坐标特征以及关于原点对称的点的坐标,根据一次函数图象上点的坐标特征,列出关于m、n的二元一次方程组是解题的关键.37.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,−300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标可以表示为_____.【答案】(3,240°),(3,−120°),(3,600°)【分析】根据中心对称的性质解答即可.【详解】①P(3,60°)或P(3,−300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,−120°),(3,600°),故答案为(3,240°),(3,−120°),(3,600°)【点睛】此题考查中心对称的性质,解题关键在于掌握其性质.三、解答题38.已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.(1)△ABC绕点C顺时针旋转90°得到△A1B1C;(2)画△A1B1C关于点O的中心对称图形△A2B2C2.【答案】(1)见解析(2)见解析【分析】(1)分别作出A、B、的对应点A1、B1即可;(2)分别作出A1、B1、C的对应点A2、B2、C2即可;【详解】(1)解:①ABC绕点C顺时针旋转90°得到①A1B1C如图所示;(2)解:①A 1B 1C 关于点O 的中心对称图形①A 2B 2C 2如图所示;【点睛】本题考查作图﹣旋转变换,中心对称等知识,解题的关键是熟练掌握旋转变换、中心对称的性质,属于中考常考题型.39.作图题:已知①ABC 在方格纸中的位置如图所示,每个小方格的边长为1个单位长度;(1)将①ABC 向右平移4个单位长度得到①111A B C ,请你画出①111A B C ;(2)①ABC 与①222A B C 关于原点O 对称,请你画出①222A B C .【答案】(1)①111A B C 如图所示;(2)①222A B C 如图所示.【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位的对应点111A B C 、、 的位置,然后顺次连接即可;(2) 根据网格结构找出点A 、B 、C 关于原点的对称点2A 、2B 、2C 的位置,然后顺次连接即可.(1)由图可得A (-2,5),B (-4,1),C (-1,3)则右平移4个单位的对应点1A (2,5)、1B (0,1)、C 1(3,3),如图所示;(2)①ABC 与①222A B C 关于原点O 对称,则2A (2,-5),2B (4,-1),2C (1,-3),如图所示.【点睛】本题考查作图——旋转和平移:根据旋转和平移的性质作图是解题的关键. 40.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,点A 、点C 关于点O 成中心对称,点B 、点D 关于点O 成中心对称,且点B 、D 关于AC 成轴对称.求证:四边形ABCD 是菱形.【答案】见解析【分析】根据轴对称的性质可得AC 垂直平分BD ,进而得到,BO DO AC BD =⊥,再根据点A 、点C 关于点O 成中心对称,可得AO CO =,然后根据对角线互相垂直且平分的四边形是菱形可证出结论.【详解】证明:∵点B 、D 关于AC 成轴对称,∴AC 垂直平分BD ,∴,BO DO AC BD =⊥,∵点A 、点C 关于点O 成中心对称,∴AO CO =,∴四边形ABCD 是菱形.【点睛】此题主要考查了菱形的判定,轴对称和中心对称,掌握对角线互相垂直平分的四边形是菱形是解题的关键.41.如图,在5×5的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2中各画一个四边形(所画四边形的顶点均在小正方形的顶点上)(1)在图1中画四边形ABCD ,使其为中心对称图形.(2)在图2中画以A,B,E,F为顶点的平行四边形,且其中一条对角线长等于3.【答案】见解析【分析】(1)以AB为边画一个平时四边形即可;BF ,然后以AB为边,BF为对角线画平行四边形即可.(2)先作对角线3【详解】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABEF为所作.【点睛】考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.42.如图,①ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将①ABC向右、向下分别平移1个单位长度和5个单位长度得到①A1B1C1,请画出①A1B1C1,并写出点A1,C1的坐标;(2)请画出①ABC关于原点O成中心对称的①A2B2C2.。
中心对称测试题
中心对称测试题一、填空题:1、关于中心对称的两个图形,对称点的连线经过 ,并被 平分;2、关于中心对称的两个图形对应线段 ;3、线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形、圆等图形中是中心对称图形的有: ;4、关于点D 成中心对称的两个四边形ABCD 和DEFG ,AD 、BE 、CF 、DG 都过 ;并被点 所 ,AB ∥ ,BC ∥ ,EF ∥ ,FG ∥ ;5、若点O 是平行四边形ABCD 对角线AC 的中点,EF ⊥AC 于O 交AD 、BC 分别于E 、F ,那么线段DE 关于点O 的对称线段是 。
二、判断题:1、两个会重合的图形一定是中心对称图形; ( )2、轴对称图形也是中心对称图形; ( )3、旋转对称图形也是中心对称图形; ( )4、对顶角是中心对称图形; ( )5、中心对称图形是旋转角为180度的旋转对称图形。
( ) 三、选择题:1、下列图形中不是轴对称而是中心对称图形的是 ( )A 等边三角形B 平行四边形C 矩形D 菱形 2、下列图形中既是轴对称图形又是中心对称图形的是( )A 等边三角形B 等腰三角形C 菱形D 平行四边形 3、下列图形中是轴对称而不是中心对称图形的是 ( ) A 平行四边形 B 线段 C 角 D 正方形 4、已知下列命题:⑴关于中心对称的两个图形一定不全等⑵关于中心对称的两个图形是全等形 ⑶两个全等的图形一定关于中心对称其中真命题的个数是 ( ) A 、0 B 、1 C 、2 D 、3 5、如图,不是中心对称图形的是 ( )ABCD6、△ABC 和△A ˊB ˊC ˊ关于点O 对称,下列结论不正确的是( ) A 、AO=A ˊO B 、AB ∥A ˊB ˊ C 、CO=BO D 、∠BAC=∠B ˊA ˊC ˊ7、下列说法中正确的是( )A 会重合的图形一定是轴对称图形B 中心对称图形一定是重合的图形C 两个成中心对称的图形的对称点连线必过对称中心D 两个会重合的三角形一定关于某一点成中心对称四、如图,已知△ABC 及点P ,求作△A ˊB ˊC ˊ,使△A ˊB ˊC ˊ与△ABC 关于点P 对称AB CP五、用9根一样长的小捧搭成如图所示的图形,移动若干根小棒,使这9根小棒搭成的图形成中心对称图形。
《中心对称图形》同步练习及答案
《中心对称图形》同步练习及答案同步练习基础题1.下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是()A.(1)(2)B.(1)(2)(3)C.(2)(3)(4)D.(1)(3)(4)2.下列说法:(1)平行四边形是中心对称图形,其对角线的交点为对称中心;(2)只有正方形才既是中心对称图形,又是轴对称图形;(3)关于中心对称的两个图形是全等形,两个全等图形也一定成中心对称;(4)若将一个图形绕某定点旋转和另一个图形不重合,那么这两个图形不可能关于这个定点成中心对称,其中正确说法的个数是()A.1个B.2个C.3个D.4个3.国旗上的每个五角星()A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形又是轴对称图形D.既不是中心对称图形,又不是轴对称图形4.下列图形中不是轴对称图形而是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形5.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A.2B.3C.4D.56.如图将三角形绕直线l?旋转一周,可以得到图(E)所示的立体图形的是()A.图(A)B.图(B)C.图(C)D.图(D)综合题像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平行移动、翻折、旋转中的哪一种方法使△?ABE变到△ADF的位置,答:________________________________________________.②指出图1中,线段BE与DF之间的关系答:________________________________________________.创新题两个人轮流在一张桌面(长方形或正方形或圆形)上摆放硬币.规则是每人每次摆一个,硬币不能互相重叠,也不能有一部分在桌面边缘之外,摆好之后不许移动.这样经过多次摆放,直到谁最先摆下硬币谁就认输.按照这个规则你用什么方法才能取胜呢?1创新题1.你要争取先放,并把第1枚硬币放在桌面的对称中心上,以后你应该根据对方所放硬币的位置,在它关于中心对称的位置上放下一枚同样大小硬币.这样,由于对称性,只要对方能放得下一枚硬币,你就保证能在其对称位置上放下一枚同样大小的硬币,因此,失败绝对轮不到你.。
中心对称与中心对称图形 习题精选及答案
中心对称与中心对称图形 习题精选(一)1.判断题(1)两个全等三角形构成的图形是中心对称图形。
( )(2)具有对称中心的四边形必是平行四边形。
( )(3)轴对称与中心对称不同,所以轴对称图形一定不是中心对称图形。
( )(4)三角形一定不是中心对称图形。
( )(5)对称中心是所有对称点连线的中点。
( )(6)平行四边形是中心对称图形。
( )2.如图将ABCD Y 绕O 点旋转180°后,A 点旋转到_______点,B 点旋转到________点,旋转后的平行四边形与原位置的平行四边形互相_________。
3.中心甘情愿对称图形上的每一对对应点所连成的线段都被__________平分。
4.在下列图形:线段、射线、直线、角、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有__________________________________。
5.若四边形ABCD 和四边形A B C D ''''关于点O 成中心对称,已知A 80∠=︒,AB=7cm ,CO=9cm ,那么A '∠=________,A B ''=__________,C O '=_________。
6.下列英文大写字母中,是中心对称图形的是 ( )A.BB.HC.MD.Y7.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是 ( )A.仅是轴对称图形B.仅是中心对称图形C.是轴对称图形但不是中心对称图形D.既是轴对称图形又是中心对称图形8.下面扑克牌中,是中心对称图形的是 ( )9.下列图形中,是中心对称图形的为 ( )A.①②③B.①③④C.②③④D.①②④10.下列说法中,错误的是 ( )A.一条线段是中心对称图形B.两个全等三角形一定关于某点成中心对称C.正方形既是中心对称图形也是轴对称图形D.关于中心对称的两个图形必是全等形11.如图所示的两个图形成中心对称,请找出对称中心。
中心对称练习题
中心对称练习题一、选择题1. 中心对称图形是指图形绕某一点旋转180度后能与原图形完全重合的图形,该点称为图形的对称中心。
下列哪个图形不是中心对称图形?A. 圆形B. 正方形C. 长方形D. 等边三角形2. 对于一个中心对称图形,如果图形上任意一点P(x,y),那么它的对称点是:A. (-x,-y)B. (x,-y)C. (-x,y)D. (y,-x)3. 已知一个中心对称图形的对称中心为(0,0),点A的坐标为(3,4),则点A的对称点坐标为:A. (-3,-4)B. (3,-4)C. (-3,4)D. (4,-3)4. 如果一个图形关于原点对称,那么这个图形一定是:A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 都不是5. 以下哪个图形不能通过中心对称变换得到其自身?A. 正五边形B. 正六边形C. 正七边形D. 正八边形二、填空题6. 中心对称图形的对称中心通常用一个点来表示,这个点的坐标是________。
7. 如果一个图形的对称中心是(a,b),那么图形上任意一点P(x,y)的对称点坐标是________。
8. 在平面直角坐标系中,如果一个图形的对称中心是(1,1),点A的坐标是(2,3),那么点A的对称点坐标是________。
9. 中心对称图形的一个重要性质是,图形上任意两点之间的距离等于它们对称点之间的距离,这个性质可以用来证明图形的________。
10. 如果一个图形关于点(-1,-1)对称,那么这个图形的对称中心是________。
三、简答题11. 解释中心对称图形和轴对称图形的区别,并给出一个中心对称图形的例子。
12. 描述如何确定一个给定图形的对称中心,并给出一个具体的例子。
13. 如果一个图形的对称中心不在坐标原点,如何找到图形上任意一点与其对称点的关系?14. 为什么说中心对称图形在数学和艺术设计中都有着重要的作用?15. 给出一个实际生活中中心对称图形的应用实例,并解释其对称中心如何确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 §4.7 中心对称图形练习题 得分:
一、细心选(每题10分)
1.下列图形中,即是轴对称图形又是中心对称图形的是( )
A.角
B.等边三角形
C.线段
D.平行四边形
2.若线段AB 与CD 线段关于点O 中心对称,则AB 和CD 的关系是( )
A.CD AB
B. AB ∥CD
C.
AB CD D. 不确定
3.下面这几个图形中,是中心对称图形不是轴对称图形的共有( )
A. 1个
B. 2个
C. 3个、
D. 4个
4. 下列图形中,不是中心对称图形的是( )
A.圆
B.菱形
C.矩形
D.等边三角形
5.下列图形中是中心对称图形,而不是轴对称图形的是( ).
A.等边三角形
B.平行四边形
C.矩形
D.菱形
6.菱形、矩形、正方形既是中心对称图形,又是轴对称图形,它们的对称中心只有一个,而对称轴的个数依次是( ).
A.1,1,1
B.2,2,2
C.2,2,4
D.4,2,4
二、耐心填(每题10分)
7. 在计算器显示的数字0至9中,有_______________中心对称的?
8.已知A 、B 、O 三点不共线,A 、A ′关于O 对称,B 、B ′关于O 对称,那么线段AB 与A ′B ′的关系是____________.
9.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性.
请问以下三个图形中是轴对称图形的有____________,是中心对称图形的有____________.
一石激起千层浪汽车方向盘铜钱
10. _________度,才能和原来的图形重合。