全等三角形判定 测试题(含答案)
三角形全等的判定证明题-(含答案)
三角形全等的判定一、(SSS)1.如图,AD=AC ,BD=BC ,QA 求证:△ABC≌△ABD .证明:在△ABC 和ABD 中,⎩⎨⎧ AD =ACBD =BCAB =AB ,∴△ABC≌△ABD(SSS )2.如图,AB=AD ,CB=CD ,求证:△ABC≌△AD C .证明:∵在△ABC 和△ADC 中⎩⎨⎧ AB =ADBC =CDAC =AC,∴△ABC≌△ADC(SSS ).3.如图,A 、D 、B 、E 在同一直线上,AC=EF ,AD=BE ,BC=DF ,求证:∠C=∠F.证明:∵AD=BE∴AD+DB=BE+DB,即:AB=DE ,在△ABC 和△DEF 中,⎩⎨⎧ AC =EFAB =DEBC =DF ,∴△ABC≌△DEF(SSS ),∴∠C=∠F.4.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等)二、(SAS )5.已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .6.如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB (SAS )∴DE=AB .7. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .8. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB(SAS)∴DE=AB.三、(ASA)(AAS)9.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.证明:∵FB=CE,∴BC=EF.∵AB∥ED,∴∠B=∠E∵AC∥EF,∴∠ACB=∠DFE.在△ABC和△DEF中{∠B=∠EBC=EF∠ACB=∠DFE∴△ABC≌△DEF(ASA).∴AC=DF.10. 如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,AE∥DF,AB=CD,求证:CE=BF。
全等三角形证明经典50题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,111749AD是整数,求AD解:延伸AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:AD B C延伸CD与P,使D为CP中点.衔接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证实:衔接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF衔接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF.∵∠ABC=∠AED.∴∠ABE=∠AEB.∴ AB=AE.在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等.∴∠BAF=∠EAF (∠1=∠2). 4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点GCG∥EF,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD≌△CGDEF =CG∠CGD =∠EFD 又,EF∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG∴EF=AC5. 已知:AD 等分∠BAC,AC=AB+BD,求证:∠B=2∠CB ACDF21 E A证实:延伸AB取点E,使AE=AC,衔接DE∵AD等分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证实:在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE =CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC 等分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS )∴AD=AF∴AE=AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延伸AD 到E,使AD=DE∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:AD B C∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证实:衔接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF.∴ 三角形BCF全等于三角形EDF(边角边).∴ BF=EF,∠CBF=∠DEF.衔接BE.在三角形BEF中,BF=EF.∴∠EBF=∠BEF.又∵∠ABC=∠AED.∴ AB=AE.在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF.∴ 三角形ABF 和三角形AEF 全等.∴∠BAF=∠EAF (∠1=∠2).10. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点GCG∥EF,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD≌△CGDEF =CG∠CGD =∠EFD 又EF∥AB∴∠EFD =∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG∴EF=AC11. 已知:AD等分∠BAC,AC=AB+BD,求证:∠B=2∠C证实:延伸AB 取点E,使AE =AC,衔接DE∵AD 等分∠BACB ACDF21 ECD B A∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C12.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CF E+∠CFA=180°∴∠D=∠CFA∵AC等分∠BAD∴∠DAC=∠FAC又∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE.CE分离等分∠ABC.∠BCD,且点E在AD上.求证:BC=AB+DC.在BC上截取BF=AB,衔接EF∵BE等分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCECE 等分∠BCDCE=CE∴⊿DCE≌⊿FCE(AAS )∴CD=CF∴BC=BF+CF=AB+CD13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠CAB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,∵∠EAB=∠BDE,∴∠AED=∠ABD,∴四边形ABDE 是平行四边形.∴得:AE=BD,∵AF=CD,EF=BC,∴三角形AEF 全等于三角形DBC,∴∠F=∠C.14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C DCB A FE证实:设线段AB,CD 地点的直线交于E,(当AD<BC 时,E 点是射线BA,CD 的交点,当AD>BC 时,E 点是射线AB,DC 的交点).则: △AED 是等腰三角形.∴AE=DE而AB=CD∴BE=CE (等量加等量,或等量减等量)∴△BEC 是等腰三角形∴∠B=∠C.15. P 是∠BAC 等分线AD 上一点,AC>AB,求证:PC-PB<AC-AB在AC 上取点E,使AE =AB.∵AE =ABAP =AP∠EAP =∠BAE,∴△EAP≌△BAP∴PE=PB.PC <EC +PE∴PC<(AC -AE )+PB∴PC-PB <AC -AB.16. 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证实:在AC 上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC -∠DBC=3∠C -∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=AD∴AC – AB =AC-AD=CD=BD 在等腰三角形ABD 中,AE 是角BAD 的角等分线,∴AE 垂直BD∵BE⊥AE∴点E 必定在直线BD 上,在等腰三角形ABD PD A CB中,AB=AD,AE 垂直BD∴点E 也是BD 的中点∴BD=2BE∵BD=CD=AC -AB∴AC -AB=2BE17. 已知,E 是AB 中点,AF=BD,BD=5,AC=7,求DC∵作AG∥BD 交DE 延伸线于G∴AGE 全等BDE ∴AG=BD=5∴AGF∽CDF AF=AG=5∴DC=CF=218.如图,在△ABC 中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延伸AD 至BC 于点E,∵BD=DC ∴△BDC 是等腰三角形∴∠DBC=∠DCB 又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2 即∠ABC=∠ACB∴△ABC 是等腰三角形∴AB=AC 在△ABD 和△ACD 中 {AB=AC∠1=∠2 BD=DC∴△ABD 和△ACD 是全等三角形(边角边)∴∠BAD=∠CAD∴AE 是△ABC 的中垂线∴AE⊥BC∴AD⊥BC19.如图,OM 等分∠POQ,MA⊥OP,MB⊥OQ,A.B 为垂足,AB 交OM 于点N .求证:∠OAB=∠OBA证实:∵OM 等分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90F A E DCB∵OM=OM∴△AOM≌△BOM (AAS)∴OA=OB∵ON=ON∴△AON≌△BON (SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB20.(5分)如图,已知AD∥BC,∠PAB的等分线与∠CBA的等分线订交于E,CE的连线交AP于D.求证:AD+BC=AB.做BE的延伸线,与AP订交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角等分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角等分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC21.如图,△ABC中,AD是∠CAB的等分线,且AB=AC+CD,求证:∠C=2∠B延伸AC到E 使AE=AC 衔接 ED∵ AB=AC+CD∴ CD=CE可得∠B=∠E△CDE为等腰∠ACB=2∠B22.(6分)如图①,E.F分离为线段AC上的两个动点,且DE⊥AC 于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E.F两点移动到如图②的地位时,其余前提不变,上述结论可否成立?若成立请赐与证实;若不成立请解释来由.(1)衔接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA 中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)衔接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA 中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.23.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)不雅看图前,在不添帮助线的情形下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出成果,不请求证实):证实:∵DC∥AB∴∠CDE=∠AED∵DE=DE,DC=AE∴△AED≌△EDC∵E为AB中点∴AE=BE∴BE=DC∵DC∥AB∴∠DCE=∠BEC∵CE=CE∴△EBC≌△EDC∴△AED≌△EBC24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的等分线,BD的延伸线垂直于过C点的直线于E,直线CE交BA的延伸线于F.求证:BD=2CE.证实:∵∠CEB=∠CAB=90°∴ABCE四点共元∵∠AB E=∠CB E∴AE=CE∴∠ECA=∠EAC取线段BD的中点G,衔接AG,则:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE25.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.证实:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS)26.(10分)如图:AE.BC交于点M,F点在AM上,BE∥CF,BE=CF.求证:AM是△ABC的中线.证实:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.27.(10分)如图:在△ABC中,BA=BC,D是AC的中点.求证:BD⊥AC.∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90°∴BD⊥AC28.(10分)AB=AC,DB=DC,F是AD的延伸线上的一点.求证:BF=CF在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC29.(12分)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.∵AB=DCAE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DC BF=CE△ABF=△CDE∴AF=DE30.公园里有一条“Z”字形道路ABCD,如图所示,个中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试解释三只石凳E,F,M正好在一条直线上.证实:衔接EF∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM 和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)∴CF=BE31.已知:点 A.F.E.C在统一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS)32.已知:如图所示,AB=AD,BC=DC,E.F分离是DC.BC的中点,求证: AE=AF.DEAF衔接BD;∵AB=ADBC=D∴∠ADB=∠ABD∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DCE\F是中点∴DE=BF;∵AB=ADDE=BF∠ADC=∠ABC∴AE=AF.33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.证实:在△ADC,△ABC中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA∴△ADC≌△ABC(两角加一边)∵AB=AD,BC=CD在△DEC与△BEC中∠BCA=∠DCA,CE=CE,BC=CD∴△DEC≌△BEC(双方夹一角)∴∠DEC=∠BEC34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.∵AD=DF∴AC=DF∵AB//DE∴∠A=∠EDF又∵BC//EF∴∠F=∠BCA∴△ABC≌△DEF(ASA)35.已知:如图,AB=AC,BD AC,CE AB,垂足分离为D.E,BD.CE订交于点F,求证:BE=CD.证实:∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC∴∠DCB=∠EBC∴BC=BC∴Rt△BDC≌Rt△BEC(AAS)∴BE =CD36、如图,在△ABC 中,AD 为∠BAC 的等分线,DE⊥AB于E,DF⊥AC 于F.求证:DE=DF .证实:∵AD 是∠BAC 的等分线 ∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED 与∠AFD=90°在△AED 与△AFD 中∠EAD=∠FADAC DE FAD=AD∠AED=∠AFD∴△AED≌△AFD(AAS )∴AE=AF在△AEO 与△AFO 中∠EAO=∠FAOAO=AOAE=AF∴△AEO≌△AF O (SAS )∴∠AOE=∠AOF=90°∴AD⊥EF37.已知:如图, AC BC 于 C , DE AC 于 E , AD AB 于 A , BC=AE .若AB=5 ,求AD 的长? ∵AD⊥AB∴∠BAC=∠ADE 又∵AC⊥BC 于C,DE⊥AC 于E 依据三角形角度之和等于180度∴∠ABC=∠DAE∵BC=AE,△ABC≌△DAE(ASA )∴AD=AB=538.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分离为 E.F,ME=MF.求证:MB=MC证实:∵AB=AC∴∠B=∠C DCB AE∵ME⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C ∠BEM=∠CFM=90° ME=MF∴△BME≌△CMF(AAS)∴MB=MC.39.如图,给出五个等量关系:①②③④⑤.请你以个中两个为前提,另三个中的一个为结论,推出一个准确的结论(只需写出一种情形),并加以证实.已知:①AD=BC,⑤∠DAB=∠CBA求证:△DAB≌△CBA证实:∵AD=BC,∠DAB=∠CBA又∵AB=AB∴△DAB≌△CBA40.在△ABC中,,,直线经由点,且于,于.(1)当直线绕点扭转到图1的地位时,求证:①≌;②;(2)当直线绕点扭转到图2的地位时,(1)中的结论还成立吗?若成立,请给出证实;若不成立,解释来由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD ﹣BE41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF, AE B MCF在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,依据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.证实:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF在△ABF和△CDE中,AB=DE∠A=∠DAF=CD∴△ABF≡△CDE(边角边)∴FB=CE在四边形BCEF中FB=CEBC=EF∴四边形BCEF是平行四边形∴BC‖EF44.如图,已知AC∥BD,EA.EB分离等分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请解释来由在AB上取点N ,使得AN=AC∵∠CAE=∠EAN ∴AE为公共,∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE为公共边∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD45.(10分)如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.证实:∵AD是△ABC的中线BD=CD ∵DF=DE(已知)∠BDE=∠FDC ∴△BDE≌△FDC 则∠EBD=∠FCD ∴BE∥CF(内错角相等,两直线平行).46.(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:.证实:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL )∴AF=CE∠BAF=∠DCE∴AB//CD47.(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD∵,∠3=∠4∴OB=OC在△AOB 和△DOC 中∠1=∠2OB=OC∠AOB=∠DOC△AOB≌△DOC∴AO=DO AO+OC=DO+OB AC=DB在△ACB 和△DBC 中AC=DB A D ECBF,∠3=∠4BC=CB△ACB≌△DBC∴AB=CD48.(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE =BD,试猜测线段CE 与DE 的大小与地位关系,并证实你的结论.CE>DE.当∠AEB 越小,则DE 越小.证实:过D 作AE 平行线与AC 交于F,衔接FB由已知前提知AFDE 为平行四边形,ABEC 为矩形 ,且△DFB 为等腰三角形.RT△BAE 中,∠AEB 为锐角,即∠AEB<90°∵DF//AE ∴∠FDB=∠AEB<90°△DFB 中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°RT△AFB 中,∠FBA=90°-∠DBF <45°∠AFB=90°-∠FBA>45°∴AB>AF∵AB=CE AF=DE∴CE>DE49.(10分)如图,已知AB =DC,AC =DB,BE =CE,求证:AE =DE. ∵AB=DC,AC=DB,BC=BCA CE D B A B E CD∴△ABC≌△DCB,∴∠ABC=∠DCB又∵BE=CE,AB=DC∴△ABE≌△DCE∴AE=DE50.如图9所示,△ABC 是等腰直角三角形,∠ACB=90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC=∠BDE.作CG⊥AB,交AD 于H,则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE 又∵AC=CB, ∠ACH=∠B=45º∴△ACH≌△CBE, ∴CH=BE 又∵∠DCH=∠B=45º, CD=DB∴△CFD≌△BED∴∠ADC=∠BDE AB CD E F图9。
八年级数学:全等三角形的判定测试题(含答案)
八年级数学:全等三角形的判定测试题(含答案)一、选择题1.下列说法中,错误的有()个(1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4【答案】B.【解析】(1)周长相等的两个三角形不一定全等,故该说法错误;(2)周长相等的两个等边三角形全等,该说法正确;(3)有三个角对应相等的两个三角形不一定全等,故该说法错误;(4)有三边对应相等的两个三角形全等,此说法正确.共有两个说法正确.故选B.2.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【答案】A.【解析】做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选A.3. 如图1所示,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△EBD≌△ECDD、以上答案都不对【答案】B.【解析】∵在△ABE和△ACE中AB ECEB ACAE AE=⎧⎪=⎨⎪=⎩,∴△ABE≌△ACE(SSS),故选B.4. 如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【答案】D.【解析】A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选D.5. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【答案】D.【解析】以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.6. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C.二、填空题7.如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.【答案】BC=DC,SSS.【解析】添加条件BC=DC,∵在△ABC和△ADC中AB ADBC CDAC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),8.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.【答案】AB=DC.【解析】由条件可再添加AB=DC,在△ABF和△DCE中,AB DCBE CFAF DE=⎧⎪=⎨⎪=⎩,∴△ABF≌△DCE(SSS).9.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【答案】ABD;SSS.【解析】∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .【答案】46°【解析】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=12∠AFB=46°.11.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.【答案】AC=DB【解析】AC=DB,在△AEC和△DFB中,AE DFAC BDEC BF=⎧⎪=⎨⎪=⎩,∴△AEC≌△DFB(SSS).12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.【答案】SSS【解析】由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中AB ADAC ACCB CD=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(SSS),三、解答题13.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。
《全等三角形的判定》练习(含答案)
全等三角形的判定一、选择题1.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【答案】C .【解析】解带③去可以利用“角边角”得到全等的三角形.故选C .2.如图,已知:∠A=∠D ,∠1=∠2,下列条件中能使△ABC ≌△DEF 的是()A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD【答案】D .【解析】添加AF=CD ,∵AF=CD ,∴AF+FC=CD+FC ,∴AC=FD ,在△ABC 和△DEF 中12A DAC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),故选D .3.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是( )A .1个B .2个C .3个D .4个【答案】B .【解析】①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS ;③正确,符合判定方法AAS ;④不正确,此角应该为两边的夹角才能符合SAS .所以正确的说法有两个.故选B .4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )A .若添加条件AC=A ′C ′,则△ABC ≌△A ′B ′C ′B .若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C .若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D .若添加条件∠C=∠C ′,则△ABC ≌△A ′B ′C ′【答案】B.【解析】A ,正确,符合SAS 判定;B ,不正确,因为边BC 与B ′C ′不是∠A 与∠A ′的一边,所以不能推出两三角形全等;C ,正确,符合AAS 判定;D ,正确,符合ASA 判定;故选B .5.如图,在等腰△ABC 中,AB=AC ,∠A=20°,AB 上一点D 使AD=BC ,过点D 作DE ∥BC 且DE=AB ,连接EC ,则∠DCE 的度数为( )A .80°B .70°C .60°D .45°【答案】B.【解析】如图所示,连接AE .∵AE=DE,∴∠ADE=∠DAE,∵DE∥BC,∴∠DAE=∠ADE=∠B,∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE﹣∠BAC=80°﹣20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC﹣∠AED=40°,∴∠DCE=∠CDE=(180﹣40°)÷2=70°.故选B .6.如图:AB=AC ,∠B=∠C,且AB=5,AE=2,则EC 的长为( )A .2B .3C .5D .2.5【答案】B.【解析】在△ABE 与△ACF 中,∵A AAB AC B C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACF(ASA ),∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故选B.二、填空题.7.如图,AB=AC ,要使△ABE≌△ACD,依据ASA ,应添加的一个条件是 .【答案】∠C=∠B .【解析】添加∠C=∠B,在△ACD 和△ABE 中,A AAB AC C B∠=∠⎧⎪=⎨⎪∠=∠⎩,8.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则BD= 5 .【答案】5.【解析】∵AB∥FC,∴∠ADE=∠EFC,∵E 是DF 的中点,∴DE=EF,在△ADE 与△CFE 中,ADE EFC DE EFAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△CFE,∴AD=CF,∵AB=20,CF=15,∴BD=AB﹣AD=20﹣15=5.9.如图,∠1=∠2,∠3=∠4,BC=5,则BD= .【答案】5. 【解析】∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中,1=2AB ABABD ABC ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADB≌△ACB(ASA ),∴BD=BC=5.10.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC=CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的长,其中用到的数学原理是: .【答案】ASA ,全等三角形对应边相等 .【解析】∵AB⊥MN,DE⊥MN,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△EDC(ASA ),∴DE=AB.11.如图,在四边形ABCD 中,AB∥DC,AD∥BC,对角线AC 、BD 相交于点O ,则图中的一对全等三角形为 .(写出一对即可)【答案】△ABC ≌△ADC.【解析】△ABC≌△ADC,理由如下:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△ABC 与△ADC 中,BAC DCA AC CADAC BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△ADC(ASA ),∴AB=DC,BC=DA ,在△ABO 与△CDO 中,BAO DCO AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△CDO(AAS ),同理可得:△BCO≌△DAO,三、解答题12.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A=∠F,∠EBC=∠FCB.求证:BE=CD .【答案】证明见解析.【解析】∵∠EBC=∠FCB,∠EBC+∠ABE=180°,∠FCB+∠FCD=180°,∴∠ABE=∠FCD,在△ABE 与△FCD 中,A F AB FCABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△FCD(ASA ),∴BE=CD.13.如图,点D 在AB 上,DF 交AC 于点E ,CF∥AB,AE=EC .求证:AD=CF .【答案】答案见解析.【解析】∵CF∥AB,∴∠A=∠ACF,∠ADE=∠CFE.在△ADE 和△CFE 中,A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE(AAS ).∴AD=CF.14. 如图,锐角△ABC 中,∠BAC=60°,O 是BC 边上的一点,连接AO ,以AO 为边向两侧作等边△AOD 和等边△AOE,分别与边AB ,AC 交于点F ,G .求证:AF=AG .【答案】答案见解析.【解析】∵△AOD 和△AOE 是等边三角形,∴∠E=∠AOF=60°,AE=AO ,∠OAE=60°,∵∠BAC=60°,∴∠FAO=∠EAG=60°﹣∠CAO, 在△AFO 和△AGE 中, FAO EAG AO AEAOF E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO≌△AGE(ASA ), ∴AF=AG.。
全等三角形测试题及答案
全等三角形测试题及答案一、选择题(每题5分,共20分)1. 若两个三角形的对应角相等,对应边成比例,则这两个三角形是:A. 相似三角形B. 全等三角形C. 等腰三角形D. 直角三角形答案:B2. 在全等三角形中,对应边的长度关系是:A. 不相等B. 相等C. 互为相反数D. 无法确定答案:B3. 以下哪个条件不能判定两个三角形全等?A. SSS(三边相等)B. SAS(两边及其夹角相等)C. ASA(两角及其夹边相等)D. SSA(两边及其中一边的对角相等)答案:D4. 如果两个三角形的两边和一角对应相等,且这角是两边的夹角,则这两个三角形:A. 一定全等B. 不一定全等C. 一定不全等D. 无法确定答案:A二、填空题(每题5分,共20分)1. 如果两个三角形的三边对应相等,根据______判定这两个三角形全等。
答案:SSS2. 两个三角形的两角和一边对应相等,根据______判定这两个三角形全等。
答案:ASA3. 如果两个三角形的两角和其中一角的对边对应相等,根据______判定这两个三角形全等。
答案:AAS4. 两个三角形的两边和其中一边的对角对应相等,根据______判定这两个三角形全等。
答案:HL(直角三角形的斜边和一条直角边对应相等)三、解答题(每题15分,共40分)1. 已知三角形ABC和三角形DEF,AB=DE=5cm,BC=EF=7cm,∠A=∠D=60°,求证:△ABC≌△DEF。
证明:在△ABC和△DEF中,AB=DE,BC=EF,∠A=∠D,∴由SAS判定,△ABC≌△DEF。
2. 若△ABC≌△DEF,且AB=DE,AC=DF,∠B=∠E,求证:BC=EF。
证明:由于△ABC≌△D EF,∴AB=DE,AC=DF,∠B=∠E,∴BC=EF(全等三角形的对应边相等)。
结束语:以上是全等三角形的测试题及答案,希望同学们通过这些题目能够更好地理解和掌握全等三角形的判定方法和性质。
11.2 三角形全等的判定(ASA,AAS)(含答案)
11.2 三角形全等的判定(ASA,AAS)◆课堂测控测试点 ASA,AAS1.三角形对应相等的两个三角形______全等,•即两个三角形全等的条件中至少有_______相等.2.已知在△ABC与△A′B′C′中,∠A=∠A′,∠B=∠B′,•则在下列条件中不能确定△ABC与△A′B′C′全等的是()A.AB=A′B′ B.BC=B′C′ C.AC=A′C′ D.∠C=∠C′3.如图,已知AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,还需要()A.∠B=∠B′ B.∠C=∠C′ C.AC=A′C′ D.以上都对4.如图,已知△ABC的六个元素,则下面甲,乙,丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙5.如图,某同学把一块三角形的玻璃打碎成了三块,•现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去◆课后测控6.如图,在△ABC中,D是BC上一点,AB=AD,∠1=•∠2,•∠B=•∠ADE,•根据______可判定△ABC≌△ADE.7.如图,AD=AB,∠C=∠E,∠ADC=125°,则∠ABE=_____.8.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于D,•且DC=15,则点D到AB的距离DE长为_______.EDC BA(第6题) (第7题) (第8题)9.如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ,其中正确的结论是_______.(注:将你认为正确的结论都填上)(第9题) (第11题)10.在△ABC 与△A ′B ′C ′中,∠A=44°,∠B=67°,∠C ′=69°,∠B ′=44°,且AC=B ′C ′.那么这两个三角形(提醒:画出草图)( )A .一定不全等B .一定全等C .不一定全等D .以上都不对11.如图,在△ABC 与△DEF 中,已有条件AB=DE ,•还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A .∠B=∠E ,BC=EFB .BC=EF ,AC=DFC .∠A=∠D ,∠B=∠E D .∠A=∠D ,BC=EF12.如图,AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AD=AE .13.如图,AC和BD相交于点E,AB∥CD,AB=CD,求证:E为BD的中点.14.已知:如图,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.◆拓展测控15.(教材变式探究题)如图(1),在△ACB中,∠ACB=90°,AC=BC,直线L经过点C,AD ⊥L于D,BE⊥L于E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线L绕点C旋转到图(2)的位置时,DE,AD,BE具有怎样的等量关系?说出你的猜想,并证明你的猜想.答案:1.不一定一对对应边2.D (点拨:没有一对对应边相等)3.D (点拨:根据ASA可选A,根据AAS可选B,根据SAS可选C)4.B (点拨:根据SAS可知乙,根据AAS可知丙)5.C (点拨:依据ASA)[总结反思]证明三角形全等的方法增加了ASA和AAS.6.ASA (点拨:由∠1=∠2可得∠BAC=∠DAE)7.125°(点拨:易知△ADC≌△ABE)8.15 (点拨:易证△ACD≌△AED,DE=CD)9.①②③(点拨:根据已知条件易证△ABE≌△ACF,△ABM≌△ACN)10.B (点拨:画出草图后,确定对应边和角)11.D (点拨:三角形全等条件中边边角不成立)12.证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在△ADC和△AEB中,,,,A AAD C AEB AC AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△AEB,∴AD=AE.[解题规律]有两角及其一角对边相等的两个三角形全等.13.证明:∵AB∥CD,∴∠A=∠C,∠B=∠D.在△ABE和△CDE中,,,,A C ABC DB E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△CDE(ASA).∴BE=DE,即E为BD的中点.[解题规律]有两角及其夹边对应相等的两个三角形全等.14.证明:∵AC∥DE,∴∠ACD=∠D,∠ACB=∠E.又∵∠ACD=∠B,∴B=∠D.在△ABC和△CDE中,,,,B DAC B E AC C E∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CDE(AAS).[解题技巧]充分利用AC∥DE得到∠ACB=∠E和∠ACD=∠D,即一线二用.15.(1)证明:∵AD⊥L,BE⊥L,∴∠ADC=∠CEB=90°.∵∠ACB=90°,∴∠ACD+∠ECB=90°.又∠1+∠ACD=90°,∴∠1=∠ECB.在△ADC和△CEB中,, 1,,AD C C EBEC BAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE.∴DE=CE+DC=AD+BE.(2)结论:DE=AD-BE.证明:同(1)可证△ADC≌△CEB.∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE.[解题方法]解决问题(2)的关键是弄清图(2)中哪些量发生了变化,•哪些没有发生变化,本题在证明过程中要发现∠ACD=90°的用法,即由∠ACB=90°可得∠ACD+∠BCE=90°.。
(完整版)全等三角形证明经典50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形经典题型50题(含答案解析)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF和三ADBC角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DG E ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠E DC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形判定基础练习(有答案)
全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。
(完整版)全等三角形证明经典50题(含答案)
证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。
: / ABC= / AED 。
二 / ABE= / AEB 。
• AB=AE 。
在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。
•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。
连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。
全等三角形证明50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=2ADBC2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 EEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS ) ∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DEADB C∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。
三角形全等判定试题含答案
三角形全等判定(考试总分:100 分)一、单选题(本题共计7小题,总分35分)1. 1.(5分)【孙杰—原创】如图,在四边形ABCD中,AD=BC,AB=DC,则∆ABC≌∆CDA的依据是()A.SASB. ASAC. SSSD. 以上都不对2.(5分)2.【王学军—原创】下列图形具有稳定性的是()A.正方形B. 长方形C. 直角三角形D. 平行四边形3.(5分)3.【孙杰—原创】图中是全等三角形的是()A.①和②B.②和③C.②和④D.①和③4.4.(5分)【孙杰—原创】根据下列已知条件,能画出唯一∆ABC的是()A.∠A=50。
,∠B=70。
,AB=6B.∠C=90。
,AB=10C.AB=10.BC=4,AC=4D.AB=8,BC=5,∠A=40。
5.5.(5分)【王雪军—原创】如图,在四边形ABCD中,AB=CD,AD=BC,AC与BD 交于O点,则可直接利用“SSS”判定全等三角形的有()A.1对B.2对C.3对D.4对6.6.(5分)【王雪军—原创】如图,∆ABC≌∆ADE,∠DAC=70。
,∠BAE=100。
,BC,DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.307.7.(5分)如图,在∆ABC中,∠C=90°,D,E分别为AC,AB上的点,若DE=DC,BE=BC,∠A=40°,则∠BDC的度数是()A.40° B.50°C.60°D.65°二、填空题(本题共计5小题,总分25分)8.(5分)8.【孙杰—原创】如图,已知AD=AE,要根据“ASA”来判断∆AEB≌∆ADC,则需要补充一个条件为 .8.9.(5分)【王雪军—原创】如图,在∆ABC中,∠C=90°,BE平分∠ABC,ED ⊥AB于点D,若AC=3,则AE+DE= .10.(5分)10.【孙杰—原创】如图,在Rt ∆ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=cm11.(5分)11.【孙杰—原创】如图,已知AB=AC,BD=CE,∠B=∠C,若∠1=30°,则∠2= .12.(5分)12.【王雪军—原创】如图,若AB=AC,BD=CD,∠C=20°,∠A=80°则∠BDC=三、解答题(本题共计4小题,总分40分)13.13.(10分)【孙杰—原创】(10分)如图,AB∥CD,AB=CD,BE=CF.求证:(1)∆ABF≌∆DCE;(2)AF∥DE.14.14.(10分)【孙杰—原创】(10分)如图,在∆ABC中,∠B=∠C=50°,BD=CF,BE=CD,求∠EDF的度数.15.(10分)15.【王雪军—原创】(10分)如图,在四边形ABCD中,AB=AD,BC=DC,点E在边AC上的一动点(不与点A,C重合),在点E运动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.16.(10分)16.【王雪军—原创】(10分)如图已知AD=BC,AB=CD,O是BD的中点,过O点作直线交BA的延长线于E,交DC的延长线于F,求证:OE=OF.答案一、单选题(本题共计7小题,总分35分)1.(5分)1.C2.(5分)2.C3.(5分)3.D4.(5分)4.A5.(5分)5.B6.(5分)6.A7.(5分)7.D二、填空题(本题共计5小题,总分25分)8.(5分)8.∠AEB=∠ADC9.(5分)9.310.(5分)10.711.(5分)11.30°12.(5分)12.120°三、解答题(本题共计4小题,总分40分)13.(10分)13.证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.14.(10分)14.解:在△BDE与△CFD中,,∴△BDE≌△CFD(SAS);∴∠BDE=∠CFD,∴∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=50°.15.(10分)15.解:相等.证明如下:在△ABC和△ADC中,AB=AD,AC=AC(公共边)BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE,在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.16.(10分)16.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BO=DO,AD∥BC,∴∠E=∠F,∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF(AAS),∴OE=OF.。
三角形全等的判定阶段性测试卷(解析)
三角形全等的判定阶段性测试卷(解析)1.如图,已知∠ABC=∠DCB,添加以下条件,不能判定∠ABC∠∠DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出∠ABC∠∠DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出∠ABC∠∠DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出∠ABC∠∠DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出∠ABC∠∠DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.2.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧∠ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与∠ABC全等,甲与∠ABC不全等.【解答】解:乙和∠ABC全等;理由如下:在∠ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和∠ABC全等;在∠ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和∠ABC全等;不能判定甲与∠ABC全等;故选:B.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图,∠ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,AD,CE交于点F,则()A.AE+CD>AD B.AE+CD=AD C.AE+CD>AC D.AE+CD=AC【分析】通过角之间的转化可得出∠AGF∠∠AEF,进而可得出线段之间的关系,即可得出结论.【解答】解:在AC上截取AG=AE,连接GF,如图所示:∠∠ABC=60°,AD,CE分别平分∠BAC,∠BCA,∠∠FAC+∠FCA=60°,∠∠AFE=∠FAC+∠FCA=60°,在∠AGF和∠AEF中,,∠∠AGF∠∠AEF(SAS),∠FG=FE,∠AFG=∠AFE=60°,∠∠GFC=∠AFC﹣∠AFG=120°﹣60°=60°,∠∠CFD=∠AFE=60°,∠∠CFD=∠CFG在∠CFG和∠CFD中,,∠∠CFG∠∠CFD(SAS),∠CG=CD,∠AE+CD=AG+CG=AC.故选:D.【点评】本题考查了全等三角形的判定与性质,关键是需要通过作辅助线证明三角形全等才能得出结论.4.下列条件中不能判定三角形全等的是()A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等【分析】要逐个对选项进行验证,根据各个选项的已知条件结合三角形全等的判定方法进行判定,其中D 满足AAA时不能判断三角形全等的.【解答】解:A、两角和其中一角的对边对应相等是全等三角形,符合AAS,故C不符合题意;B、三条边对应相等的三角形是全等三角形,符合SSS,故A不符合题意;C、两边和它们的夹角对应相等的三两个角形是全等三角形,符合SAS,故C不符合题意;D、三个角对应相等,AAA不能判断两个三角形全等,故符合题意.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,在∠ABC和∠DBE中,BC=BE,还需再添加两个条件才能使∠ABC∠∠DBE,则不能添加的一组条件是()A.AC=DE,∠C=∠E B.BD=AB,AC=DE C.AB=DB,∠A=∠D D.∠C=∠E,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知BC=BE,再加上条件AC=DE,∠C=∠E可利用SAS证明∠ABC∠∠DBE,故此选项不合题意;B、已知BC=BE,再加上条件BD=AB,AC=DE可利用SSS证明∠ABC∠∠DBE,故此选项不合题意;C、已知BC=BE,再加上条件AB=DB,∠A=∠D不能证明∠ABC∠∠DBE,故此选项符合题意;D、已知BC=BE,再加上条件∠C=∠E,∠A=∠D可利用ASA证明∠ABC∠∠DBE,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.某同学不小心把一块玻璃打碎了,变成了如图所示的三块,现在要到玻璃店配一块完全一样的玻璃,那么应带哪块去才能配好()A.∠B.∠C.∠D.任意一块【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:只有∠中包含两角及夹边,符合ASA.故选A.【点评】本题主要考查三角形全等的判定,看这3块玻璃中哪个包含的条件符合某个判定即选哪块.7.如图所示,已知AB∠CD,AD∠BC,AC与BD交于点O,AE∠BD于E,CF∠BD于E,图中全等三角形有()A.3对B.5对C.6对D.7对【分析】根据题目的意思,可以推出∠ABE∠∠CDF,∠AOE∠∠COF,∠ABO∠∠CDO,∠BCO∠∠DOA,∠ABC∠∠CDA,∠ABD∠∠CDB,∠ADE∠∠CBF.再分别进行证明.【解答】解:∠∠ABE∠∠CDF∠AB∠CD,AD∠BC∠AB=CD,∠ABE=∠CDF∠AE∠BD于E,CF∠BD于E∠∠AEB=∠CFD∠∠ABE∠∠CDF;∠∠AOE∠∠COF∠AB∠CD,AD∠BC,AC为ABCD对角线∠OA=OC,∠EOA=∠FOC∠∠AEO=∠CFO∠∠AOE∠∠COF;∠∠ABO∠∠CDO∠AB∠CD,AD∠BC,AC与BD交于点O ∠OD=OB,∠AOB=∠COD,OA=OC∠∠ABO∠∠CDO;∠∠BOC∠∠DOA∠AB∠CD,AD∠BC,AC与BD交于点O ∠OD=OB,∠BOC=∠DOA,OC=OA∠∠BOC∠∠DOA;∠∠ABC∠∠CDA∠AB∠CD,AD∠BC∠BC=AD,DC=AB,∠ABC=∠CDA∠∠ABC∠∠CDA;∠∠ABD∠∠CDB∠AB∠CD,AD∠BC∠∠BAD=∠BCD,AB=CD,AD=BC∠∠ABD∠∠CDA;∠∠ADE∠∠CBF∠AD=BC,DE=BF,AE=CF∠∠DEC∠∠BFA.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS,ASA、HL.同时考查了平行四边形的性质,题目比较容易.8.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是()(1)AE平分∠DAB;(2)∠EBA∠∠DCE;(3)AB+CD=AD;(4)AE∠DE;(5)AB∠CD.A.1个B.2个C.3个D.4个【分析】此题可以通过作辅助线来得解,取AD的中点F,连接EF.根据平行线的性质可证得(1)(4)(5),根据梯形中位线定理可证得(3)正确.根据全等三角形全等的判定可证得(2)的正误,即可得解.【解答】解:如图:取AD的中点F,连接EF.∠∠B=∠C=90°,∠AB∠CD;[结论(5)]∠E是BC的中点,F是AD的中点,∠EF∠AB∠CD,2EF=AB+CD(梯形中位线定理)∠;∠∠CDE=∠DEF(两直线平等,内错角相等),∠DE平分∠ADC,∠∠CDE=∠FDE=∠DEF,∠DF=EF;∠F是AD的中点,∠DF=AF,∠AF=DF=EF∠,由∠得AF+DF=AB+CD,即AD=AB+CD;[结论(3)]由∠得∠FAE=∠FEA,由AB∠EF可得∠EAB=∠FEA,∠∠FAE=∠EAB,即EA平分∠DAB;[结论(1)]由结论(1)和DE平分∠ADC,且DC∠AB,可得∠EDA+∠DAE=90°,则∠DEA=90°,即AE∠DE;[结论(4)].由以上结论及三角形全等的判定方法,无法证明∠EBA∠∠DCE.正确的结论有4个,故选D.【点评】本题考查了平行线的判定及性质、梯形中位线定理、等腰三角形的性质、全等三角形的判定等知识点,是一道难度较大的综合题型.9.下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.∠ABO与∠BCOB.如图(2),AC=AD,BC=BD.∠ABC与∠ABDC.如图(3),∠A=∠C,∠B=∠D.∠ABO与∠CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.∠ABC与∠BAD【分析】全等三角形的判定定理有:SAS、ASA、AAS、SSS,只要具备以上四种方法中的一种,即可判定联三角形全等.【解答】解:A、因为∠AOB=∠DOC,根据SAS可判断∠ABO∠∠DCO,故本选项错误;B、AB=AB,根据SSS可证出∠ABC∠∠ABD,故本选项错误;C、全等三角形的判定定理有SAS、ASA、AAS、SSS,根据已知不能得出以上三个条件,即两三角形不全等,故本选项正确;D、∠AE=BE,CE=DE,∠BC=AD,在∠ABC与∠BAD中,,∠∠ABC∠∠BAD(SSS),故本选项错误.故选:C.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定有:SAS、ASA、AAS、SSS,题型较好,但是一道比较容易出错的题目.10.下列命题:(1)有一条斜边对应相等的两个直角三角形全等;(2)腰长相等的两个等腰直角三角形全等;(3)有一个角等于45°的两个等腰三角形全等;(4)两个内角互余的两个等腰三角形全等;(5)两边和一角相等的两个三角形全等.其中真命题有()A.1个B.2个C.3个D.4个【分析】熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.【解答】解:(1)只有两个元素对应相等,不能判断全等.故错误;(2)根据SAS可判断全等.故正确;(3)没有边对应相等不能判断全等.故错误;(4)没有边对应相等不能判断全等.故错误;(5)两边和夹角对应相等才能判断全等.故错误.所以选A.【点评】本题重点考查了全等三角形的判定定理,做题时要认真仔细,最好画图结合图形进行判断.二.填空题(共6小题)11.如图,∠1=∠2,要使∠ABE∠∠ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∠∠1=∠2,∠∠AEB=∠AEC,又AE公共,∠当∠B=∠C时,∠ABE∠∠ACE(AAS);或BE=CE时,∠ABE∠∠ACE(SAS);或∠BAE=∠CAE时,∠ABE∠∠ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图,Rt∠ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足分别为D、E,若BD=3,CE=2,则DE=5.【分析】首先证明∠DBA=∠CAE,然后再根据AAS定理证明∠BDA∠∠AEC,根据全等三角形的性质可得DA=CE,AE=DB,进而得到答案.【解答】解:∠∠BAC=90°,∠∠BAD+∠CAE=90°,∠BD∠DE,∠∠BDA=90°,∠∠BAD+∠DBA=90°,∠∠DBA=∠CAE,∠CE∠DE,∠∠E=90°,在∠BDA和∠AEC中,,∠∠BDA∠∠AEC(AAS),∠DA=CE=2,AE=DB=3,∠ED=5.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理与性质定理.13.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB=20米.【分析】根据题目中的条件可证明∠ACB∠∠DCE,再根据全等三角形的性质可得AB=DE,进而得到答案.【解答】解:∠点C是AD的中点,也是BE的中点,∠AC=DC,BC=EC,∠在∠ACB和∠DCE中,,∠∠ACB∠∠DCE(SAS),∠DE=AB=20米,故答案为:20米.【点评】此题主要考查了全等三角形的应用,关键掌握全等三角形的判定定理和性质定理.14.在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;(2)分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点C;(3)作射线OC.则OC就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.小华的思路是连接DC、EC,可证∠ODC∠∠OEC,就能得到∠AOC=∠BOC.其中证明∠ODC∠∠OEC的理由是SSS.【分析】由作法可知:CD=CE,OD=OE,根据全等三角形的判定定理判断即可.【解答】解:由作法可知:CD=CE,OD=OE,又∠OC=OC,∠根据SSS可推出∠OCD和∠OCE全等,故答案为:SSS【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.15.如图,在∠ABC中,D为AC边中点,过点D作AC边垂线,与BC边交于点E,以点A为圆心,EC 长为半径画圆,交直线ED于点F,有下列结论:∠∠AFD∠∠CED;∠∠BAC=∠C;∠ED=FD;∠AB∠EF,其中正确的结论是∠∠(请将正确结论的序号都填上)【分析】∠∠正确,可以证明根据HL证明∠ADF∠∠CDE,∠∠错误,连接AE,可得AE=EC,∠C=∠EAC,推出∠BAC>∠C,无法判断∠BAC=90°,故∠错误;【解答】解:∠AD=CD,EF∠AC,∠∠ADF=∠CDE=90°,∠AF=EC,∠∠ADF∠∠CDE(HL),∠DF=DE,故∠∠正确,连接AE,易知EA=EC,∠∠EAD=∠C,∠∠BAC>∠EAC,∠∠BAC≠∠C,故∠错误,∠∠BAC≠90°,∠无法判断AB∠EF,故∠错误.故答案为∠∠【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,∠ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∠BD 交AB于点G,交AC于点H,连接AE,有以下结论:∠∠BEC=∠BAC;∠∠HEF∠∠CBF;∠BG=CH+GH;∠∠AEB+∠ACE=90°,其中正确的结论有∠∠∠(将所有正确答案的序号填写在横线上).【分析】∠根据角平分线的定义得到∠EBC=∠ABC,∠DCE=ACD,根据外角的性质即可得到结论;∠根据相似三角形的判定定理得到两个三角形相似,不能得出全等;∠由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论;∠由BG=GE,CH=EH,于是得到BG﹣CH=GE﹣EH=GH.即可得到结论.【解答】解:∠BE平分∠ABC,∠∠EBC=∠ABC,∠CE平分∠ACD,∠∠DCE=ACD,∠∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∠∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+BAC,∠∠BEC=∠BAC,故∠正确;∠∠∠HEF与∠CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故∠错误.∠过点E作EN∠AC于N,ED∠BC于D,EM∠BA于M,如图,∠BE平分∠ABC,∠EM=ED,∠CE平分∠ACD,∠EN=ED,∠EN=EM,∠AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∠∠ABC+∠ACB+∠BAC=180°,∠2y+180°﹣2z+180°﹣2x=180°,∠x+z=y+90°,∠z=y+∠AEB,∠x+y+∠AEB=y+90°,∠x+∠AEB=90°,即∠ACE+∠AEB=90°,故∠正确;∠BE平分∠ABC,∠∠ABE=∠CBE,∠GE∠BC,∠∠CBE=∠GEB,∠∠ABE=∠GEB,∠BG=GE,同理CH=HE,∠BG﹣CH=GE﹣EH=GH,故∠正确.故答案为:∠∠∠.【点评】本题考查了平行线的性质,角平分线的定义,角平分线的性质与判定,等腰三角形的判定,三角形内角和定理、三角形外角性质等多个知识点,难度中等.判断出AE是∠BAC外角平分线是关键,事实上,点E就是∠ABC的旁心.三.解答题(共8小题)17.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【分析】可通过证∠ABF∠∠DCE,来得出∠A=∠D的结论.【解答】证明:∠BE=FC,∠BE+EF=CF+EF,即BF=CE;又∠AB=DC,∠B=∠C,∠∠ABF∠∠DCE(SAS),∠∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在∠ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.∠求证:∠ABE∠∠CBD;∠若∠CAE=30°,求∠BDC的度数.【分析】∠利用SAS即可得证;∠由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】∠证明:在∠ABE和∠CBD中,,∠∠ABE∠∠CBD(SAS);∠解:∠在∠ABC中,AB=CB,∠ABC=90°,∠∠BAC=∠ACB=45°,由∠得:∠ABE∠∠CBD,∠∠AEB=∠BDC,∠∠AEB为∠AEC的外角,∠∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.【点评】此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.19.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【分析】易证BC=EF,即可证明∠ABC∠∠DEF,可得∠A=∠D.即可解题.【解答】证明:∠BF=CE,∠BC=EF,在∠ABC和∠DEF中,,∠∠ABC∠∠DEF(SAS),∠∠A=∠D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证∠ABC∠∠DEF 是解题的关键.20.如图,∠ABC中,D为BC边上一点,BE∠AD的延长线于E,CF∠AD于F,BE=CF.求证:D为BC 的中点.【分析】欲证明D为BC的中点,只要证明BD=CD,即证明∠BED∠∠CFD即可.【解答】证明:∠BE∠AD的延长线于E,CF∠AD于F,∠∠CFD=∠BED=90°,在∠BED和∠CFD中,∠∠CDF∠∠BDE(AAS)∠CD=BD.∠D为BC的中点.【点评】本题主要考查了全等三角形的判定和性质等知识点,能根据已知证出符合全等的条件是解此题的关键.21.如图,∠ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF∠AE,垂足为F,过B作BD∠BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.【分析】(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=BC=AC,且AC=12,即可求出BD的长.【解答】(1)证明:∠DB∠BC,CF∠AE,∠∠DCB+∠D=∠DCB+∠AEC=90°.∠∠D=∠AEC.又∠∠DBC=∠ECA=90°,且BC=CA,在∠DBC和∠ECA中,∠∠∠DBC∠∠ECA(AAS).∠AE=CD.(2)解:∠∠CDB∠∠AEC,∠BD=CE,∠AE是BC边上的中线,∠BD=EC=BC=AC,且AC=12cm.∠BD=6cm.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.如图,在∠ABC和∠ADE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD、CE,求证:∠ABD∠∠AEC.【分析】求出∠EAC=∠DAB,根据SAS推出两三角形全等即可.【解答】证明:∠∠BAC=∠DAE,∠∠BAC﹣∠BAE=∠DAE﹣∠BAE,∠∠EAC=∠DAB.在∠ABD和∠AEC中,∠∠ABD∠∠AEC(SAS).【点评】本题考查了全等三角形的判定定理的应用,能正确应用全等三角形的判定定理进行推理是解此题的关键,难度适中.23.(1)如图1,∠ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD∠AE 于D,CE∠AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【分析】根据已知利用AAS判定∠ABD∠∠CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;根据已知利用AAS判定∠ABD∠∠CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE ﹣CE.【解答】解:(1)∠∠BAC=90°,BD∠AE,CE∠AE,∠∠BDA=∠AEC=90°,∠∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∠∠ABD=∠CAE,∠AB=AC,在∠ABD和∠CAE中,∠,∠∠ABD∠∠CAE(AAS),∠BD=AE,AD=CE,∠AE=AD+DE,∠BD=DE+CE;(2)BD=DE﹣CE;∠∠BAC=90°,BD∠AE,CE∠AE,∠∠BDA=∠AEC=90°,∠∠ABD+∠DAB=∠DAB+∠CAE,∠∠ABD=∠CAE,∠AB=AC,在∠ABD和∠CAE中,∠,∠∠ABD∠∠CAE(AAS),∠BD=AE,AD=CE,∠AD+AE=BD+CE,∠DE=BD+CE,∠BD=DE﹣CE.【点评】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS,SAS,AAS 等.这种类型的题目经常考到,要注意掌握.24.已知,如图1,BD、CE是锐角∠ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB.(1)求证:∠BAF=∠CGA;(2)在图1中,过点F、G分别作过点A的直线的垂线,垂足分别为点M、N(如图2),试判断线段MN 与线段FM、GN之间的数量关系,并证明你的结论.【分析】(1)根据垂直求出∠BEO=∠CDO=90°,根据三角形的内角和定理求出∠ABF=∠ACG,推出∠ABF∠∠GCA,根据全等三角形的性质得出∠CGA=∠BAF即可;(2)根据全等三角形的性质得出AG=AF,∠GAN=∠AFM,进而得出∠AGN∠∠AFM,利用全等三角形的性质解答即可.【解答】证明:(1)∠BD,CE是∠ABC的高,∠∠BEO=∠CDO=90°,∠∠EOB=∠DOC,∠ABF+∠EOB+∠BEO=180°,∠ACG+∠CDO+∠DOC=180°,∠∠ABF=∠ACG,在∠ABF和∠GCA中,,∠∠ABF∠∠GCA,∠∠CGA=∠BAF;(2)MN+MF=GN,理由如下:∠∠ABF∠∠GCA,∠∠G=∠BAF,AG=AF,∠∠GEA=∠CEB=90°,∠∠G+∠GAB=90°,∠∠BAF+∠GAB=90°,∠∠GAF=90°,∠∠GAN=∠AMF,在∠AGN与∠AFM中,,∠∠AGN∠∠AFM,∠AM=GN=MN+AN,AN=MF,∠MN+MF=GN.【点评】本题考查了三角形的内角和定理和全等三角形的性质和判定的应用,解此题的关键是推出∠ABF∠∠GCA,注意:全等三角形的对应边相等,对应角相等.附加题1.如图,已知∠1=∠2,则下列条件中,不能使∠ABC∠∠DBC成立的是()A.AB=CD B.AC=BD C.∠A=∠D D.∠ABC=∠DCB【分析】根据条件和图形可得∠1=∠2,BC=BC,再根据全等三角形的判定定理分别添加四个选项正所给条件进行分析即可.【解答】解:根据条件和图形可得∠1=∠2,BC=BC,A、添加AB=CD不能判定∠ABC∠∠DBC,故此选项符合题意;B、添加AC=BD可利用SAS定理判定∠ABC∠∠DBC,故此选项不合题意;C、添加∠A=∠D可利用AAS定理判定∠ABC∠∠DBC,故此选项不合题意;D、添加∠ABC=∠DCB可利用ASA定理判定∠ABC∠∠DBC,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.填空题(共2小题)2.如图,AB=DE,∠B=∠E,使得∠ABC∠∠DEC,请你添加一个适当的条件BC=EC等(填一个即可).【分析】本题要判定∠ABC∠∠DEC,已知AB=DE,∠B=∠E,具备了一边一角对应相等,利用SAS即可判定两三角形全等了.【解答】解:添加条件是:BC=EC,在∠ABC与∠DEC中,,∠∠ABC∠∠DEC.故答案为:BC=EC.【点评】此题主要考查学生对全等三角形的判定这一知识点的理解和掌握,关键是用SAS即可判定两三角形全等.3.在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;(2)分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点C;(3)作射线OC.则OC就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.小华的思路是连接DC、EC,可证∠ODC∠∠OEC,就能得到∠AOC=∠BOC.其中证明∠ODC∠∠OEC的理由是SSS.【分析】由作法可知:CD=CE,OD=OE,根据全等三角形的判定定理判断即可.【解答】解:由作法可知:CD=CE,OD=OE,又∠OC=OC,∠根据SSS可推出∠OCD和∠OCE全等,故答案为:SSS【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.三.解答题(共2小题)4.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∠DE,AB=DE,点F,求证:BC∠EF.【分析】直接利用全等三角形的判定方法得出∠ABC∠∠DEF(SAS),进而得出答案.【解答】证明:∠AB∠DE,∠∠A=∠D,∠AF=CD,∠AC=DF,在∠ABC和∠DEF中,∠∠ABC∠∠DEF(SAS),∠∠BCA=∠EFD,∠BC∠EF.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.5.如图,AB=AE,∠B=∠AED,∠1=∠2,求证:∠ABC∠∠AED.【分析】根据SAS只要证明∠BAC=∠EAD即可解决问题;【解答】证明∠∠1=∠2,∠∠BAC=∠EAD,在∠ABC和∠AED中,,∠∠ABC∠∠AED.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定,属于中考常考题型.。
全等三角形证明经典50题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2) 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又,EF ∥AB ∴,∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )A C DEF 21 ADBCDABBA CDF2 1 EA∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF ∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
全等三角形判定-专题复习50题(含答案)
A.一个锐角对应相等C.一条边对应相等B.两个锐角对应相等全等三角形判定、选择题:1-如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA2•方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形。
如图,在4X4的方格纸中,有两个格点三角形△ABC、ADEF,下列说法中成立的是()A.ZBCA=ZEDF CoZBAC=ZEFDB.ZBCA=ZEFDD.这两个三角形中,没有相等的角3•如图所示,△ABD9ACDB,下面四个结论中,不正确的是()A.△ABD和厶CDB的面积相等B.AABD和厶CDB的周长相等C.ZA+ZABD=ZC+ZCBDD.AD〃BC,且AD=BC4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5-使两个直角三角形全等的条件是()6•如图,在AABC和厶BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则Z AACB等于(B.ZBEDC.寺ZAFBD.2ZABFA.ZEDBBA B C DB.ZA=ZDC.AC=DD.ZACB=ZF7.在AABC 和厶A /B /C /中,已知ZA=ZA /,AB=A /B /,在下面判断中错误的是()A. 若添加条件AC=A /C /,则厶ABC^^^A /B /C /B. 若添加条件BC=B /C /,则厶ABC^^^A /B /C /C 。
若添加条件ZB=ZB /,则△ABC^^^A /B /C /D 。
若添加条件ZC=ZC /,则△ABC^^^A /B /C /8•如图,AABC 和厶DEF 中,AB=DE 、ZB=ZDEF,添加下列哪一个条件无法证明厶ABC^^DEF ()9•如图,在△ABC 中,ZABC=45°,AC=8cm,F 是高AD 和BE 的交点,则BF 的长是()A.4cmB.6cmC.8cmD.9cm1°.在如图所示的5X5方格中,每个小方格都是边长为1的正方形,AABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形个数是()11.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为a,则重叠部分四边形EMCN 的面积为( A.AC 〃DF12-在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(C、填空题:I3•如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上—块,其理由是.14.如图示,点B在AE上,ZCBE=ZDBE,要使AABC^AABD,还需添加一个条件是,(填上你认为适当的一个条件即可)15•如图,已知Z1=Z2,AC=AD,请增加一个条件,使△ABC9AAED,你添加的条件是16-如图,Z1=Z2,要使△ABD9AACD,需添加的一个条件是(只添一个条件即可).17•如图,在△ABC中,AB=AC,AD丄BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.18•如图,△ABD9ABAC,若AD=BC,则ZBAD的对应角是.19-如图,已知AB丄BD,垂足为B,ED丄BD,垂足为D,AB=CD,BC=DE,则ZACE=_度.2°・如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.三、解答题:21•如图,ZDCE=90°,CD=CE,AD丄AC,BE丄AC,垂足分别为A.B.试说明AD+AB=BE.22.如图,E、A.C三点共线,AB〃CD,ZB=ZE,,AC=CD。
全等三角形经典题型50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠ED C ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB=∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
(完整版)全等三角形证明经典50题(含答案)
1.已知: AB=4 , AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD解:延伸 AD 到 E,使 AD=DE ∵ D 是 BC 中点∴ BD=DC在△ ACD 和△ BDE 中 AD=DE ∠ BDE= ∠ ADCBD=DC ∴△ ACD ≌△ BDE∴AC=BE=2 ∵在△ ABE 中 AB-BE < AE <AB+BE ∵ AB=4即4-2< 2AD < 4+21< AD < 3∴AD=22. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B延伸 CD 与 P,使 D 为 CP 中点。
连结AP,BP∵DP=DC,DA=DB ∴ ACBP 为平行四边形又∠ ACB=90 ∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠ B=∠ E,∠ C=∠ D ,F 是 CD 中点,求证:∠ 1=∠ 2A12B EC F D证明:连结 BF 和 EF∵ BC=ED,CF=DF, ∠ BCF= ∠ EDF∴三角形 BCF 全等于三角形 EDF( 边角边 )∴BF=EF, ∠CBF= ∠ DEF 连结 BE 在三角形 BEF 中 ,BF=EF∴∠EBF= ∠ BEF 。
∵ ∠ ABC= ∠ AED 。
∴ ∠ABE= ∠ AEB 。
∴AB=AE 。
在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF,∠ABF= ∠ ABE+ ∠ EBF= ∠ AEB+ ∠ BEF= ∠AEF∴三角形 ABF 和三角形 AEF 全等。
∴∠ BAF=∠ EAF (∠ 1=∠ 2) 4.已知:∠ 1=∠2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB过 C 作 CG∥ EF 交 AD 的延伸线于点G CG∥ EF,可得,∠ EFD= CGDDE= DC ∠ FDE=∠ GDC(对顶角)∴ △ EFD≌ △ CGD EF= CG ∠ CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠ 1 ∠ 1= ∠2 ∴∠ CGD=∠ 2∴ △AGC 为等腰三角形,AC= CG 又 EF= CG∴ EF=AC5.已知: AD 均分∠ BAC ,AC=AB+BD ,求证:∠ B=2 ∠ C A证明:延伸AB 取点 E,使 AE = AC ,连结 DE∵AD 均分∠ BAC∴∠ EAD =∠ CAD∵AE =AC , AD = AD∴△ AED ≌△ ACD(SAS)∴∠ E=∠ C∵AC =AB+BD∴AE = AB+BD∵AE = AB+BE∴ BD =BE∴∠ BDE =∠ E∵∠ ABC =∠ E+ ∠ BDE∴∠ ABC = 2∠E∴∠ ABC = 2∠C6.已知: AC 均分∠ BAD ,CE⊥AB ,∠ B+ ∠ D=180 °,求证: AE=AD+BE证明:在AE 上取 F,使 EF=EB ,连结 CF∵ CE⊥ AB∴∠ CEB =∠ CEF= 90°∵ EB= EF, CE= CE,∴△ CEB ≌△ CEF∴∠ B =∠ CFE∵∠ B +∠ D= 180°,∠ CFE+∠ CFA = 180°∴∠ D =∠ CFA∵AC 均分∠ BAD∴∠ DAC =∠ FAC∵AC =AC∴△ ADC ≌△ AFC ( SAS)∴AD =AF ∴AE =AF + FE=AD + BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、CE 分别均分∠ ABC 、∠ BCD ,且点 E在AD 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 4 C A D B E 图2 A
B D
C E
F 图1 图3 45321全等三角形判定 测试题
班级 学号 姓名 分数_______ 一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.已知等腰三角形的一个内角为50o
,则这个等腰三角形的顶角为【 】. (A )50o
(B )80o
(C )50o 或80o
(D )40o 或65o
2. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】. (A )2平方厘米 (B )1平方厘米 (C )
12平方厘米 (D )1
4
平方厘米
3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为【 】. (A )5厘米 (B )7厘米 (C )9厘米 (D )11厘米
4. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】. (A )HL (B )SSS (C )SAS (D )ASA
5. 利用三角形全等所测距离叙述正确的是( )
A.绝对准确
B.误差很大,不可信
C.可能有误差,但误差不大,结果可信
D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离
6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】.
(A )145° (B )180° (C )225° (D )270° 7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′ (C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′
(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长
8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B )4 (C )5 (D )6
9. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 【 】.
图12 图9 A '
A D
B E 21图10
C A
D
E
F 图6
m n
C
A
B
图11 12C A D B E
F M N O A
B
C
D F
图5
D
A
O
E
C
B D
A
C B
(A )45o
(B )50o (C )60o
(D )75o
图7 图8
10. 如图6所示,m ∥n ,点B ,C 是直线n 上两点,点A 是直线m 上一点,在直线m 上另找一点D ,使得以点D ,B ,C 为顶点的三角形和△ABC 全等,这样的点D 【 】. (A )不存在 (B )有1个 (C )有3个 (D )有无数个
二、填一填,要相信自己的能力!(每小题3分,共30分) 1.在ABC ∆中,若A ∠=112
3
B C =∠,则ABC ∆是 三角形.
2. 如图7所示,BD 是ABC ∆的中线,2AD =,5AB BC +=,则ABC ∆的周长是 .
3. 如图8所示所示,在ABC ∆中,BD ,CE 分别是AC 、AB 边上的高,且BD 与CE 相交于点O ,如果135BOC ∠=︒,那么A ∠的度数为 .
4. 有5条线段,长度分别为1厘米、2厘米、3厘米、4厘米、5厘米,以其中三条线段为边长,共可以组成________个形状不同的三角形.
5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于_____度.
6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.
7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共有____对. 8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长为_________. 9. 如图13所示,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .
图13
35°
D A
E
C B
10. 如图14所示,三角形纸片ABC ,AB =10厘米,BC =7厘米,AC =6
厘米.沿 过点B 的直线折叠这个三角形,使顶点C 落在AB 边
上的点E 处,折痕为BD ,则△AED 的周长为______厘米.
三、做一做,要注意认真审题呀!(本大题共38分) 1.(8分)如图15所示,在ABC ∆中,已知AD BC ⊥,64B ∠=︒,56C ∠=︒. (1)求BAD ∠和DAC ∠的度数;
(2)若DE 平分ADB ∠,求AED ∠的度数.
图15
3.(10分)图17为人民公园的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB 的长(要求画出草图,写出测量方案和理由). 4.(10分)如图18所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同—直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF .
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论. (2)选择(1)中你写出的—个正确结论,说明它正确的理由.
图14 C A D B
E 图17 图18 F
E B
D
A C
四、拓广探索!(本大题共22分)
1.(10分)如图19,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.
2.(12分)两个大小不同的等腰直角三角形三角板如图20①所示放置,图20②是由它抽象
出的几何图形,B C E ,,在同一条直线上,连结DC . (1)请找出图20②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母); (2)试说明:DC BE .
图
20
①
②
B
C D F
A
E 图19
参考答案
一、1~10 CB C BC CD ADB.
二、1. 直角. 2.9. 3. 45°. 4.3. 5. 50. 6. HL. 7.4. 8. ∠2,△EDC ,25 m. 9. 125°. 10. 9.
三、1. (1)90905634DAC C ∠=︒-∠=︒-︒=︒. (2)109AED ∠=︒.
2.方案不惟一,画图及理由略.
3.(1)如果①、③,那么②或如果②、③,那么①; (2)选择“如果①、③,那么②”证明,过程略. 四、1. △AFC 是等腰三角形.理由略 . 2.(1)图2中ABE ACD △≌△.
理由如下:ABC Q △与AED △均为等腰直角三角形
AB AC ∴=,AE AD =,90BAC EAD ∠=∠=o , BAC CAE EAD CAE ∴∠+∠=∠+∠, 即BAE CAD ∠=∠ , ABE ACD ∴△≌△.
(2)说明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=o
, 又45ACB ∠=o
90BCD ACB ACD ∴∠=∠+∠=o ,
DC BE ∴⊥。