超临界流体萃取过程

合集下载

超临界流体萃取的基本原理

超临界流体萃取的基本原理

超临界流体萃取的基本原理引言超临界流体技术是目前研究热度较高的一种技术,它以超临界流体为溶剂,通过现代高级分离技术,对不同物质的分离提纯和有效利用进行研究。

本文主要讲述超临界流体萃取(SFE)的基本原理,包括超临界流体的基本概念、SFE的实验原理、其在不同领域的应用及前景等方面。

超临界流体的概念超临界流体是在它们的扩散零点(临界点)之上,温度和压力都超过其临界值的物质,具有很强的溶解能力、低粘度、高扩散系数和可控的密度等特点。

常见的超临界流体有二氧化碳、二甲醚、氨和正戊烷等,其中以二氧化碳为最为常用。

SFE的实验原理SFE的实验基本原理与传统的液液萃取相似,只是替换为超临界溶剂进行操作,通过对萃取物质和超临界流体的相互作用进行调控,完成不同物质的分离提纯。

其实验流程一般包括以下几步:1.选择合适的超临界流体作为溶剂,并确定实验所需要的温度和压力等操作条件;2.将物质样品与超临界流体进行接触,利用物质与超临界流体之间的加热和冷却作用,控制物质的溶解和分离;3.将混合物通过压力降低或者温度升高等方式,溶剂被回收,分离出物质。

SFE在不同领域的应用农药残留超临界二氧化碳在农业领域中应用极其广泛,并主要应用于对农药残留的检测和分析,其萃取效果和效率比传统的方法更优秀,且对环境污染小。

食品中的添加剂超临界流体萃取技术可应用于食品中添加剂的检测,其具有灵敏度高、检测时间快的特点,并且可对检测样本进行多重分析,保障食品安全性。

药物大分子SFE在药物大分子中的应用也日益广泛,SFE能够提取高质量和高精度的药物大分子,具有独特的分离空间,让分离更加准确和精准。

SFE的前景超临界流体技术由于其环保、高效、高选择性等特点,未来在食品、生物医药、环境保护等领域的应用前景广阔。

同时,与其他萃取技术相比,SFE是一种绿色萃取技术,其萃取物质充分,并且不会产生污染物和毒性物质,因而得到越来越广泛的关注与应用。

结论SFE技术在农药残留、食品中添加剂、药物大分子等多个领域都有广泛应用,其优点在于高效、环保、高选择性等特点。

超临界流体萃取

超临界流体萃取
44
7.3.4 在化工方面的应用
在美国超临界技术还用来制备液体燃料。 以甲苯为萃取剂,在Pc=100atm,Tc=400~ 440℃条件下进行萃取,在SCF溶剂分子的扩散 作用下,促进煤有机质发生深度的热分解,能使 三分之一的有机质转化为液体产物。此外,从 煤炭中还可以萃取硫等化工产品。美国最近研 制成功用超临界二氧化碳既作反应剂又作萃取 剂的新型乙酸制造工艺。俄罗斯、德国还把 SFE法用于油料脱沥青技术。
47
8.2 SFE-SFC联用
SFE-SFC直接联用在大分子分析中较 具优势,在环境有机污染物和其它方面 也很有发展前途。
48
8.3 SFE-HPLC、SFE-TLC联用
SFE-HPLC具有高选择性、高灵敏度、 自动化程度高等特点。
29
七、超临界流体萃取技术的应用
7.1
超临界CO2萃取技术在中药开
发方面的应用
7.2 超临界流体技术在其他方面的应用
30
7.1超临界CO2萃取技术在中药开发方面的应用
在超临界流体技术中,超临界流体萃取技术 与天然药物现代化关系密切。SFE对非极性和中 等极性成分的萃取,可克服传统的萃取方法中因 回收溶剂而致样品损失和对环境的污染,尤其适 用于对温热不稳定的挥发性化合物提取;对于极 性偏大的化合物,可采用加入极性的夹带剂如乙 醇、甲醇等,改变其萃取范围提高抽提率。因此 其在中草药的提取方面具有着广泛的应用。
好,廉价易得等优点。
12
2.2 超临界流体萃取
溶质在SCF中的溶解度大致可认为随SCF的密度 增大而增大。
SCF的密度随流体压力和温度的改变而发生十分 明显的变化。
在较高压力下,使溶质溶解于SCF中,然后使 SCF溶液的压力降低,或温度升高,这时溶解 于SCF中的溶质就会因SCF的密度下降,溶解 度降低而析出。

超临界萃取技术

超临界萃取技术

超 临 界 流 体 萃 取 的 应 用
医药工业 化学工业
中草药提取 酶,纤维素精制
金属离子萃取 烃类分离 共沸物分离 高分子化合物分离 植物油脂萃取
食品工业
酒花萃取 植物色素提取 天然香料萃取 化妆品原料提取精制
化妆品香料
压缩机
萃取釜
制冷MVC-760L
二氧化碳循环泵

超临界萃取技术的应用
应 用 范 围
还有其他辅助设备,如阀门,流量计等。
4.超临界流体萃取的方法
热 交 换 器
萃 取 釜
分 离 釜
CO2
热交换器 压缩机或泵 过滤器 超临界 CO 2 萃取的基本流程
三种超临界流体萃取流程示意图
4. 超临界流体萃取的方法
(2)影响工艺流程的因素: 萃取过程系统的组成各不相同,在设计工 艺流程时,仍有一些共同的因素要考虑 原料的性质、 萃取条件 萃取操作方式 分离操作方式 溶剂的回收和处理等。
一、概 述
(Super fluid extraction,简称SFE)
原理:
是利用超临界流体(SCF),即温度和压 力略超过或靠近超临界温度(Tc)和临界 压力(Pc),介于气体和液体之间的流体 作为萃取剂,从固体或液体中萃取出某种 高沸点和热敏性成分,以达到分离和纯化 目的的一种分离技术。
超临界流体萃取过程:
超临界流体萃取技术
(Super fluid extraction,简称SFE)
超临界流体萃取(supercriticl fluid
extraction)也叫流体萃取、气体萃取 或蒸馏萃取 作为一种分离过程,是基于一种溶剂 对固体或液体的萃取能力和选择性, 在超临界状态下较之在常温常压下可 得到极大的提高。

超临界流体萃取的三种典型工艺流程

超临界流体萃取的三种典型工艺流程

超临界流体萃取的三种典型工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!超临界流体萃取的三种典型工艺流程。

1. 动态萃取法。

二氧化碳超临界流体萃取技术简介

二氧化碳超临界流体萃取技术简介
一般用量:1%~5%(质量)
常见临界流体萃取辅助剂
被萃取物 咖啡因 单甘酯 亚麻酸
青霉素G钾盐 乙醇 豆油
菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
辅助剂 水
丙酮 正己烷
水 氯化锂 己烷,乙醇
丙烷 乙醇 尿素
超临界流体旳选择性
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
物质有三种状态: 气态、液态、固态 流体状态
物质旳第四态:超临界状态
临界温度:每种物质都有一种特定 温度,在这个温度以上,不论怎样 增大压强,虽然密度与液态接近, 气态物质也不会液化。这个温度称 为物质旳临界温度。
④ 化合物旳相对分子量越高,越难萃取。
分子量在200~400范围内旳组分轻易萃 取,有些低相对分子质量、易挥发成份甚 至能够直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则极难萃取。
超临界CO2是非极性溶剂,在许 多方面类似于己烷,对非极性旳脂 溶性成份有很好旳溶解能力,对有 一定极性旳物质(如黄酮、生物碱 等)旳溶解性就较差。其对成份旳 溶解能力差别很大,主要与成份旳 极性有关,其次与沸点、分子量也 有关。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强旳渗透能力
4 SCF旳介电常数,极化率和分子行为 都与气液两相都有明显差别
总之,超临界流体不但具有液体 旳溶解能力,也具有气体旳扩散和 传质能力
超临界流体萃取
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成份并进行分离旳 技术。

超临界流体萃取

超临界流体萃取

超临界流体的应用超临界流体萃取( Supercritical fluid extraction,简写SCFE ) 是一种起源于20 世纪40 年代, 20 世纪70 年代投入工业应用的新型的萃取分离、精制技术, 已广泛应用于食品、香料、生物、医药、化工、轻工、冶金、环保、煤炭和石油等深加工领域中,并取得成功。

过去, 分离天然的有机成分一直沿用水蒸汽蒸馏法、压榨法、有机溶剂萃取法等。

水蒸汽蒸馏法需要将原料加热, 不适用于化学性质不稳定的热敏性成分的提取; 压榨法得率低; 有机溶剂萃取法在去除溶剂时会造成产品质量下降或有机溶剂残留; 而超临界流体萃取法则有效地克服了传统分离方法的不足,利用在较低临界温度以上的高压气体作为溶剂, 经过分离、萃取、精制有机成分。

1 超临界萃取技术的基本原理超临界流体( Supercritical Fluid, 简写为SCF ) ,是超过临界温度( Tc ) 和临界压力(Pc)的非凝缩性的高密度流体。

既不是气体, 也不是液体, 是一种气液不分的状态, 性质介于气体和液体之间, 具有优异的溶剂的性质, 粘度低, 密度大, 有较好的流动、传质、传热和溶解性能。

流体处于超临界状态时, 其密度接近于液体密度。

易随流体压力和温度的改变发生十分明显的变化, 而溶质在超临界流体中的溶解度随超临界流体密度的增大而增大。

超临界流体萃取正是利用这种性质, 在较高压力下, 将溶质溶解于流体中, 然后降低流体溶液的压力或升高流体溶液的温度, 使溶解于超临界流体中的溶质因其密度下降溶解度降低而析出, 从而实现特定溶质的萃取。

发达国家如德国、法国、日本、澳大利亚、意大利和巴西等国在这方面做了很多的研究工作,目前研究的体系有甾醇- 维生素E、柑橘油和各种不饱和脂肪酸, 研究的内容有相平衡、理论级计算、理论塔板高度和传质单元高度的确定、工艺操作条件的优选、萃取柱内的浓度分布、能耗估算、萃取柱设计、过程工艺与设备的数学模拟等[ 1~ 8]。

超临界萃取详解

超临界萃取详解

超临界萃取详解超临界流体萃取:作为一种分离过程,是基于一种溶剂对固体或液体的萃取能力和选择性,在超临界状态下较之在常温常压下可得到极大的提高。

原理:利用超临界流体作为萃取剂,从固体或液体中萃取出某种高沸点和热敏性成分,以达到分离和纯化目的的一种分离技术。

超临界流体:即温度和压力略超过或靠近超临界温度(Tc)和临界压力(Pc),介于气体和液体之间的流体。

超临界流体萃取过程:介于蒸馏和液-液萃取过程之间,是利用超临界状态的流体,依靠被萃取物质在不同蒸气压力下所具有的不同化学亲和力和溶解能力进行分离、纯化的单元操作。

超临界流体与待分离混合物中的溶质具有异常相平衡行为和传递性能,且它对溶质的溶解能力随着压力和温度的改变而在相当宽的范围内发生变动,因此利用超临界流体作为溶剂可从多种液态或固态混合物中萃取出待分离的组分超临界流体:指在临界温度和临界压力以上的流体。

临界温度:指高于此温度时,该物质处于无论多高压力下均不能被液化时的温度。

临界压力:临界区附近压力和温度的变化,对密度的影响?非挥发性溶质在超临界流体中的溶解度与流体密度的关系?在临界区附近压力和温度的微小变化,可引起流体密度的大幅度变化。

溶质在超临界流体中的溶解度大致和流体的密度成正比。

b.超临界流体的传递性质:超临界流体的密度近似于液相,溶解能力也基本上相同,而黏度却接近普通气体,自扩散能力比液体大约100倍。

此外,传递性质值的范围,在气体和液体之间。

超临界流体是一种低黏度、高扩散系数、易流动的相;扩散传递更加容易并能减少泵送所需的能量。

降低了与之相平衡的液相黏度和表面张力,提高了平衡液相的扩散系数,有利于传质。

在临界点附近,压力和温度的微小变化可对溶剂的密度、扩散系数、表面张力、黏度、溶解度、介电常数等带来明显的变化。

c.超临界流体的选择性有效地分离产物或除去杂质的关键是用作萃取剂的超临界流体应具有很好的选择性按相似相容的原则超临界流体与被萃取物质的化学性质越相按操作角度来看操作温度越接近临界温度,溶解能力越大基本原则超临界流体的化学性质和待分离的物质化学性质相近;操作温度和超临界流体的临界温度相近。

超临界流体萃取技术

超临界流体萃取技术

2.1超临界流体的基本性质
2.1超临界流体的基本性质
表一 一些浸出溶剂的沸点与临界特性表
溶剂 乙烯 二氧化碳 乙烷
沸点/℃
临界温度Tc/℃
临界压力Pc/MPa
临界密度ρc/(ɡ/cm2)
-103.9 -78.5 -88.0 -44.7
9.2 31.0 32.2 91.8
5.03 7.38 4.88 4.62
流量 计 分 萃 高压 泵
二 氧 化 碳 气 瓶
解 析 釜
解 析 釜 离 柱
取 釜
冷箱 贮 罐
夹 带 剂 罐
高压 泵
4.超临界流体萃取的特点
(1)具有广泛的适应性
由于超临界状态流体溶解度特异增高的现象 是普遍存在。因而理论上超临界流体萃取技术可 作为一种通用高效的分离技术而应用。
( 2 ) 萃 取 效 率 高 , 过 程 易 于 调 节 超临界流体兼具有气体和液体特性,因而超 临界流体既有液体的溶解能力,又有气体良好的 流动和传递性能。并且在临界点附近,压力和温 度的少量变化有可能显著改变流体溶解能力,控 制分离过程
吸附法
3.2基本工艺流程
超临界流体萃取的工艺流程一般是由萃取( CO2 溶 解组分)和分离( CO2 和组分的分离)两步组成。 包括高压泵及流体系统、萃取系统和收集系统三 个部分。
超临界流体萃取的基本流程
萃 取 釜
分 离 釜
热 交 换 器
CO2
热交换器 压缩机 高压泵 过滤器
超临界流体萃取的流程
3.1超临界流体萃取的典型流程
解析方法(一)
压力高,投资大,能 耗高,操作简单,常 温萃取
等温法
3.1超临界流体萃取的典型流程 能耗相对较少,对热 敏 性 物 质 有 影 响

超临界流体萃取

超临界流体萃取

1.2与其他分离方法的联系 a 蒸馏-物质在流动的气体中,利用蒸汽压不同进行蒸发分
离。
b. 液-液萃取-利用溶质在不同溶液中溶解度不同。 c. 超临界流体萃取-利用SCF,依靠被萃物在不同蒸 汽压下所具有不同化学亲和力和溶解力(蒸汽压-相 分离作用。
1.3 发展史
①1896年 英国 Hanny等通过实验发现金属卤化物可被超 临界乙醇和四氯化碳溶解,但当P降低,金属卤化物又重 新析出。 ②20世纪50年代 Todd等理论上提出SCF萃取分离的可能 性。 ③1978年 一系列SFE有关的学术会议 ④中国 1981年刚刚起步
根据分离对象和分离目的来选择极性或非极性溶剂
2.5夹带剂的使用
(1)单一组分的超临界溶剂缺点包括:
①某些物质在纯超临界流体中溶解度很低,如超临界CO2 只能有效地萃取亲脂性物质,不适合糖、氨基酸等极性 物质 ②选择性不高,导致分离效果不好;
③溶质溶解度对温度、压力的变化不够敏感,使溶质与 超临界流体分离时耗费的能量增加。
P1V 1 P 2V 2 T1 T2
2.2 基本原理
(1)原理:
利用超临界流体在临界区附近,温度和压力微小的变 化,而引起流体密度大的变化,而非挥发性溶质在超 临界流体中溶解度大致和流体的密度成正比。保持T恒 定,增大P,流体密度增大,溶质溶解度增大,萃取能 力增强;降低P,流体密度减小,溶质溶解度降低,萃 取剂与溶质分离。从而能很好的固体或液体中萃取出 某种高沸点或热敏性成分
第八节 超临界流体萃取
1.概述 2.超临界流体萃取的理论基础
3.超临界流体萃取的基本过程
4.超临界流体萃取的应用
5.超临界流体萃取的优缺点
1. 超临界流体萃取-概述
1.1定义

超临界流体萃取

超临界流体萃取

第三章超临界流体萃取定义:即用超临界流体作为萃取剂的萃取过程一、超临界流体指处于临界温度Tc和临界压力Pc之上的流体(它不是气体也不是液体)。

超临界C02(研究最多、应用最广)1、临界压力(7.39 MPa)适中;2、临界温度(31.1 ℃)接近室温;3、便宜易得;4、无毒、惰性,是理想的绿色溶剂;5、极易从萃取产物中分离出来。

典型应用:咖啡因、植物油脂、天然香料与药物的萃取。

超临界流体的特性(1)密度、粘度和扩散系数的特点密度比气体大得多,与液体接近,使其对溶质有较大的溶解度。

粘度接近气体,比液体小得多。

扩散系数介于气体和液体之间,是气体的几百分之一, 是液体的几百倍。

与液体相比,超临界流体粘度小、扩散系数大使其传质速率大大高于液体。

(2)溶解特性在临界点附近,压力和温度的变化可引起超临界流体密度急剧变化, 相应地使溶质在超临界流体中的溶解度发生急剧变化,因而可利用压力与温度的改变来实现萃取和分离。

有机物在超临界流体中溶解度的变化:低于临界压力时,几乎不溶解;高于临界压力时,溶解度随压力急剧增加。

二、超临界流体萃取原理流体在临界区附近,压力和温度的微小变化,会引起流体的密度大幅度变化,而非挥发性溶质在超临界流体中的溶解度大致上和流体的密度成正比。

利用流体在超临界状态下对物质有特殊增加的溶解度,而在低于临界状态下基本不溶解的特性. (1)超临界流体萃取过程一般分两步(以超临界C02为例)(2)超临界流体萃取特点① 高压下进行,设备及工艺技术要求高, 投资比较大。

② 可以在接近室温下完成(对超临界C02而言),特别适用于热敏性天然产物的分离。

③ 分离工艺流程简单,主要由萃取器和分离器二部分组成,而且萃取和分离通过改变温度和压力即可实现。

④ 超临界流体循环使用,无需溶剂回收设备,不产生二次污染。

⑤ 被萃取物中基本无萃取剂残留。

(1)萃取原料装入萃取釜,超临界C02从釜底进入,与被萃取物料充分接触,选择性溶解出被萃取物。

超临界萃取工艺流程图及操作

超临界萃取工艺流程图及操作

超临界萃取实验1.超临界萃取工艺流程图2.实验步骤2.1开机前的准备工作(1) 首先检查电源、三相四线是否完好无缺。

(AC380V/50HZ)(2) 冷冻机及储罐的冷却水源是否畅通,冷箱内为30%的乙二醇+70%的水溶液。

(3) CO2气瓶压力保证在5~6MPa的气压,且食品级净重大于等于22kg。

(4) 检查管路接头以及各连接部位是否牢靠。

(5) 将每个热箱内加入冷水,不宜太满,离箱盖2公分左右。

(6) 萃取原料装入料筒,原料不应装太满。

离过滤网2~3公分左右。

(7) 将料筒装入萃取缸,盖好压环及上堵头。

(8) 如果萃取液体物料需加入夹带剂时,将液料放入携带剂罐,可用泵压入萃取缸内。

2.2开机操作顺序(1) 先开电源开关,三相电源指示灯都亮,则说明电源已接通,再启动电源的(绿色)按钮。

(2) 接通制冷开关,同时接通水循环开关。

(3) 开始加温,先将萃取缸、分离Ⅰ、分离Ⅱ、精馏柱的加热开关接通,将各自控温仪调整到各自所需的设定温度。

如果精馏柱参加整机循环需打开与精馏柱相应的加热开关。

(4) 在冷冻机温度降到0℃左右,且萃取缸、分离Ⅰ、分离Ⅱ、温度接近设定的要求后,进行下列操作。

如萃取缸40℃,分离Ⅰ50℃,分离Ⅱ35℃,其中萃取缸与分离Ⅰ温度小于等于75℃,分离Ⅱ温度不变。

(5) 开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2进行液化,液态CO2通过泵、混合气、净化器进入萃取缸(萃取缸已装样品且关闭上堵头),等压力平衡后,打开放空阀门4,慢慢放掉残留空气以降低部分压力后,关闭放空阀。

(6) 加压力:先将电极点拨到需要的压力(上限),启动泵Ⅰ绿色按钮,打开变频器上的RUN,如果反转时,按一下触摸开关FWD/PEV。

当压力加到接近设定压力(提前1MPa左右),开始打开萃取缸后面的节流阀门,具体怎么调节,根据下面不同流向:①萃取缸→分离器Ⅰ→分离Ⅱ→回路从阀门3进萃取缸,阀门5、7进入分离Ⅰ,阀门9、10进入分离Ⅱ,阀门13、12、1回路循环;调节阀门7控制萃取缸压力,调节阀门10控制分离Ⅰ压力,调节阀门12控制分离Ⅱ压力。

第7章-超临界流体萃取

第7章-超临界流体萃取
若两条原则基本符合,效果就较理想,若符 合程度降低,效果就会递减。
超临界流体的选择是超临界流体萃取的主 要关键。 应按照分离对象与目的不同,选定超 临界流体萃取中使用的溶剂,它可以分为非极 性和极性溶剂两类。
下表给出了一些常用超临界萃取剂的临界 温度和临界压力,表中最后几种萃取剂为极性 剂,由于极性和氢健的缘故,它们具有较高的 临界温度和临界压力。
的化合物。对于极性较大的化合物,常须用极性较大的流体(如NH3、 N20等),因为它们具有一定极性,对极性组分溶解性能好。但是SFNH3化学活性较高,易腐蚀泵封口,而N20有毒且易爆,另外底烃类 物质因可燃易爆,也不如C02那样使用广泛。
CO2改性方法:
若采用CO2萃取极性物质,就需将其改性,常 用改性方法有两种: 1.流体改性:向CO2中加入少量极性溶剂(改性 剂),增加混合流体的极性。 2. 基体改性:直接将改性剂加到样品基体中。 当被萃取物与样品基体较强地结合在一起时, 这种方法更为有效。
二氧化碳是超临界流体技术中最常用的溶剂,有许多优点:
1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件 容易达到。适合于萃取热不稳定的化合物。
2. CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。
但是,由于CO2是非极性的流体,只适合于萃取低极性和非极性
现用超临界纯溶剂的相图来表明临界点及其 相平衡行为。下图为以纯二氧化碳的密度为第 三参数的压力-温度图。
超临界流体:
处于临界温度和 临界压力之上的物质 状态。
临界温度Tc:是通过增加 压力使气体变为液体 的最高温度;
临界压力Pc:是通过增加 温度使液体变为气体 的最高压力。
超临界萃取的实际操作范围以及通过调节压力或温度改变 溶剂密度从而改变溶剂萃取能力的操作条件,可以用二氧化 碳的对比压力-对比密度图加以说明. 超临界萃取和超临界色谱的实际操作区域为图中黄色区域,在 这一区域里,超临界流体具有极大的可压缩性。溶剂密度可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是近 20 年来迅速发展起来的一种新型的萃取分离技术。
是利用超临界流体 (Supercritical fluid, 简称 SCF) 作为萃取 剂,该流体具有气体和液体之间的性质,且对许多物质均具 有很强的溶解能力,分离速率远比液体萃取剂萃取快,可以 实现高效的分离过程。目前, 超临界流体萃取已形成了一
③、离心萃取器 离心萃取器是利用离心力的作用使两相快速混合、快速 分离的萃取设备。可按两相接触方式分为逐级接触式和微分 接触式两类。 A、转筒式离心萃取器 转筒式离心萃取器是一种单级
接触式设备 , 如图所示。重液和轻液由设备底部的三通管同 时进入混合室,在搅拌桨的作用下,两相充分混合进行传 质,然 后一起进入高速旋转的转鼓。转鼓中混合液在离心力的作用 下,重相被甩向转鼓外缘,轻相被挤向转鼓的中心部位。两相 分别经顶部的轻、重相堰流至相应的收集室 , 并经各自的排 出口排出。转筒式离心萃取器结构简单,效率高,易于控制,运 行可靠。
卢威式离心萃取 器的优点 : 可以靠离
心力的作用处理密
度差小或易产生乳
化现象的物系 ; 设备
结构紧凑 , 占地面积 小 ; 效率较高。缺点
是 : 动能消耗大 , 设备
费用也较高。
C、波德式离心萃取器 波德式离心萃取器又称为离心薄膜萃取器, 简称POD 离心萃取器,是一种微分接触式萃取设备。主要由一水平 空心轴和一随轴高速旋转的圆柱形转鼓以及固定外壳组 成。转鼓由一多孔的长带卷绕而成,其转速一般为
塔、转盘塔等。
②、物系的性质 A、对密度差较大、界面张力较小的物系,可选用无外加能 量的设备;对界面张力较大或粘度较大的物系 ,可选用有外加能 量的设备;对密度差很小,界面张力小,易于乳化的物系,可选用离 心萃取设备。 B、对有较强腐蚀性的物系,可选用结构简单的填料塔、脉 冲填料塔;对于放射性元素的提取,可选用混合澄清器、脉冲塔。 C 、对含有固体悬浮物或易生成沉淀的物系 , 容易堵塞 , 需 要定期清洗 , 可选用混合澄清器、转盘塔,也可考虑选用往复 筛板塔、脉冲塔,因为这些设备具有一定的自洗能力。 对稳定 性差、要求在设备内停留时间短的物系,可选用离心萃取器;对 要求停留时间较长的物系,可选用混合澄清器。
门新的化工分离技术,并开始在炼油、食品、香料等工业
中的一些特定组分的分离 上展示了它的应用前景。
1、流体的临界特征 稳定的纯物质及由其组成的定组成混合物具 有固有的临界状态点,临界状态点是气液不分的状 态 , 混合物既有气体的性质 , 又有液体的性质。此
状态点的温度Tc、压力pc、密度ρ称为临界参数。
引起密度的很大变化。且超临界流体的密度接近于液体 的密度,因此,超临界流体对液体、固体的溶解度与液体 溶剂的溶解度接近。而粘度却接近于普通气体 , 自扩散能 力比液体大100倍,渗透性更好。利用超临界流体的这种特 性,在高密度(低温、高压)条件下,萃取分离物质,然后稍微 提高温度或降低压力,即可将萃取剂与待分离物质分离。
在纯物质中 , 当操作温度超过它的临界温度 , 无论 施加多大的压力,也不可能使其液化。所以Tc温度 是气体可以液化的最高温度,临界温度下气体液化 所需的最小 压力pc就是临界压力。
2、超临界流体特征
当 物 质 温 度 较 其 临 界 值 高 出 10~100℃, 压 力 为 5~30MPa时物质进入超临界状态,此时,压力稍有变化,就会
波德式离心萃取器的优点:结构紧凑,物料停留时间短。 缺点:结构复杂,制造困难, 造价高,维修费和能耗均比较大。 适用于两相密度差小 , 易乳化 ,难分相及要求接触时间短、处 理量小的场合。
(2)、萃取设备的选择
萃取设备的类型很多 ,特点各异,必须根据具体对象、分离 要求和客观实际条件来选用。的通道流人第1 级,在空心轴内 ,
轻液与来自下一级的重液混合,进行相际传质,然后混合物经空心轴 上的喷嘴沿转盘与上方 固定盘之间的通道被甩到外壳的四周。靠 离心力的作用使轻、重相分开,重液由外部沿着转盘与下方固定盘 之间的通道而进入轴的中心 (如图中实线所示),并由顶部排出,其流 向为由第3 级经第2 级再到第1 级,然后进入空心轴的排出通道。轻 液则沿图中虚线所示的方 向,由第1级经第2级再到第3级,然后由第 3级进入空心轴的排出通道。两相均由萃取器的顶部排出。
B、卢威式离心萃取器
卢威式离心萃取器是一种立式逐级接触式离心萃取设备。如 图所示为三级离心萃取器,其主体是固定在外壳上的环行盘 , 此盘
随壳体作高速旋转。在壳体中央有固定不动的垂直空心轴,轴上装
有圆形圆盘且开有若干个喷出口。萃取操作时,原料液和萃取剂均 由空心轴的顶部加入,重液沿空心轴的通道下流至萃取器的底部而
2000~5000r/min, 产生的离心力为重力的几百至几千倍。 操作时,在带有机械密封装置的套管式空心转轴的两端分 别引人重液和轻液,重液引人转鼓的中心,轻液引到转鼓的 外缘,在离心力的作用下,轻液由外向内, 重液由内向外,两 相沿径向逆流通过螺旋带上的各层筛孔,分散并进行相际 传质。传质后的混合物在离心力作用下又分为轻相和重 相,并分别引到套管式空心轴的两端流出。
③、其他因素
在选用萃取设备时 , 还要考虑其他一些因素 ,
如能源供应情况,在能源紧张地区应优先考虑节电, 故尽量选用依靠重力流动的设备;当厂房面积受限 制时,可选用塔式设备;当厂房高度受限制时,可选 用混合澄清器等。
选择萃取设备时应考虑各种因素列于下表。
二、超临界流体萃取
超临界流体萃取(Supercritical fluid extraction,简称SFE
要求的前提下,从经济角度衡量,使成本趋于最低。以下列出几
方面的因素可供选择时参考。 ①、工艺条件
对中、小生产能力,可用填料塔、脉冲塔;处理量较大时,可
选用转盘塔、筛板塔、振动筛板塔 ; 混合澄清器既适用于大处 理量,也适用于小型生产。
当分离要求的理论级数不超过3级时,各种萃取设备均可选
用;当需要的理论级数较多时,可选用筛板塔;更多时(如10~20级), 可选用有外加能量的设备 , 如混合澄清器、脉冲塔、往复筛板
相关文档
最新文档