6.3迭代法的收敛定理

合集下载

应用数值分析课件-6.3迭代法的收敛定理

应用数值分析课件-6.3迭代法的收敛定理
([保障措施] 高速计算机能胜任那些程序简单、 重复量大的迭代计算,况且还有许多加速收敛 的办法做保障。)
返回节
OK! Let’s have a break!
定理
2
一、基本收敛定理
由 可推知
可见
X(k+1)=BX(k)+f 及 X *=B X *+f
εk+1 = X (k+1) - X *= B(X (k) - X *)
= ·············
= B k+1(X(0) -X *)
=
B
k+1
ε 0
X(k) X* B k 0
(k∞ )
利用矩阵的Jordan标准形,可以证明(前一章中的结论)
无法直接判断Jacobi 迭代法和G-S迭代法的收敛性,但如果将
方程组的次序修改为
11.02.20x11x1
9.05x2 4.33x2
0.12x3 2.67x3
1.43 3.22
1.25x1 3.69x2 12.37x3 0.58
由于系数矩阵A是严格对角占优阵,因此用Jacobi 迭代
反复利用 || X (k+1) - X*||=||BX (k)- BX*||=||B(X (k)- X*)|| ≤‖B‖.‖X (k)- X*‖,
可以得到
||X (k)- X*||≤‖B‖k ·‖X(0)- X*‖,
可见X (0)越接近X*,序列{ X (k)}收敛越快,收敛速度 与初值X (0)的选取有关。
对于给定的线性方程组,借助于定理6.3和定理6.4可以 直接判断Jacobi 迭代法和G-S迭代法的收敛性。
但同时应当注意,迭代法收敛与否与方程组中方程排列 顺序有关,如线性方程组

迭代法的收敛性与误差估计

迭代法的收敛性与误差估计

迭代法的收敛性与误差估计一…的童滚.11/{安务刊迭代法的收敛性.与误差估计’\虞福星..Z冬}7.在许多工程技术问题中,常常会遇到求解一元非线性方程的问题.例如,代数方程一x—l一0或超越方程x+{x—l看上去形式很简单,但不易求出其准确根,只能求出方程达到一定精度的近似根.求解这类方程的方法很多,迭代法就是其中的一种.迭代法有许多优点:1.其算法的逻辑结构简单f2.收敛速度快I3.中间结果有扰动不会影响计算结论;4.计算误差容易控制.正因为如此,迭代法得到非常广泛的应用.一,迭代法的基本思想设有方程f(11=0首先,我们设法将式(1)代成下列等价形式x—g∽然后按式(2)构造迭代公式(1)(2)+l—g{-,k=o,1,2, (3)从给定的初始近似根x.出发,按迭代公式(3)可以得到一个敦列x.,x1,x2,...,x, (4)如果这个数列{}有极限,则称迭代公式(3)是收敛的,此时数列螅极限x=limx就是原方程(1)的根.二,迭代法的收敛性及误差估计具备怎样的条件,迭代公式(3)是收敛的,这就是我们要讨论的中心问题.对此,我们有定理:设方程x—g在(a,b)内有根x,若gt满足李普希茨条件,即对(a,b)内任意的x】和都有lg(x1)g(x2)l≤qlxl—x2l(5)q为某个正数,当q<1时,则方程在(a’b)内有唯一的根I且迭代公式(3)对任意初始近似值xo均收敛于根x;还有误差估计式一≤lXk--Xkil≤lXI--Xol(6)证明:先证唯一性由已知条件知,x’是方程x—g的根,即x一g66设i也是方程x=g(x)的根,则x=g于是1x一i1=1g)--g1由李普希茨条件,得1x一;1一Ig(-~g’;I≤q1x一il因为0<q<1,故必有x.=;,根的唯一性得证. 再证收敛性由李普希茨条件,得IXk+I--X.l=Ig’--g)l≤qI一x.I同样l一x’l≤qIXk一1一x.1,…,1x1--X.1≤qI~x’1于是有1+I—x’I≤?Ix.一x’1因为0<q<1,当k—o.时,一0,即有Ix…--X’j—O(k—oo)所以,limxx.k一收敛性得证.利用李普希茨条件,得l+1~f=fg’)--g(,一.I≤Ix,一一1I于是对任意正整数P,有l+p一1≤1Xk—p一+rII+1Xk+p一1--Xk+p一±1+…+1一1一I≤(q+qP 一+…+q)?j一l一lxr令P—oo,得一I≤一一l≤IX1--X0I三,选择迭代公式的原则如果方程(2)中的g’满足Ig’I]l≤M<IxE(a,b)则可取这里的M作为李普希茨(5)中的q,由式(6)可知,正数q越小,收敛速度越快.所以,选遗代公式要遵循使IgI在(a山)的最大值M为最小这个原则.由于把方程f㈨一0化成等价形式x;g的方法很多.例如,方程x一x一1—0可以化成以下四种形式(1)x一一167(2)x一+1㈣x=X--每=㈤x一一由此可得四个迭代公式x+?=x:一1(7);(8):(9)’(9)l一—)(,)式(1I)也可用牛顿切线法导出,可见牛顿切线法可视为谴代法的特殊情形.由于=苎【)所以.f(?f().因此,只要ll≤q<l,L”)J公式(II)就收敛68。

第5节_迭代法的收敛性

第5节_迭代法的收敛性
x ≠0
Bx x

Bx1 ቤተ መጻሕፍቲ ባይዱ1
= 1,与已知矛盾!
线性方程组迭代法收敛性
推论1:对任意初始向量x (0)和右端项g,若 M < 1, 由迭代式 x ( k +1) = Mx ( k ) + g产生的向量序列{ x ( k ) }收敛.
证明:矩阵范数性质3:ρ ( A) ≤ || A ||
迭代法收敛与否只决定于迭代矩阵的谱半径,与初始向 量及右端项无关。 对同一方程组,由于不同的迭代法迭代矩阵不同,可能 出现有的方法收敛,有的方法发散的情形。
且至少有一个i值,使上式中不等号严格成立,则称A为弱 对角占优阵。若对所有i,上式不等号均严格成立,则称A 为严格角占优阵。
定义:如果矩阵A不能通过行的互换和相应的列互换成 A11 为形式 A = 0 A12 ,其中A11,A22为方阵,则称A为不可约。 A22
1 1 0 2 1 0 P = I13 例: A = 1 1 0 PT AP = 0 1 1 → 0 1 2 0 1 1
k →∞
证:设u为A特征值λ对应的特征向量, 则:Ak u = λ Ak -1u =...=λ k u 即:λ k为矩阵Ak的特征值。
ρ 所以:(Ak) [ ρ ( A)]k =
线性方程组迭代法收敛性
1- ρ ( A) > 0, 2 定理:设A为任意n阶方阵, 存在矩阵范数 ,使得 则对任意正数ε , 存在矩阵 1 + ρ ( A) A ≤ ρ ( A) + ε = <1 范数 ,使得: 2 证: 充分性:若ρ ( A) < 1 ,取ε = 则有: A = 0 lim
Gauss-Seidel迭代收敛性:

37第七节 迭代法及其收敛性

37第七节 迭代法及其收敛性
从而 ||x(k+1) -x(k)|| =||(x(k+1) -x*)-(x(k) -x*)|| ||x(k) -x*||-||x(k+1) -x*|| ||x(k) -x*||-q||x(k) -x*||
=(1-q) ||x(k) -x*||
数学学院 信息与计算科学系
故得
1 q ( k 1) (k ) x x x x x ( k ) x ( k 1) 1 q 1 q k q q x ( k ) x x ( k ) x ( k 1) x (1) x(0) 1 q 1 q


数学学院 信息与计算科学系
二、迭代法的收敛性
定义2 如果
lim A
k
k
(k )
A O
则称矩阵序列{A(k)}依范数收敛于A,记
lim A( k ) A
由范数的等价性可以推出,矩阵序列{A(k)} 依某种范数收敛,则依任何一种范数它都收敛,故 下面不强调是在那种范数意义下收敛。
x
k 1
Bx( k ) f
k 0,1,2
其中B称为迭代矩阵。
数学学院 信息与计算科学系
若序列{x(k)}收敛,即
lim x ( k ) x
k
显然有
x Bx f
此极限 x*就是方程组 Ax=b 的解。 定义1 如果序列{x(k)}的极限存在(记 x*), 则称迭代法收敛,x*就是方程组 Ax=b 的解,否则 称此迭代法发散。
数学学院 信息与计算科学系
x(k+1) -x*= B( x(k) -x* ) , x(k+1) –x(k)= B( x(k) –x(k-1) )
即有

第六章6.3迭代法的收敛性

第六章6.3迭代法的收敛性

4 2 1
1 5 1
1
2
3
问题:该矩阵具有怎样的特点? 结论:该矩阵是严格对角占优阵
定义:如果矩阵A的元素满足
jn
| aii | | aij | i 1,2,3,, n j 1 ji
则称A为严格对角占优矩阵。
9
特殊方程组迭代法的收敛性
定理:若线性方程组AX=b的系数矩阵A为 严格对角占优矩阵,则解该方程组的Jacobi 迭代法和G-S迭代法均收敛。
则: (k1) B (k ) B2 (k 1) Bk1 (0)
注意 (0) x(0) x * 为非零常数向量
因此迭代法收敛的充要条件
lim (k1) lim( x(k1) x*) 0
k
k
可转变为
lim Bk1 0
k

2
一阶定常迭代法的收敛性
定理:迭代格式 x(k1) Bx(k ) f 收敛 的充要条件为:lim Bk 0
k
lim Bk 0
k
即: (B) 1
B的所有特征值的绝对值小于1
B的谱半径
根据矩阵与其Jordan标准形及特征值的关系
3
一阶定常迭代法的收敛性
定理:设B为n阶实矩阵,则 lim Bk 0 k
的充要条件是 (B) 1
定理:迭代格式 x(k1) Bx(k ) f 收敛 的充要条件为:(B) 1
4
一阶定常迭代法的收敛性
例:判别下列方程组用Jacobi迭代法和G-S 法求解是否收敛。
1 2 2 x1 1 1 1 1 x2 1 2 2 1 x3 1
5
一阶定常迭代法的收敛性
解: (1) 求Jacobi法的迭代矩阵
1 0 0 0 2 2

计算方法课件 第10次-线性方程组的迭代法的收敛性

计算方法课件  第10次-线性方程组的迭代法的收敛性
和非0向量 x (x1 , x2 ,..., xn )T Rn ,使得
Ax λx
成立,则称 λ 为A的特征值,x为A的对应于 λ 的
特征向量。
A的全体特征值的集合
σ(A) {λ1 , λ2 ,..., λn}
称为矩阵A的谱。
定义A的谱半径为:
ρ(A)
max
1in
λi
A的特征值的求法:解方程
1
2
G1
(D
L)-1U
1 4
1 2
-
1 8
-1 4
00
1
0
2
0 0
- 1 0
0
0
1 4 1
Home
判定迭代法是否收敛的例子
例 8 考察用雅可比迭代法和高斯-塞德尔迭代法解线性 方程组Ax=b的收敛性,其中
1 2 - 2
A 1 1
1
2 2 1
1
b
1
1
上次课 已经求 解
x1 -3 x2 3 x3 1
解: 先计算雅可比迭代矩阵B
x1 2x2 2x3 1 x2 x1 - x3 1 x3 2x1 - 2x2 1
0 1
1 12
2
1
1 2
0 1
0
1 2
00
0
0
1
0
1
2
0
1 2
1
-
1 4
-1 4
1 2
0
0 0 1 0
1 2
0 0 1
-
1 4
1 2
-1 -1 84
0
1
2
于是得到:
1
2
0
0
(D L)-1

迭代法和收敛性

迭代法和收敛性

x1(k x2(k
1) 1)
0.2x2(k) 0.1x3(k) 0.3
0.2x1(k )
0.1x3(k) 1.5 , k
0,1, 2,
x3(k
1)
0.2x1(k )
0.4x2(k )
2
迭代计算
x(0) 0 [0, 0, 0]T
x(1) 1
0.3
x(1) 2
1.5
x1(k x2(k
其中系数矩阵非奇异,且主对角元aii≠0,(i
=1,2,…,n),由第i 个方程解出xi,有
x1
1 a11
(b1
a12 x2
a13 x3
x2
1 a22
(b2
a21x1
a23x3
xn
1 ann
(bn
an1x1
an2 x2
a1n xn ) a2n xn )
ann1xn1)
建立迭代格式
aij
x
( j
k
)
)
j i 1
加速
x ( k 1) i
( k 1)
xi
(1 ) xi(k )
i 1, 2, , n
或合起来写成迭代加速的形式
x (k 1) i
aii
(bi
i 1
a x (k 1) ij j j 1
n
aij
x
(k j
)
)
(1
)
xi( k
)
j i1
参数 称为松弛因子, 1 时迭代格式就是高斯-
x (k1) i
1 aii
(bi
n
aij x j(k ) ),
j1
(i 1,2,, n)

迭代法的收敛性

迭代法的收敛性
k
x* Mx* g 由迭代公式有 M (x
k k
x ( k ) x* Mx ( k 1) g Mx* g
( k 1)
x ) M (x
* 2 * k
( k 2) (k )
x ) M (x
* k
(0)
x )
*
于是有 lim M ( x
1 1 例:Ax b, A 2 1 2
1 2 1 1 讨论用三种迭代法求解的收敛性。 2 1 1 2 解:因A为对称且其各阶主子式皆大于零,故A为对称正定矩 1 2 阵。由判别条件3,Gauss-Seidel迭代法与松弛法(0 2) 均收敛。A不是弱对角占优阵,故不能用条件1判断。 0 1 -1 Jacobi迭代法的迭代矩阵为B I - D A 2 1 2 1 2 0 1 2 1 2 1 2 0

1,
1,由推论1无法判别收敛性。
对一些特殊的系数矩阵可给出几个常用的判 别收敛条件
设有线性方程组Ax b, 下列结论成立(收敛充分条件) 1.若A为严格对角占优阵或不可约弱对角占优阵,则 Jacobi迭代法和Gauss-Seidel迭代法均收敛。 2.若A为严格对角占优阵, 0 1, 则松弛法收敛。 3.若A为对称正定阵,则松弛法收敛的充要条件为 0 2。 10 1 2 2 1 0 B 1 2 1 上两例中: A 1 10 2 1 1 5 0 1 2 A为严格对角占优阵,故Jacobi与Gauss-Seidel迭 代均收敛。B为非严格对角占优阵,但为对称正定 阵, =1.4故松弛法收敛。
推论1 对任意初始向量x 和右端项g,若 M 1,由迭代

迭代法

迭代法

迭代方法(也称为“折返”方法)是一个过程,在该过程中,不断使用变量的旧值来递归推导新值。

与迭代方法相对应的是直接方法(或称为第一求解方法),即问题已解决一次。

迭代算法是使用计算机来解决问题的一种基本方式,它利用计算机的运行速度,适合于重复操作的特性,让计算机对一组指令(或步骤)必须每次都重复执行在执行的这组指令(或这些步骤)中,由于变量的原始值是新值,因此迭代方法分为精确迭代和近似迭代。

典型的迭代方法(例如“二分法”和“牛顿迭代”)属于近似迭代方法。

迭代方法的主要研究主题是构造收敛的迭代方案,并分析问题的收敛速度和收敛范围。

迭代方法的收敛定理可以分为以下三类:(1)局部收敛定理:假设问题的解存在,则得出结论:当初始逼近足够接近解时,迭代法收敛。

(2)半局部收敛定理:结论是,迭代方法根据迭代方法在初始逼近时所满足的条件收敛到问题的解,而不假定解的存在。

(3)大范围收敛定理:得出的结论是,迭代方法收敛到问题的解,而无需假设初始近似值足够接近解。

迭代法广泛用于求解线性和非线性方程,优化计算和特征值计算。

迭代法是一种迭代法,用于数值分析中,它从初始估计值开始寻找一系列解决问题的迭代解法(通常为迭代法),以解决问题(迭代法)。

通常,可以做出以下定义:对于给定的线性方程组(x,B和F都是矩阵,任何线性方程组都可以转换为这种形式),公式(表示通过迭代获得的x k次,并且初始时间k = 0)逐渐替换为该方法以找到近似解,这称为迭代方法(或一阶时间不变迭代方法)。

如果存在,则将其表示为x *,并称迭代方法收敛。

显然,x *是该系统的解,否则称为迭代散度。

迭代方法的对应方法是直接方法(或第一种解决方法),它是对问题的快速一次性解决方案,例如通过求平方根来求解方程x + 3 = 4。

通常,如果可能,直接解决方案始终是首选。

但是,当我们遇到复杂的问题时,尤其是当未知数很多并且方程是非线性的时,我们无法找到直接解(例如,第五和更高阶代数方程没有解析解,请参见Abelian 定理)。

计算方法 第八章 解线性方程组的迭代法 高斯迭代法 迭代法的收敛性

计算方法 第八章 解线性方程组的迭代法 高斯迭代法 迭代法的收敛性
注意到利用Jacobi迭代公式计算xi( k 1) 时,已经计算好了
( ( k x1k 1) , x2k 1) ,, xi(1 1)
的值,而Jacobi迭代公式并不利用这些最新的近似值计算, 仍用 (k ) (k ) (k )
x1 , x2 ,, xi 1
这启发我们可以对其加以改进,即在每个分量的计算中尽
设方程组 AX=b , 通过分离变量的过程建立 Jacobi迭代公式,即
a
i 1
n
ij
xj b , a 0 i i
( i 1,2, )n , ( i 1,2, )n ,
1 xi (bi aii
a
j 1 ji
n
ij
x) j
由此我们可以得到 Jacobi 迭代公式:
写成矩阵形式:
aii 0
x 1 a x ... a x b 12 2 1n n 1 1 a11 1 a x ... a x b x2 21 1 2n n 2 a22 ... ... ... ... 1 xn a an1 x1 ... a nn 1 xn1 bn nn
迭代法的基本思想 与解f (x)=0 的不动点迭代相类似,将AX=b改写
为X=BX+f 的形式,建立雅可比方法的迭代格式:
x( k 1) Bx( k ) f
其中,B称为迭代矩阵。其计算精度可控,特别 适用于求解系数为大型稀疏矩阵(sparse matrices)的 方程组。
5
AX b
15
迭代次数 0 1 2 3 4 5 6 7 8
x1 0 0.72 1.04308 1.09313 1.099126 1.09989 1.099986 1.099998 1.1

计算方法一元非线性方程求根6.3

计算方法一元非线性方程求根6.3

(x)
( x x )g( x )
*
mg ( x ) ( x x ) g ( x )
*
所以,x*是 ( x ) 的单零点.可将Newton法的迭代函数修改为
( x) x ( x) ( x)
'
x
f ( x) f ( x) [ f ( x )] f ( x ) f ( x )
第六章非线性方程组的迭代解法
6.3
一元方程的常用迭代法
6.3.1 Newton迭代法
6.3.2 割线法与抛物线法
第六章非线性方程组的迭代解法
6.3.1 Newton迭代法
x 设x*是方程f(x)=0的实根, k 是 x k x 一个近似根,用Taylor 展开式有 " f ( ) * ' * * 2 0 f ( x ) f ( x k ) f ( x k )( x x k ) ( x xk ) , 2 这里假设 f ' ' ( x ) 存在并连续。若 f ' ( x k ) 0 ,可得
第六章非线性方程组的迭代解法
定理6.5 设 f ( x ) 0 , f ( x ) 0 , 且f(x)在包含x*的 一个区间上有二阶连续导数,则Newton迭代法(6.3.2)至 少二阶收敛,并且
* ' *
lim
k
x k 1 x
*
* 2
( xk x )

f (x ) 2 f (x )
X
将(6.3.2)写成一般的不动点迭代(6.2.3)的形式,有
(x) x
' *
f (x) f ( x)
'
'

迭代法

迭代法

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值,迭代法又分为精确迭代和近似迭代。

比较典型的迭代法如“二分法”和"牛顿迭代法”属于近似迭代法。

方法介绍迭代法是一类利用递推公式或循环算法通过构造序列来求问题近似解的方法。

例如,对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。

若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。

称所构造的序列为迭代序列。

迭代法应用迭代法的主要研究课题是对所论问题构造收敛的迭代格式,分析它们的收敛速度及收敛范围。

迭代法的收敛性定理可分成下列三类:①局部收敛性定理:假设问题解存在,断定当初始近似与解充分接近时迭代法收敛;②半局部收敛性定理:在不假定解存在的情况下,根据迭代法在初始近似处满足的条件,断定迭代法收敛于问题的解;③大范围收敛性定理:在不假定初始近似与解充分接近的条件下,断定迭代法收敛于问题的解。

迭代法在线性和非线性方程组求解,最优化计算及特征值计算等问题中被广泛应用。

迭代法算法迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。

一般可以做如下定义:对于给定的线性方程组(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式(代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。

6.3迭代法的收敛定理

6.3迭代法的收敛定理
det( D L) aii 0
i 1 n
所以矩阵(D-L)为可逆下三角矩阵,其逆也是下三角矩阵, G-S迭代法的迭代矩阵是 BG =(D - L)-1U。
考虑BG的特征值λ ,其特征方程为
det(I-BG) = det(I-(D-L)-1U) = det(D-L)-1det((D-L)-U)=0
易求
BJ

max
1i n
1 j n , j i

aij aii
由严格对角占优定义(定义6.1 ),得 BJ ∞<1,所以, Jacobi 迭代法收敛。
下面证明G-S迭代法的收敛性。对于严格对角占优阵A, 其对角元素 aii ≠ 0 , i=1,2,,n(定义6.1 ),故
定理6.3的证明
证 首先证明Jacobi 迭代的收敛性。由
0 a 21 B J D 1 ( L U ) a 22 a n1 a nn a12 a11 0 a n2 a nn a1n a11 a2n a 22 , 0 b1 a 11 b2 fJ a 22 b n a nn
返回节
二、Jacobi 迭代法和Gauss-Seidel 迭代法的收敛速度


引子 对角占优矩阵 实例 相关定理 定理3.3的证明
返回节
引子
虽然利用定理6.1和定理6.2可以判定Jacobi 迭代 法和G-S迭代法的收敛性,但其中只有定理6.2对 Jacobi 迭代法使用比较方便,此外,对于大型方程 组,要求出G-S迭代矩阵BG和ρ(BG)以及Jacobi 迭代 矩阵BJ和ρ(BJ)都不是容易的事。

6-3迭代法的收敛性

6-3迭代法的收敛性

1
2 x1 2 x2 x3 3
讨论Jacobi法与Gauss-Seidel法旳收敛性。
解:由定理,迭代法是否收敛等价于迭代矩阵 旳谱半径是否<1,故应先求迭代矩阵。而
1 2 2
A 1 1
1
2 2 1
故A裂解后旳各矩阵分别为
1
D
1
1
0 0 0
L
1
0
0
2 2 0
0 2 2
| I
B |
1/a
2 / a 0
3 / a 2 / a

1 0 ,
2,3
|
4 a
|
故 (B) 4
|a|
由 (B) 1 得 | a | 4
故当 | a | 4 时,Jacobi迭代法收敛。
作业: 习题 1,2(2)
1 1 5
2 矩阵 B 1
1 2
0 1
不严格对角占优, 是弱对角占优
0 1 2
定义:假如矩阵A不能经过行旳互换和相应列 旳互换成为形式
A11 A12
0
A22
其中A11,A22为方阵,则称A为不可约.
例如:判断下列矩阵是否可约?
1 1 0
2 1 0
矩阵 A 1 1 0 是可约旳。 0 1 1
9 3
4 10
显然Aˊ是严格对角占优阵,所以对方程组
Ax b 用Jacobi法和Gauss-Seidel法均收敛。
例3*:设A=(aij)是二阶方阵,且a11a22≠0.试证 求解方程组Ax=b旳Jacobi法与Gauss-Seidel法 同步收敛或发散。
证明:Jacobi迭代矩阵为
0
BJ
a
21

不动点迭代法及其收敛定理

不动点迭代法及其收敛定理

显然, p越大,收敛速度也就越快
那么, 如何确定 p, 从而确定收敛阶呢?
如果迭代函数 ( x )在精确解x * 处充分光滑, 即处处可导
将( x)在x * 作Taylor 展开, 有
( x ) ( x *) ( x *)( x x *)
( x *)
2!
( p)
x n1

xn
f ( xn ) f ' ( xn )
Newton迭代法又称切线法.
4. Newton迭代法收敛定理
' f ( x*) 0 ,且在 x* 的邻域 定理 设 f(x*)=0, '' 上 f 存在, 连续, 则可得
(1)Newton迭代公式在单根情况下至少2阶收敛;
( xn1 x* ) f '' ( x* ) c (2)lim * 2 ' * 2 f (x ) n ( xn x )
迭代法xk 1 ( xk )就收敛
|xk x*| 对于预先给定的误差限 即要求
由(6)式,只要
L xk xk 1 1 L 1 L xk xk 1 --------(8) L
因此,当

迭代就可以终止, xk可以作为方程的近似解
定义1:如果存在 x * 的某个邻域 R : x x * ,使迭代过程
因此原方程的解为
x * x7 = 0.090525
由定理1的(7)式出, L或| ( x)|在[a , b]上越小, 迭代法收敛就越快
迭代法收敛速度
设ek xk x *
定义1.
若存在实数p 1和c 0满足
ek 1 lim p k e k

迭代法的收敛性

迭代法的收敛性

谱半径分别是 ρ ( B ) =
30 15 , ρ ( M ) = 。均不收敛。 2 2
若交换方程的次序,得 Ax = b的同解方程组 Ax=b,
' '
3 − 10 9 −4 ' A= → A = 3 −10 9 −4 A '为严格对角占优阵,因而对方程组 A ' x = b '用 Jacobi与 Gauss − Seidel 迭代求解均收敛。
k →∞
x* = Mx* + g 由迭代公式有 x ( k ) − x* = Mx ( k −1) + g − Mx* − g = M ( x ( k −1) − x* ) = M 2 ( x ( k − 2) − x* ) = M k ( x (0) − x* ) 于是有 lim M k ( x (0) − x* ) = lim( x ( k ) − x* ) = 0
其特征方程
λ
1 λI − B = 2 1 2
1 2
λ
1 2 1 3 1 3 = λ − λ + 2 4 4
1 λ 2 1 2 = ( λ − ) ( λ + 1) = 0 2
1 , λ 3 = − 1, 因 而 ρ ( B ) = 1 得λ1 = λ 2 = 2 ⇒ J a c o b i迭 代 法 不 收 敛 。
移项得 代入得
(I − M ) x (k ) − x*
−1
1 ≤ 1− M
k
M ≤ 1− M
x (1 ) − x ( 0 ) 。
由误差估计式 x
(k )
−x
*

M
k
1− M
x (1) − x ( 0 )

迭代法的收敛定理

迭代法的收敛定理
返回节
二、Jacobi 迭代法和Gauss-Seidel迭 代法的收敛条件
Some convergence theorem of Jacobi and Guass-Seidel method for linear system With special matrix A 引子 对角占优矩阵 实例 相关定理 定理3.3的证明
定理3.4
若A为对称正定阵,则G-S迭代法收敛。
Theorem 3.4 If A is symmetry and positive definitive matrix, then for any choices of x0, Guass-Seidel methods converge to the unique solution 0f Ax=b
2.解线性方程组AX b的Jacobi Seidel 迭代法 收敛的充分条件是 Sufficient conditions BJ 1 1
(BG ) 1
;
其中

BJ D
1
BG


1
L U ,
BG D L U

在一般情况下,计算矩阵的范数比计算谱半径省事, 所以通常是利用定理3.2进行判断。 但定理3.2只是充分条件,所以即使判断失效, 迭代法仍可能收敛,这时就应该使用定理3.1判断。
Application to Jacobi and Guass-Seidel method: 将定理3.1和3.2用于Jacobi迭代法及Seidel迭代 法,则有
1. 解线性方程组AX b的Jacobi Seidel 迭代法 收敛的充要条件是 Necessary and sufficient conditions ( BJ ) 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<1 即ρ(BG) <1,
G-S迭代法收敛。
定理得证。
返回章
注意的问题
(1)Jacobi迭代法和Gauss-Seidel迭代法的 迭代矩阵不同: BJ =D-1(L+U), B G-S = (D-L) -1U (2)Jacobi迭代法和Gauss-Seidel迭代法的 收敛性没有必然的联系:
即当Gauss-Seidel法收敛时,bi法可能不收敛; 而Jacobi法收敛时, Gauss-Seidel法也可能不收敛。
返回节
OK! Let’s have a break!
定理6.3的证明
证 首先证明Jacobi 迭代的收敛性。由
0 a 21 B J D 1 ( L U ) a 22 a n1 a nn a12 a11 0 a n2 a nn a1n a11 a2n a 22 , 0 b1 a 11 b2 fJ a 22 b n a nn
B (1) (0) X X* X X 1 B
(k )
k
式(1)说明,当||B||<1 且不接近1并且相邻两次 迭代向量X(k+1) 与 X (k)很接近时,则X(k)与精确解X * 很接近。因此,在实际计算中,用|| X (k+1) - X (k) ||≤ε 作为迭代终止条件是合理的。
反复利用 || X (k+1) - X*||=||BX (k)- BX*||=||B(X (k)- X*)|| ≤‖B‖.‖X (k)- X*‖, 可以得到 ||X (k)- X*||≤‖B‖k · ‖X(0)- X*‖, 可见X (0)越接近X*,序列{ X (k)}收敛越快,收敛速度 与初值X (0)的选取有关。 另一方面,由于ρ (B) ≤‖B‖<1,‖B‖越小, 说明ρ (B) 越小,序列{ X (k)}收敛越快。
10.01x1 9.05 x 2 0.12 x3 1.43 1.22 x1 4.33x 2 2.67 x3 3.22 1.25 x 3.69 x 12.37 x 0.58 1 2 3
由于系数矩阵A是严格对角占优阵,因此用Jacobi 迭代 法和G-S迭代法求解该方程组均收敛。
例如 设有线性方程组 X=BX+f,其中
0.9 0.0 B 0.3 0.8 1 f 2
考察迭代法 X (k+1)=B X(k)+f 的收敛性。 解:
由于 B 1 1.2, B 2 1.02, B 1.1, B F 1.54 均大于 1,故定理3.2在此无法判断; 但因为 λ 1 =0.9, λ 2=0.8,即ρ (B) =0.9<1,由定理3.1知 本题迭代法收敛。
定理 3.2
迭代法收敛的充分条件 如果
0
B 1,则对任意
初始向量 X ,迭代法 X 必收敛,且有
B X ( k ) X ( k 1) (1) 1 B
k 1
BX f
k
X X
*
(k )
矩阵A的谱半径不超过矩阵的任何一种算子范数!
进一步,我们可以推知:
随着k的增加而趋向于解向量X *。 记各次误差向量 0 X X ( 0 )
1 X X (1)

k X X (k )

显然,迭代法的收敛性与误差向量序列
0 , 1 , , k ,
随着k的增加而趋向于零向量是等价的。 由于精确解X *自然满足
第六章 线性方程组迭代解法
§ 6.3 迭代法的收敛定理
基本数学问题描述
迭代法的收敛性,是指方程组
AX b
从任意初始向量X(0)出发,由迭代算法
X ( k 1) BX ( k ) f
算出向量序列
X ( 1) , X ( 2 ) , , X ( k ) , X ( k 1) ,
1.25 x1 3.69 x 2 12.37 x3 0.58 10.01x1 9.05 x 2 0.12 x3 1.43 1.22 x 4.33x 2.67 x 3.22 1 2 3
无法直接判断Jacobi 迭代法和G-S迭代法的收敛性,但如果将 方程组的次序修改为

n
aij , i 1, 2,
,n
这说明矩阵
a11 a ( D L) U 21 a n1
a11
a22 an 2
a11 a11 ann
是严格对角占优阵,所以它是非奇异的,即 det((D-L)-U) 0与特征值满足det((D-L)-U) =0 矛盾。 故

迭代法程序简单,对于许多问题,收敛较快。 因而,有时能够解决一些高阶问题。 但应注意, 对于某些问题,迭代法可能发散或收敛很慢, 以致失去使用价值。这种情况下,仍以采用直 接法为宜。

只要断定系数矩阵满足收敛条件,尽管多次迭 代计算工作量大一些,却能达到预定精度。
([保障措施] 高速计算机能胜任那些程序简单、 重复量大的迭代计算,况且还有许多加速收敛 的办法做保障。)
1 1 0 B 1 1 0 0 1 2
其中 A 是严格对角占优阵;
B
是弱对角占优阵。
相关定理
定理6.3 若A为严格对角占优阵,则Jacobi 迭代法 和G-S迭代法收敛。 定理6.4 若A为对称正定阵,则G-S迭代法收敛。
在偏微分方程数值解中,有限差分往往导出对角占优的 线性代数方程组,有限元法中的刚性矩阵往往是对称正定阵, 因此这两个判断定理是很实用的。 对于给定的线性方程组,借助于定理6.3和定理6.4可以 直接判断Jacobi 迭代法和G-S迭代法的收敛性。 但同时应当注意,迭代法收敛与否与方程组中方程排列 顺序有关,如线性方程组
易求
BJ

max
1i n
1 j n , j i

aij aii
由严格对角占优定义(定义6.1 ),得 BJ ∞<1,所以, Jacobi 迭代法收敛。
下面证明G-S迭代法的收敛性。对于严格对角占优阵A, 其对角元素 aii ≠ 0 , i=1,2,,n(定义6.1 ),故
aii aij
j i
(i 1,2,
, n)
(2)
则称A是严格对角占优阵; 如果矩阵A满足条件 aii aij
j i
(i 1,2,
, n)
(3)
且其中至少有一个不等式严格成立,则称A是弱对角占优阵。
实例
例如
8 3 2 A 4 11 1 4 2 1
收敛速度的概念
下面我们给出收敛速度的概念: 定义6.1 R(B)= -lnρ(B),称为迭代法的渐进 收敛速度。
将定理6.1和6.2用于Jacobi迭代法及Seidel迭代法, 则有
1. 解线性方程组 AX b的Jacobi Seidel 迭代法 收敛的充要条件是
( BJ ) 1 ( BG ) 1 ;
2.解线性方程组 AX b的Jacobi Seidel 迭代法 收敛的充分条件是 BJ
G
其中
B 1 。 1 1 BJ D L U , BG D L U
1
在一般情况下,计算矩阵的范数比计算谱半径省事, 所以通常是利用定理6.2进行判断。 但定理6.2只是充分条件,所以即使判断失效, 迭代法仍可能收敛,这时就应该使用定理6.1判断。
X BX f
因此有
X X ( k 1) B X X ( k )



再递推出
k 1 B k
k B 0
k
所以,迭代法收敛性与迭代矩阵的幂B k,随着k的增加 而趋向于零矩阵是等价的。 返回节
前一章的内容:
谱半径的相关定理
(谱半径有界) 设 A R nn ,则对任一种算子范数|| A || , 均有 定理 ( A) || A || 1 设 B R nn , 则 Bk 0(k ) 的充分条件是B的 谱半径 ( B) 1 定理 2
det( D L) aii 0
i 1 n
所以矩阵(D-L)为可逆下三角矩阵,其逆也是下三角矩阵, G-S迭代法的迭代矩阵是 BG =(D - L)-1U。
考虑BG的特征值λ ,其特征方程为
det(I-BG) = det(I-(D-L)-1U) = det(D-L)-1det((D-L)-U)=0
一、基本收敛定理
由 X(k+1)=BX(k)+f 及 X *=B X *+f
可推知
εk+1 = X (k+1) - X *= B(X (k) - X *) =· · · · · · · · · · · · · = B k+1(X(0) -X *) = B k+1 ε 0
X(k) X* B k 0 ( k ∞ )
可见
利用矩阵的Jordan标准形,可以证明(前一章中的结论) Bk 0 B 1 其中, B 叫做B的谱半径。 若B的特征值为1, n , 则
(B)
1i n
B max i
定理 3.1
方程组
迭代法收敛的充要条件
X BX f , X ( k 1) BX f
返回节
二、Jacobi 迭代法和Gauss-Seidel 迭代法的收敛速度


引子 对角占优矩阵 实例 相关定理 定理3.3的证明
返回节
引子
虽然利用定理6.1和定理6.2可以判定Jacobi 迭代 法和G-S迭代法的收敛性,但其中只有定理6.2对 Jacobi 迭代法使用比较方便,此外,对于大型方程 组,要求出G-S迭代矩阵BG和ρ(BG)以及Jacobi 迭代 矩阵BJ和ρ(BJ)都不是容易的事。
相关文档
最新文档