Matlab中使用LaTeX字符编辑数学公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab中使用LaTeX字符编辑数学公式

1. Using LaTaX to format math equations

引自:

/cn/help/matlab/creating_plots/adding-text-annotations-to-graphs.html

The LaTeX markup language evolved from TeX, and has a superset of its capabilities. LaTeX gives you more elaborate control over specifying and styling mathematical symbols.

Latex排版语言源自于Tex,拥有独特的魅力;它能够使你轻易的生成精美的规范格式的数学符号。

The following example illustrates some LaTeX typesetting capabilities when used with the text function. Because the default interpreter is for TeX, you need to specify the parameter-value pair 'interpreter','latex' when typesetting equations such as are contained in the following script:

下面的例子用来介绍一些在文本标注中使用LaTeX排版功能,由于文本标签中的默认解释程序语言为TeX,在利用LaTeX语言编辑包含下列脚本中的一些数学方程的时候,就得需要把文本标签的参数‘interpreter’设置为‘latex’:

%% LaTeX Examples--Some well known equations rendered in LaTeX

%

figure('color','white','units','inches','position',[2 2 4 6.5]);

axis off

%% A matrix(矩阵); LaTeX code is

% \hbox {magic(3) is } \left( {\matrix{ 8 & 1 & 6 \cr

% 3 & 5 & 7 \cr 4 & 9 & 2 } } \right)

h(1) = text('units','inch', 'position',[.2 5], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$\hbox {magic(3) is } \left( {\matrix{ 8 & 1 & 6 \cr'...

'3 & 5 & 7 \cr 4 & 9 & 2 } } \right)$$']);

%% A 2-D rotation transform(坐标旋转); LaTeX code is

% \left[ {\matrix{\cos(\phi) & -\sin(\phi) \cr

% \sin(\phi) & \cos(\phi) \cr}}

% \right] \left[ \matrix{x \cr y} \right]

%

% $$ \left[ {\matrix{\cos(\phi)

% & -\sin(\phi) \cr \sin(\phi) & \cos(\phi) % \cr}}

% \right] \left[ \matrix{x \cr y} \right] $$

%

h(2) = text('units','inch', 'position',[.2 4], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$\left[ {\matrix{\cos(\phi) & -\sin(\phi) \cr'...

'\sin(\phi) & \cos(\phi) \cr}} \right]'...

'\left[ \matrix{x \cr y} \right]$$']);

%% The Laplace transform(拉普拉斯变换); LaTeX code is

% L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt}

% $$ L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt} $$

% The Initial Value Theorem for the Laplace transform:

% \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0} f(t)

% $$ \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0}

% f(t) $$

%

h(3) = text('units','inch', 'position',[.2 3], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}'...

'f(t)dt}$$']);

%% The definition of e(e的定义); LaTeX code is

% e = \sum_{k=0}^\infty {1 \over {k!} }

% $$ e = \sum_{k=0}^\infty {1 \over {k!} } $$

%

h(4) = text('units','inch', 'position',[.2 2], ...

'fontsize',14, 'interpreter','latex', 'string',...

'$$e = \sum_{k=0}^\infty {1 \over {k!} } $$');

%% Differential equation(微分方程)

% The equation for motion of a falling body with air resistance

% LaTeX code is

% m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2 \cdot A

% $$ m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2

% \cdot A $$

%

h(5) = text('units','inch', 'position',[.2 1], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$m \ddot y = -m g + C_D \cdot {1 \over 2}'...

'\rho {\dot y}^2 \cdot A$$']);

%% Integral Equation(积分方程); LaTeX code is

% \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}

% $$ \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4} $$

%

h(6) = text('units','inch', 'position',[.2 0], ...

'fontsize',14, 'interpreter','latex', 'string',...

'$$\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$$');

相关文档
最新文档