Matlab中使用LaTeX字符编辑数学公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab中使用LaTeX字符编辑数学公式
1. Using LaTaX to format math equations
引自:
/cn/help/matlab/creating_plots/adding-text-annotations-to-graphs.html
The LaTeX markup language evolved from TeX, and has a superset of its capabilities. LaTeX gives you more elaborate control over specifying and styling mathematical symbols.
Latex排版语言源自于Tex,拥有独特的魅力;它能够使你轻易的生成精美的规范格式的数学符号。
The following example illustrates some LaTeX typesetting capabilities when used with the text function. Because the default interpreter is for TeX, you need to specify the parameter-value pair 'interpreter','latex' when typesetting equations such as are contained in the following script:
下面的例子用来介绍一些在文本标注中使用LaTeX排版功能,由于文本标签中的默认解释程序语言为TeX,在利用LaTeX语言编辑包含下列脚本中的一些数学方程的时候,就得需要把文本标签的参数‘interpreter’设置为‘latex’:
%% LaTeX Examples--Some well known equations rendered in LaTeX
%
figure('color','white','units','inches','position',[2 2 4 6.5]);
axis off
%% A matrix(矩阵); LaTeX code is
% \hbox {magic(3) is } \left( {\matrix{ 8 & 1 & 6 \cr
% 3 & 5 & 7 \cr 4 & 9 & 2 } } \right)
h(1) = text('units','inch', 'position',[.2 5], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$\hbox {magic(3) is } \left( {\matrix{ 8 & 1 & 6 \cr'...
'3 & 5 & 7 \cr 4 & 9 & 2 } } \right)$$']);
%% A 2-D rotation transform(坐标旋转); LaTeX code is
% \left[ {\matrix{\cos(\phi) & -\sin(\phi) \cr
% \sin(\phi) & \cos(\phi) \cr}}
% \right] \left[ \matrix{x \cr y} \right]
%
% $$ \left[ {\matrix{\cos(\phi)
% & -\sin(\phi) \cr \sin(\phi) & \cos(\phi) % \cr}}
% \right] \left[ \matrix{x \cr y} \right] $$
%
h(2) = text('units','inch', 'position',[.2 4], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$\left[ {\matrix{\cos(\phi) & -\sin(\phi) \cr'...
'\sin(\phi) & \cos(\phi) \cr}} \right]'...
'\left[ \matrix{x \cr y} \right]$$']);
%% The Laplace transform(拉普拉斯变换); LaTeX code is
% L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt}
% $$ L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt} $$
% The Initial Value Theorem for the Laplace transform:
% \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0} f(t)
% $$ \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0}
% f(t) $$
%
h(3) = text('units','inch', 'position',[.2 3], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}'...
'f(t)dt}$$']);
%% The definition of e(e的定义); LaTeX code is
% e = \sum_{k=0}^\infty {1 \over {k!} }
% $$ e = \sum_{k=0}^\infty {1 \over {k!} } $$
%
h(4) = text('units','inch', 'position',[.2 2], ...
'fontsize',14, 'interpreter','latex', 'string',...
'$$e = \sum_{k=0}^\infty {1 \over {k!} } $$');
%% Differential equation(微分方程)
% The equation for motion of a falling body with air resistance
% LaTeX code is
% m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2 \cdot A
% $$ m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2
% \cdot A $$
%
h(5) = text('units','inch', 'position',[.2 1], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$m \ddot y = -m g + C_D \cdot {1 \over 2}'...
'\rho {\dot y}^2 \cdot A$$']);
%% Integral Equation(积分方程); LaTeX code is
% \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}
% $$ \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4} $$
%
h(6) = text('units','inch', 'position',[.2 0], ...
'fontsize',14, 'interpreter','latex', 'string',...
'$$\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$$');