河床演变学 分汊型河段的演变及整治 ﹠ 游荡型河段的演变及整治
04 河床演变学(第四章第一节、第二节)
![04 河床演变学(第四章第一节、第二节)](https://img.taocdn.com/s3/m/00e4fbea172ded630b1cb620.png)
肯尼迪河相关系的特点
2、拉塞的人工渠道均衡理论(1929年 、拉塞的人工渠道均衡理论( 年
)
χ = 2 .668 Q 1 / 2
Q1/ 3 R = 0.467 1/ 3 f
f 5/ 3 J = 0.00056 1/ 6 Q
拉塞河相关系的特点
2 B + 0 . 15 h
③、活动性最小假说的数学表达形式
∂K n =0 或 ∂U ∂K n =0 或 ∂B ∂K n =0 ∂h
12
第三节
2、联解公式法 、
河相关系
㈡、窦国仁最小活动性假说(将最小活动性假说作为补充方程) 窦国仁最小活动性假说(将最小活动性假说作为补充方程) ④、将最小活动性假说作为补充方程推导河相关系式 水流连续方程
Q = UBh
1 2 / 3 1/ 2 水流运动方程 U = h J n
m
U3 挟沙力方程 S = k gh ω ∂K n =0 或 最小活动性假说 ∂U
∂K n =0 或 ∂B
∂K n =0 ∂h
可得到河相关系式(3-54)~(3-57)。
13
第三节
2、联解公式法 、
㈢、能耗最小假说
河相关系
④、将能耗最小假说作为补充方程推导河相关系式 水流连续方程 挟沙力方程
Q = UBh
U3 S = k gh ω
1 2 / 3 1/ 2 水流运动方程 U = h J n
m
能耗最小假说 γ QJ = min 或 γ UJ = min 或
γ QJ
B
= min
U S = k gh ω
博导第8讲游荡型河道的演变规律
![博导第8讲游荡型河道的演变规律](https://img.taocdn.com/s3/m/ae6aeec86137ee06eff91876.png)
8.3 输沙特性
同一流量,多来多排,少来少排
输沙能力变化较大 河床变形较快
高含沙量 流量和含沙量的相关关系较小
河口三角洲逐年延伸
8.4 演变规律
年内冲淤规律
汛期,淤滩刷槽 ---大水出好河 非汛期,淤槽刷滩
平面变化
河床稳定性较差 滩槽差别较小 汊道较多 上游水流变化较大
8.4 演变规律
河槽摆动幅度较大: 140~6000m /day 原因:
8.4 演变规律
减少沙量,水土保持(工程措施、生物措施) 修建水库、调节水沙 控制河势(护岸、护滩、堤防工程)
流量 (m3/s) 5000 7000 9000 11000 15000
长江汉口河段流量与比降关系 流量 流量 比降 比降 3 (m /s) (m3/s) 0.72 19000 0.216 51000 0.404 25000 0.192 59000 0.326 31000 0.178 65000 0.284 35000 0.164 75000 0.24 43000 0.140
小浪底水利枢纽
三门峡水利枢纽位于河南省西部的黄河干流上 ,控制流域面积68.8万km2,占黄河总流域面积的 91.5%;控制黄河来水量的89%,来沙量的98%。枢 纽工程于1957年4月开工,1961年4月基本建成投入 运用,是新中国在黄河干流上兴建的第一座以防汛 为主,兼顾防凌、灌溉、供水、发电等任务的大型 水利枢纽工程,被誉为“万里黄河第一坝”。
上节回顾பைடு நூலகம்
第6章 河道演变规律
![第6章 河道演变规律](https://img.taocdn.com/s3/m/ef367447852458fb770b56e9.png)
为什么选择平滩流量作为造床流量? 平滩前:水流只塑造主槽 漫滩前,水流在主槽中集中流动,流速大,挟沙力 较强。
第六章 河道演变规律
§6-3 河相关系与造床流量 二、造床流量
平滩后:滩地也受到塑造。 漫滩后,滩面上水深小、阻力大,流速降低十分显 著,泥沙大量落淤在滩地上,其中靠近主槽的部位 淤积较厚、淤积颗粒较粗,形成沿主槽的自然堤。
第六章 河道演变规律
§6-2 河道演变的分析方法 实测资料分析
第六章 河道演变规律
§6-2 河道演变的分析方法 实测资料分析
1、来水来沙资料分析; 来水来沙量及其过程,来沙级配。年内变化、多年周期性 变化、典型水文年确定。 2、对水道地形观测资料的整理分析 •河道平面变化;岸线变化,断面变化,主流变化;通过 收集历年河道地形及有关河道变迁资料,对地形图套绘。 •河道纵向变化及冲淤量估算:深泓线、动力轴线、河段 冲淤量 利用水道地形图可以分析河段的历史演变、近期演变、预 估其发展趋势。 3、对河床地质资料的整理分析 河床边界条件:地质资料、地貌资料等。
①纵向稳定系数——河床在纵深方向的稳定性主要决定于泥沙
抗拒运幼的摩阻力与水流作用于泥沙的拖曳力的对比。这个比 值可用希尔兹数的倒数 来表达,比值越大,河床越稳定。
②横向稳定系数——横向稳定与河岸稳定密切相关。从问题的
物理实质来看,决定河岸稳定的因素主要是主流的顶冲地点及 其走向和河岸土壤的抗冲能力。
计算思路: 造床能力不仅与流量有关,还与输沙能力有关, 同时与该流量所经历的时间长短有关。 前者可认为与流量Q的m次方及比降J的乘积成正 比,后者可用该流量出现的频率P来表示。因此,当 QmJP的乘积为最大时,其所对应的流量的造床作用 也最大,这个流量就是所要求的造床级; (2)确定各级流量出现 的频率; (3)绘制河段的Q~J关 系; (4)计算每级流量的 QmJP (5)绘制Q~ QmJP关系; (6)从图中查出QmJP 最大值的Q。
河流动力学第7章-河床演变
![河流动力学第7章-河床演变](https://img.taocdn.com/s3/m/af58a2d0f12d2af90342e680.png)
弯曲河段的演变规律
凹岸崩退,凸岸淤长
♥ 最重要演变规律:凹冲凸淤 ♥ 产生的原因:横向环流+含沙分布
河湾发展、河线蠕动
♥ 横向发展,弯顶之间互动 ♥ 纵向也有向下游的蠕动
裁弯取直、河湾消长 图
♥ 整个河道发生变化
撇弯切滩 图
♥ 河道内主流线发生变化
Last Modified : Jie Yang
总评
♥ 河槽极不稳定 ♥ 对于港口航道工程等不利
Last Modified : Jie Yang
河流动力学
7.3.3 弯曲型河道的河床演变
主要内容
弯道的形态特征 弯道的水流特征 弯道的泥沙运动 弯曲河段的演变
Last Modified : Jie Yang
河流动力学
7.3.3 弯曲型河道的河床演变
Last Modified : Jie Yang
河流动力学
7.2.3 平原河流的河床演变
平原河流的河床演变
一般特点
♥ 河流:来水来沙⇔河床边界,长期相互作用,水流、 泥沙、河床边界基本适应
♥ 长期:河床一般无明显的单向冲淤变形 ♥ 短期:来水来沙随时间变化⇒河床变形,周期性冲
淤变化,一个时期表现为淤积,另一个时期为冲刷 ♥ 河床演变:往复性的冲淤,平面摆动
衡,这些因素难以人工控制 ♥ 后者决定着河床条件,可以进行人工改变,也是我们进
行航道整治的依据
Last Modified : Jie Yang
河流动力学
7.1 河床演变的基本概念
影响河床演变的主要因素
对于平原河流
♥ 来水来沙条件起主导作用 ♥ 来水来沙量及其过程起主导作用 ♥ 取决于流域的产水产沙条件
《河床演变与整治》
![《河床演变与整治》](https://img.taocdn.com/s3/m/20353e114431b90d6c85c735.png)
《河床演变与整治》课程教学大纲课程编号:030163 学分:2 总学时:34大纲执笔人:匡翠萍大纲审核人:刘曙光一、课程性质与目的《河床演变与整治》是港口航道与海岸工程专业的一门重要的专业课程,它是研究自然情况下或修建整治建筑物后河流河床发生冲淤变化的过程的一门科学,根据河床冲淤变化采用科学的整治手段来调整河流的来水来沙过程,以达到防洪抗旱、疏通航道、围垦灌溉、稳定河床、蓄水发电多功能地利用河流,并兼顾水利水产等其他事业,以及环境与生态保护,以获得合理的最大经济效益,生态效益和社会效益。
因此河床演变及整治在河流的开发、利用与治理特别是港口与航道工程建设中起着重要的作用。
同时与土木工程、交通工程和环境工程等学科也有着密切的联系。
通过《河床演变及整治》的教学,使得学生了解和掌握与河床演变及整治相关的河流动力和泥沙运动方面的理论知识,了解河流治理的主要措施和手段。
二、课程基本要求《河床演变与整治》作为一门工程运用学科,要求学生具有一定的水力学(或流体力学)、河流动力学的基础知识;要求教师具有全面的流体力学和河流动力学知识,全面的河流治理知识和工程经验。
三、课程基本内容1.绪论:河流治理工程的基本性质、国内外河流治理工程的历史和现状等。
2.河床演变与整治的一般问题:(1)河流的一般特性:山区河流和平原河流的一般特性,包括河床形态、水流及泥沙运动、河床演变等。
(2)河床演变的基本原理:包括河床演变分类、影响河床演变的主要因素、河床演变的基本原理、河流的自动调整作用等。
(3)河流的水力几何形态:包括河床的稳定性、造床流量、河相关系和河流纵剖面等。
(4)整治建筑物及整治手段:包括河道整治及规划、洪水河床整治、枯水河床整治、河床整治建筑物及其材料和构件。
3.自然河流河床的演变及整治:(1)顺直型河流的演变及整治:顺直型河段特性、演变规律、形成条件及整治工程。
(2)蜿蜒型河段的演变及整治:蜿蜒型河段特性、演变规律、形成条件及整治工程。
河床演变学 分汊型河段的演变及整治
![河床演变学 分汊型河段的演变及整治](https://img.taocdn.com/s3/m/ff359d73f705cc1754270975.png)
2、分汊对水力要素的影响 1 m 0.5
1 m 0.5
分汊河段,无论主汊或支汊,其水力要素均比单一 河段时减小,而且支汊的又比主汊的小。
主汊 = Frm 单一段 Fr0
um u0
Hm H0
qm q0
Bm B0
m 0
Qm Q0
m
水流分汊后,汊道的佛汝德数和流速较分汊前减小的较少,
10
1、汊道与单一段水力要素的关系
Hm
3/ m
11
H
0
Bm
6/ m
11B0
BH
m
9/ m
11
0
Hn
1 m
H 3 / 11 0
Bn
1 m
B 6 / 11 0
(7-11) (7-12)
n
1 m
9 / 11 0
(7-13)
11
1、汊道与单一段水力要素的关系
Hm
3/ m
11
H
0
Hn
1
1
hn hm
2/3
Lm Ln
1/ 2
An Am
nm nn
1
n 1m
(7-2)
1
二、汊道分沙
m
Qm Sm =1 Qm Sm Qn Sn
1 QnSn
Qm Sm
(7-3)
1、主汊分沙比可用主汊分流比和主汊与支汊含沙量比值 K s 表示
Sm Sn
Ks
Q0 Qm Qn
m
Qm Sm Qm Sm Qn Sn
而汊道中的流量、面积和水面宽较分汊前减少得较多。
17
2、分汊对水力要素的影响 1 m 0.5
1 m 0.5
分汊河段,无论主汊或支汊,其水力要素均比单一 河段时减小,而且支汊的又比主汊的小。
治河防洪课程描述(6.20)
![治河防洪课程描述(6.20)](https://img.taocdn.com/s3/m/873b199c0b4e767f5bcfce05.png)
治河防洪课程描述(6.20)(2)河床由泥沙组成,河床组成的变化是通过水流中的泥沙与构成河床的泥沙通过输沙相互交换实现的。
如果泥沙交换不平衡,各种河床变形将不可避免地发生。
二。
河床变形的分类1.从演化表达形式上可分为纵向变形和横向变形(1)纵向变形是指沿河道的变形,即河床纵向断面的冲淤变化,如河床的底切和抬高等。
(2)横向变形也称平面变形,即河床沿垂直于水流的水平方向变形,如河湾的发育、支流河道的涨落等。
当河道横截面发生横向变形时,其平面形状将不可避免地发生变化。
因此,横向变形也称为平面变形。
在自然河流中,横向变形和纵向变形经常交织在一起。
2.从河道演变的发展过程来看,可以分为单向变形和反向变形,这是河道演变的基本原则。
研究河流输沙规律的目的是为了整治河床。
然而,天然河流的河床形态、演变规律和整治方法往往不同。
特别是在河道上修建水利枢纽、整治工程或其他工程后,由于整治建筑物的干扰,河床演变将更加复杂。
为了有效治理河流,必须充分了解河床演变的基本原理、河床演变的分析方法以及各种河床的特殊演变规律。
虽然河床演变的具体原因差异很大,但其根本原因可归因于不均匀的泥沙输移。
检查任何河流的特定区域BL(B,l分别是河流宽度和河流长度),当进入和离开该特定区域的沙量G0,Gi不相等时,河床将经历冲刷和淤积变形。
四、河床演变的分析方法冲积河流的河床演变是复杂的。
根据时间特征,可分为长期变形和短期变形。
根据空间特征,可分为大规模变形和局部变形。
根据形态特征,可分为深部变形和横向变形。
根据方向特征,可分为单向变形(单向冲淤)和反向变形(交替冲淤);根据是否受到人类活动的干扰,可以分为自然变形和人为变形。
影响河床演变的主要因素可归纳为:上游来水及其变化过程;河段上游产沙量、泥沙组成及其变化过程;河流出口处侵蚀基点的高程和河床边界条件。
由于水沙条件的瞬时变化和河床边界条件的变化,河床演变的形式和过程极其复杂。
精确的定量计算仍有许多困难,但可以借鉴。
河床演变
![河床演变](https://img.taocdn.com/s3/m/96aba086f524ccbff12184d1.png)
从河岸与河床相对可动性角度看,当河岸不可冲刷时, 犬牙交错的边滩向下游移动,深槽和浅滩也向下游移动。
顺直型河段的演变是通过推移质运动使边滩、深槽、 浅滩作为一个整体下移的。
顺直型河段的演变还可 呈周期性的展宽和束窄。 流量的变化对浅滩的影响: 洪水期:浅滩淤积,深槽 冲刷。 枯水期:浅滩冲刷,深槽 淤积。 推移质和悬移质中的 床沙质增加了造床运动。
2、一定的河床形态与河床组成,必然有一定的与之相 适应的输沙率。 (1)水流夹带泥沙,水流与河床的相互作用是通过泥 沙交换来进行的。 (2)河床由泥沙组成,河床组成变化是通过泥沙输移 将水流中的泥沙与组成河床的泥沙相互交换来实 现,如果泥沙交换不平衡,就必然产生河床各种 类型的变形。
二、河床变形分类
(3)弯曲型河道:这类河段的河床蜿蜒曲折,河岸可动性大于河
床可动性,因此在两岸发展河湾弯行。
当沙波运动使河床出 现犬牙交错的边滩时,由 于河岸的可动性较大,河 床可动性小,河岸冲刷发 展较快,边滩下移较慢, 因此河床将继续弯曲,形 成河湾。
蜿蜒型河段的演变现象,按其缓急程度,可分为两种情况: ① 一般演变,经常发生的一种演变。 ② 突变,在特殊条件下发生的演变。 无论哪种演变都与水流及泥沙运动紧密相关即横断面变 形主要表现为凹岸崩退和凸岸相应淤长。 横断面变形最本质的原因是横向输沙不平衡。 两岸冲淤面积接近相等,断面形态保持不变,断面接近 平衡状态。
1、从演变表现形式上分为:
纵向变形
横向变形
河道沿流程所 发生的变形。即河 床纵剖面的冲淤变 化,如河床的下切、 抬高等。
河床沿与水流 垂直的水平方向发 生的变形,如河湾 的发展、汊道的兴 衰等。
2、从河道演变的发展过程分为:
单向变形
游荡型河流的演变规律、模拟技术及工程应用
![游荡型河流的演变规律、模拟技术及工程应用](https://img.taocdn.com/s3/m/b928771c82c4bb4cf7ec4afe04a1b0717fd5b3e7.png)
游荡型河流的演变规律、模拟技术及工程应用引言随着人口的增加和经济的发展,对水资源的需求越来越大,河流的人工开发与利用也越来越广泛。
而游荡型河流(meandering river)由于其复杂的地貌、丰富的生态和广泛的分布特征,成为研究与保护对象,同时也是水资源开发与水利工程建设中需要考虑的重要因素之一。
本文将主要讨论游荡型河流的演变规律、模拟技术及工程应用。
一、游荡型河流的演变规律游荡型河流是指河床走向呈蛇形曲线的河道,在沉积环境下形成的一种特殊河型。
河道的曲率与河道高度的变化不断交织,形成一些具有大曲率半径的弯道和小曲率半径的微弯道,从而形成一种典型的河岸地貌,即游荡河道。
游荡型河道主要由下图的一些特征所描述:1. 满足一定的物理条件:河道流速适中,水流具有一定的沟深和强度,底部和两岸都有足够的沙砾和泥沙。
2. 所处的地形和地貌具有一定的扭曲性和不稳定性:河道所处地形和地貌起伏、扭曲,局部地区的流动受到阻碍,形成了一定的涡流。
3. 存在着一定的物理波动力:由于河道所处地形和地貌的变化,水流存在着一定的波动力,这些波动力会产生一定的周围环境压力,并引起局部沉积或侵蚀。
从河岸地貌的长期演变过程可以看出,游荡型河流的演变规律有以下几点:1. 河道往往呈现出周期性波动,河流的河床高度和河道走向变化周期较长,大约为几年甚至几十年。
2. 河流演变和河道沉积、侵蚀有着密切的联系,侵蚀和沉积的过程相互作用并产生反馈。
长期以来,同一河段的河床沉积与侵蚀的总体趋势是收敛的,形成了相对稳定的河道形态。
3. 游荡型河流演变速率稍慢,相比之下,直河道(braided river)等其它河道型更易受到人类活动的影响改变。
二、游荡型河流的模拟技术目前,对游荡型河流的演变规律的研究主要是基于河道水动力与沉积学的模拟和数值模拟方法。
以下是目前主流模拟工具及细节:1. 模拟流体和物质的数值模拟方法:以计算流体力学(CFD)及其衍生方法为主要工具,等格网格及多流体方法等是主流的数值模拟方法,在空间上可分为二维及三维,而在时间上一般是采用显式或者隐式时间差分算法。
游荡分汊型河流演变规律浅析
![游荡分汊型河流演变规律浅析](https://img.taocdn.com/s3/m/2673983af08583d049649b6648d7c1c708a10b3e.png)
游荡分汊型河流演变规律浅析
张坤;张树岩;刘云龙
【期刊名称】《科技信息》
【年(卷),期】2011(0)33
【摘要】1 游荡型河道演变的一般规律游荡型河流是河床宽浅,沙滩众多,洪水时汪洋一片,枯水时河汉密布、水流散乱,主流摆动不定,有时难以分辨主流所在,心滩变化莫测的一种河型.由于河床的形态变化,同时也决定了河道的游荡型.河床的变形可分为纵向和横向,纵向变形是指河床沿水流方向的变形,常常分为侵蚀段(河源段)、运输段、沉积段.其表现为河床纵剖面形态所发生变化,亦即上游河床的下切,下游河床的淤积或抬高;横向变形也称为平面变形,平面变形是指河床与水流垂直的水平方向上的变形.其表现为河床在平面的摆动,亦即河弯的发展或河道的兴衰等.
【总页数】2页(P362,351)
【作者】张坤;张树岩;刘云龙
【作者单位】淄博黄河河务局山东淄博255000;淄博市萌山水库管理处山东淄博255000;邹平黄河供水有限公司山东邹平256209
【正文语种】中文
【相关文献】
1.分汊与游荡型辫状河隔夹层层次结构特征
2.分汊型河流在不同洪峰流量下的r水流特性研究
3.游荡性河道的分汊河段整治方法探讨:漳河陈村险工整治
4.分汊与游荡型辫状河储层构型研究:以苏丹FN油田为例
5.山区河流弯曲分汊型浅滩整治技术
因版权原因,仅展示原文概要,查看原文内容请购买。
《河床演变及河道整治》课程设计
![《河床演变及河道整治》课程设计](https://img.taocdn.com/s3/m/c15c14bd2e3f5727a4e9625e.png)
第一章黄河下游各水文站基本资料第一节高村水文站基本资料黄河高村站位于山东省东明县,是黄河入鲁第一个水文站,也是黄河流域上的重要控制站。
断面距河口距离579.1公里,集水面积734146平方公里。
清光绪二年(1876年),因洪水肆虐,村庄被淹,举村从堤西迁至堤东,该村地势较高,故命村名为高村。
测验河段位于黄河下游游荡河段的末端,呈上宽下窄的漏斗状,滩地高,堤根洼,易产生塌岸险情或发生溃决。
史书记载仅光绪四年(1878年)、六年(1880年)、十年(1884年)高村就三次决口。
经过1982年大洪水的考验,显示了河道整治对防洪的重大作用,在历年工农业引水、护滩保村及航运方面也都发挥了较好作用。
第二节夹河滩水文站基本资料黄河夹河滩站位于河南省开封县,东经114°34′,北纬34°54′。
断面距河口距离672公里,集水面积730913平方公里。
洪水主要来自花园口站以上流域,涨落较为迟缓,峰型较胖,水位流量关系受冲淤和涨落共同影响,多表现为涨冲落淤,一般为顺时针套绳。
单次洪水过程水位流量关系相对稳定。
水沙量年内分布不均,大水大沙集中在7~10月份,主汛期水量约占全年水量的58﹪,输沙量约占全年输沙量的80﹪。
沙峰受来水区间影响,一般三门峡以上来水时含沙量较大,三花间来水时含沙量较小,沙峰滞后于水峰。
黄河下游花园口至夹河滩河段系典型的游荡型河段。
在该河段 ,黄河大堤内范围宽广,一般洪水频率年份,水流主要限制在主槽内 , 因此大堤内分布有不少居民点以及纵横交错的保护居民点的生产堤和不少高于地面的灌溉渠堤和公路,使洪水行洪范围受到了很大的限制。
在本次设计中,我计算的是高村和夹河滩1967,1970,1971三年的流量和输沙率资料(见表19~30)。
小组数据为1967,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979共九年的信息。
班内数据为1960年到1997年共三十三的信息(其中缺失1968,1969,1970,1984,1987年信息)。
第2章 河床演变
![第2章 河床演变](https://img.taocdn.com/s3/m/bbd7273010661ed9ac51f305.png)
河 弯曲 弯曲 自由弯曲 非自由弯曲
型
分
类 辫状 缓坡辫状 分汊 陡坡辫状
顺直或微弯 顺直 单股
弯曲或蜿蜒 曲流 单股弯曲 曲流 弯曲 河曲 弯曲 弯曲或蜿蜒 蜿蜒 弯曲 有限弯曲 弯曲 蜿曲
周期展宽或顺直 顺直 微弯边滩 顺直 网状 微弯分汊 分汊 江心洲 顺直微弯 顺直微弯 顺直或边滩平移 顺直 顺直微弯 顺直 分汊
第二章 河床演变
河床演变的含义有广义和狭义两个方面。 广义的河床演变是指河流从河源到河口的各个 部分的形成和发展的整个历史过程, 其时间尺度以地质年代计, 它属于河流地貌学的研究范 畴,这部分可参见第一章有关内容;狭义的河床演变是指在来水来沙的作用下,近期的河流 形态与河床边界的变化, 它则属于河床演变学的研究范畴。 本章所说的河床演变是指狭义的 河床演变。但是,应该指出,由于近期的河床演变是建立在历史的演变过程基础之上的,因 此两者之间有着内在的联系,不能加以截然分开。
第一节 河型分类、成因及转化
一、河型分类
河流,根据所处的地理位置(山区、平原、河口)和具有的水动力特性(坡降、流速、输 沙能力、水流方向等),一般可分为山区河流、平原河流和潮汐河流 3 大类型。山区河流在 发育过程中,通常以侵蚀下切为主,因此河谷横断面多呈“V”形或“U”形。平原河流河谷 开阔,地势平坦,有深厚的冲积层,河道横断面也呈多种形式。 平原河流由于河段所在位置的差异, 来水来沙条件以及河床边界条件各不相同的河段其河床形态和演变规律 也各有不同,会形成各种不同的河型。关于平原河流的河型划分,国内外学者作了大量研究 工作,表 2-1 为国内外学者根据平原河流的平面形态和动态特征对河型划分的部分研究成 果。
游荡 辫状 顺直分汊 辫状 摆动 分汊 散乱 散乱或游荡 游荡 分汊 潜洲型 江心洲型 分汊 游荡 游荡
河床演变
![河床演变](https://img.taocdn.com/s3/m/c92ac3efb8f67c1cfad6b8cc.png)
第六节河床演变一、河床演变的基本知识(一)河床形态变化的类型河床的几何形状,称为河床形态。
河床形态变化,称为河床演变,它是河床泥沙运动的结果,可有两种类型:1.纵向变形河床沿水流方向的高程变化,称为河床的纵向变形,它是河流纵向输沙不平衡造成的结果。
河源与上游的河床下切、下游河床的淤高,均属此类,其变化幅度随岩石性质而异,细沙河床的变化幅度可能很大。
它对于桥梁工程设计的影响不可忽视。
2.横向变形河湾发展、河槽扩宽、塌岸、分汊、改道等河床平面形态的变化,统称为横向变形。
河湾的发展与弯段水流离心力有关,它可使凹岸不断受到冲刷,凸岸不断出现淤积,产生横向比降,可导致河流截弯取直或河流改道。
(二)河床演变的影响因素河床演变的影响因素有很多,主要因素有:1.流域的产沙条件流域的产沙量及泥沙组成等对河床演变有很大的影响。
例如,黄河及华北地区一些河流,河水含沙量很大,因此下游河道淤积十分严重。
2.流量变化流量越大,水流的挟沙量就越多。
流量变化越大,泥沙运动和河床的变形就越剧烈。
设河水的含沙量为ρ,流量为Q,输沙率为Q s,则有Q s=ρQ (8-17)3.河床土质土质坚实的河床变形缓慢,土质松软的河床易受冲刷。
4.水流比降河床比降大,流速大,冲刷力强,河床受冲刷厉害。
反之则易于淤积。
5.副流作用水流中由于纵、横比降及边界条件的影响,其内部形成一种规模较大的旋转水流,如图8-12所示,称为副流。
它从属于主流而存在,是河床冲淤的直接原因。
229厚桥涵图8-121-冲刷坑;2-回水区;3-路堤;4-主流6.人类活动如兴修水利工程,建造堤坝、桥、涵等活动,都会对河床演变产生重大影响。
二、建桥后对河床演变的影响建造桥梁后导致的河床演变属人类活动影响因素之一,它只是发生在桥位上、下游不远的范围内。
主要为:(一)平原弯曲型河段(属于次稳定河段)在这类河段上建桥,其孔径一般都大于或等于河槽宽度,建桥对河床的影响小。
但是,当桥位通过水深较大的河湾时,因河床自身的天然演变,有可能形成河湾逼近桥台、桥头引道或导流堤,危及桥台基础。
浅谈游荡型河道
![浅谈游荡型河道](https://img.taocdn.com/s3/m/172af0d9ba1aa8114531d9d0.png)
游荡型河流虽然同样具有分汊的平面形态。
但河道中沙洲数量多,形态容易随流量的变化而
变,整个外形十分散乱。且汊道经常迁徙变化,
汊道的弯曲率一般也要比分汊型河流小。
六、游荡型河段的水沙特性
游荡型河段平均水深一般很浅
游荡型河流的来沙量一般偏多,并且同流 量下的含沙量变化很大,流量与含沙量的关 系极不明显。其主要原因是: A. 洪水来Байду номын сангаас流域的不同地区,来水中携带的泥 沙量大小不同。 B. 同一流量下,随着上站含沙量的不同,其输 沙率相差很大,出现“多来多排、少来少排” 的现象。
1.高含沙水流游荡性河道滩槽 冲淤演变的特点是滩槽冲淤量 和强度都较低含沙水流大。
2.高含沙水流可以自身塑造出
游荡型河道整治
游荡型河道存在的一些问题 从国内外河流整治看黄河下游整治 裁弯与双向整治 游荡型河道应两岸同时整治 双岸整治的目标 双岸整治设计的优缺点 结束语
在人类与自然的关系中,自古以来河
流洪水灾害对人们的生活影响最大,且经
常发生。为此人类在与洪水斗争的漫长的
历史过程中积累了丰富经验,随着科学的
发展和人们对河流演变规律和输沙规律认
识的深入,技术措施也在不断的进步,对
河流的要求也在不断的提高。河道整治的
目的应由单纯的防洪减灾,向综合效益方
向发展。
在各类河型中,游荡河型最不稳定,防 洪压力很大,常造成沿河地区的内涝和盐 渍化。故对其治理是国民经济建设所必需。
小浪底水库运用后河道整治面临的新问题
黄河下游主槽河宽沿程变化
以上的例子说明沿用传统的整治 方法难于有效控制河势,由于河势的 迅速变化常造成险工脱流,控导工程 不断上延下接的被动抢险,河道断面 形态仍很宽浅,无法形成稳定的中水 河槽,需要采取更有效的河道整治措 施,达到稳定主槽的目的。
博导第7讲分汊型河道的演变规律
![博导第7讲分汊型河道的演变规律](https://img.taocdn.com/s3/m/5ed373523b3567ec102d8aad.png)
二、汊道分沙 习惯上用分沙比表示
m
Qm S m Qm S m QS Qm S m Qn S n
S Ks m Sn
m
m m
1 m
Ks
三、汊道演变 一般共同性演变: 平面的移动; 汊内的纵向冲淤; 洲头洲尾的冲淤; 最为显著的是主支汊的易位。 平面的位移主要取 决于河岸的抗冲能力。表 现为横向的移动,有时还 有向下游的移动。
顺直分汊
弓形分汊
弯曲分汊
复杂分汊
4、有收缩节点控制,纵向输沙基本平衡, 水 流稳定、变幅小
第四节
1、分汊型河段的固定 2、分汊型河段的改善
汊道整治
3、堵汊工程(塞支强干)
江心洲/滩演变 洲头的淤长与冲退主要取决于分流区河岸的 展宽与否。 河岸展宽导致洲头淤长;稳定导致冲刷 洲尾的冲淤主要取决于主支汊汇流角大小。 主支汊交角过大,洲尾发生冲刷;较小促使 洲尾淤积
汊道的纵向冲淤 汛期淤积; 枯季冲刷; 总冲淤幅度不大 注意:
主、支汊易位是汊道演变最显著的特点。
上节回顾
蜿 蜒 型 河 道 演 变 规 律 河段特性 演变规律 形成条件 裁弯工程
Hale Waihona Puke 自然河流的河床演变及整治问题
第7章 分汊型河段的演变及整治
(Bifurcated Reach/Braided reach)
第一节 河段的特性 第二节 演变规律 第三节 形成条件
第四节 汊道整治工程
N. Platte: sand-bed
Feshie: gravel-bed
Yellow River: fine-sand bed
长江中下游分汊型河段最多,从城陵矶 至江阴1150km河段内,分汊河段41处,总长 788.9km,占区间总河长68.6%。
河流海岸工程地貌第4章 河床演变
![河流海岸工程地貌第4章 河床演变](https://img.taocdn.com/s3/m/d5b63b56a2161479171128c9.png)
阶地
阶地
河漫滩
河床
特征:水流、泥沙与河床相互作用的反映。
一定的河床形态和组成必然有一定的与之相适应的水流结构和水流条件。 一定的河床形态与组成,必然有一定的与之相适应的输沙率。
gb
sD U
Uc
U Uc
n
D h
m
gs
11.6U*' Sa
宜昌至湖口,
中游
滩演变较为剧烈,放宽处有江心洲 交替,过渡段水深不足,
长 898km
和心滩出现。
航道易出浅碍航。
长江下游航道
长江下游航道示意图
河段 下游
里程
河道特性
主要碍航特征
属平原河流,河道宽窄相间, 在河道放宽段及分汊段的分
湖口至长江口, 多分汊,下段受潮汐影响,入 汇流处,因水流分散,洲滩消
7
纵断面
(跌水、瀑布,比降不均匀, 集中在局部河段)
分布较均匀,如:荆江 4.2‰~5.6‰;汉江
3.9‰~5.6‰
号 比较 8 水文
9
水流 特征
10
演变 特征
山区河流
平原河流
流域面积较小,汇流时间短, 流域面积较大,汇流时间长, 洪水暴涨暴落,水位流量变幅 水位流量变幅小,有稳定的 大。(降雨后往往数天甚至数 中水期 小时内出现洪峰,雨后又迅速 消失,洪枯水变幅达几十米) 流速大(6~8m/s),比降陡 流速小(2~3m/s以下), (1‰以上),流态险恶(回流,比降小(1‰~0.1‰) 泡水,漩涡,跌水,水跃,剪 刀水,横流,等等) 洪水期宽阔段淤积,非汛期峡 往复性的冲淤和平面上的摆 谷段淤积;分汊河流江心州和 动。 心滩位置比较固定;卵石运动 不连续。
河床演变与整治重点
![河床演变与整治重点](https://img.taocdn.com/s3/m/bdf6c80df78a6529647d5311.png)
河床演变:在不恒定的进出口条件及复杂可动边界的水沙二相流运动的一种体现形式.整治:用工程的手段达到兴利除害.防洪,农田水利,水力发电,给水和排水,航运及水产养殖等山区河流河床形态:断面形态:U 或V字形(下切),谷坡为阶梯状.阶地是河流下切的产物.平面形态:河道曲折多变,沿程宽窄相间,比降大,急滩深潭上下交替,二岸与河心常有巨石突出,岸线和床面极不规则.河流走向由地质构造运动决定.水流及泥沙运动:1河流流态:水面比降大,.流态紊乱险恶,常有回流,旋涡,水跌,水跃,急弯,剪刀水,横流.洪水暴涨暴落2洪枯流量相差大3悬移质含沙量视地区而异4河道的推移质多为卵石及粗沙5河床多由原生基岩、乱石和卵石组成河床演变:1山区河流比降大流速大含沙量不饱和,利于河床向冲刷方向发展2部分河段暂时性淤积和冲刷1卵石运动引起的演变(汛期淤积增大,枯季冲刷,年内基本平衡)2悬移质运动引起(1一般为冲泻质2宽谷段由主流摆动出现的回流淤积3宽谷段由下游峡谷壅水引起的淤积)3溪口滩形式出现的(1大的山区河流,当二岸溪沟发生洪水或泥石流时,常在溪口堆积成溪口滩2冲积物量大粒粗,不易被主流带走,表现为冲冲淤淤)4地震山崩滑坡引起(大规模地地震山崩滑坡引起河道堵塞,引起上下游出现壅水和跌水,剧烈改变水流和河床形态)平原河流概述:河床形态:平面上具有,顺直,分汊,弯曲,散乱四种.横断面分抛物线形,不对称三角形,马鞍形,多汊形.平原河流的纵剖面无明显折点,深槽浅滩交替,河床纵剖面有起伏的波状曲线,平均纵比降比较平缓。
水流及泥沙运动:平原河流集水面积大,汇流时间长,洪水没有陡涨陡落的现象,持续时间较长河床的演变:规律是汛期淤积壮大,枯季冲刷萎缩顺直型:中水河槽顺直,边滩呈犬牙交错状分布,并在洪水区向下游平移。
弯曲型:中水河槽具有弯曲外形,深槽紧靠凹岸,边滩依附凹岸,凹岸蚀退,凸岸淤长,河身在无约束条件下向下游蜿蜒蛇形,在有有约束条件下平面形态基本保持不变,前者通称自由弯道,后者通称约束弯道。
分汊型河段演变规律
![分汊型河段演变规律](https://img.taocdn.com/s3/m/90c1edfa9e314332396893b8.png)
分汊型河段演变规律关键字:分汊型河道江心洲主汊分汊1.介绍与分类分汊型河段是平原冲积河流中常见的一种河流,也被成为辫状河流或相对稳定性分汊型。
我国各流域都有这种河型。
由于水流和泥沙分股输送,这样的水沙状况往往是很难稳定的,容易引起汊道的变化,从而造成严重的后果。
其中从江心洲型到网状河流其稳定性逐渐增强1.1江心洲江心洲的形成一般有三种类型:一是泥沙落淤形成心滩,二是边滩切割分离出心滩,三是因水面开阔,入汇顶托等原因河势变缓而落淤的沙滩被多条汊道切割形成多个江心洲。
1.2分类分汊河段按其平面形态不同可以分为顺直型分汊,微弯型分汊和鹅头型分汊三种。
分类标准为弯曲系数,其中顺直型分汊弯曲系数在1.0到1.2之间,汊道基本对称,微弯型分汊在1.2到1.5之间,鹅头型分汊的弯曲系数则超过1.5。
一般来说鹅头型分汊这种弯曲系数很大的河道江心洲往往有俩个或俩个以上,弯道的出口和直道的出口交角很大。
就单个的分汊河段来说,其平面形态是上端放宽,下端收缩而中间最宽。
中间段可能是俩汊,也可以是多汊,各汊之间为江心洲。
自分流点到江心洲头为分流区,洲尾到汇流点为汇流区,中间则为分汊段。
较长的河段期间常出现几个分汊段,呈单一段与分汊段相间的平面形态,因单一段比较窄,分汊段比较宽,常形象的称其为藕节状外形。
2. 剖面分汊型河段的横断面在分流区和汇流区都呈现中间凸起的马鞍形,分汊段则为江心洲分割的复式断面。
分汊型河段的纵剖面从宏观上看,呈现俩端低中间高的形态,而几个连续相间的单一段和分汊段则呈现起伏相间的形态。
从局部看,分流区到汊道入口,从分流点开始,俩侧的深泓线先为逆坡而后转为顺坡,为马鞍状。
俩汊一高一低,高的为支汊,低的为主汊,支汊的逆坡恒陡于主汊。
水下地形也是支汊恒高于主汊。
汊道的出口到汇流区,俩侧的深泓线顺坡下降,支汊一侧的纵坡陡于主汊的。
就支汊进出口俩个陡坡而言,出口的顺坡往往更陡于进口的逆坡。
3.水流特性分汊河段水流运动最显著的特征是具有分流区和汇流区。
河床演变与整治要点
![河床演变与整治要点](https://img.taocdn.com/s3/m/fc3b4b02b52acfc789ebc9fa.png)
河床演变:在不恒定的进出口条件及复杂可动边界的水沙二相流运动的一种体现形式.整治:用工程的手段达到兴利除害.防洪,农田水利,水力发电,给水和排水,航运及水产养殖等山区河流河床形态:断面形态:U 或V字形(下切),谷坡为阶梯状.阶地是河流下切的产物.海面湖面侵蚀基准面的下降及气候变迁带来的沙量减少来水量增大,使河流侵蚀作用加强.平面形态:河道曲折多变,沿程宽窄相间,比降大,急滩深潭上下交替,二岸与河心常有巨石突出,岸线和床面极不规则.河流走向由地质构造运动决定.水流及泥沙运动:1河流流态:河床形态不规则.流态紊乱险恶,常有回流,旋涡,水跌,水跃,急弯,剪刀水,横流.洪水暴涨暴落2洪枯流量相差大3悬移质含沙量视地区而异(岩石风化不严重和植被好的地区含沙量少) 4河道的推移质多为卵石及粗沙河床演变:1山区河流比降大流速大含沙量不饱和,利于河床向冲刷方向发展2部分河段暂时性淤积和冲刷1卵石运动引起的演变(汛期淤积增大,枯季冲刷,年内基本平衡)2悬移质运动引起(1一般为冲泻质2宽谷段由主流摆动出现的回流淤积3宽谷段由下游峡谷壅水引起的淤积)3溪口滩形式出现的(1大的山区河流,当二岸溪沟发生洪水或泥石流时,常在溪口堆积成溪口滩2冲积物量大粒粗,不易被主流带走,表现为冲冲淤淤)4地震山崩滑坡引起(大规模地地震山崩滑坡引起河道堵塞,引起上下游出现壅水和跌水,剧烈改变水流和河床形态)开发与利用1开发旅游2能源宝库3航运具潜力平原河流概述:平原河流流经地势平坦,土质疏松的平原地区.形成过程主要表现为水流的堆积作用河床形态:平原河流在平面上具有,顺直,分汊,弯曲,散乱四种.横断面分抛物线形,不对称三角形,马鞍形,多汊形.河漫滩是位于中水河槽两侧,在洪水时能被淹没的高滩.由堆积作用造成的平原河漫滩.成型堆积体:冲积河流的河底有规律地分布着各种形式的大尺度沙丘,统称~主要5种:1边滩2浅滩3沙咀4江心滩5江心洲枯水期边滩有漂亮心型沙洲出露--浅滩--支流河口三角洲--江心滩/水流及泥沙运动:平原河流集水面积大,流经土壤疏松,坡度平缓地带,汇流时间长,且降雨分配不均,支流入汇有先后,故洪水没有陡涨陡落的现象,持续时间较长/平原河流水沙运动的基本模型是滩槽水沙交换.两种情况:1河漫滩和中水河槽平行2具有弯曲外形的中水河槽位于顺直或微弯的洪水河槽之中河漫滩和中水河槽平行/河床的演变:体现在河槽中成型堆积体的发展变化上.规律是汛期淤积壮大,枯季冲刷萎缩冲积河流类型:平面形式--演变规律:顺直型--边滩平移型,弯曲型--蜿蜒型,分汊型--交替消长型,散乱型--游荡型.//河床演变分类:1时间特征:长期,短期.2空间特征:大范围,局部.3演变形式:纵向,横向.4方向性特征:单向,复归性.5引起演变的外力:自然,人工干扰.//影响因素:1进口条件(上游来水条件,上游来沙条件)2出口条件(侵蚀基点条件:河面、湖面、海面等)3河床周边条件:(地理、地质条件:河流比降、宽度,河底、河岸的组成)河床演变的根本原因:输沙平衡的破坏.G o G i:出入区域的输沙率,B、L:区域的宽度和长度,∆y0:时段∆t内的河床冲淤厚度(淤+,冲-)ρ’淤积物的干密度/河流自动调整作用:当外部条件变化引起输沙平衡的破坏,河流进行自动调整以达到新的输沙平衡.特征1平衡趋向性2调整多样性3反应的整体性4河床变形滞后性5能耗最小河流水力几何形态:能够自由发展的冲积平原河流的河床,在挟沙水流长期作用下,有可能形成与所在河段具体条件相适应的某种均衡状态.与河床的稳定性、特征流量密切相关.河床稳定指标:研究冲积河流的河床演变特性时,引入一特征参数之一河床稳定指标:纵向,横向,综合/纵向稳定系数:河床在纵深方向的稳定性主要决定于泥沙抗拒水流运动的摩阻力与水流作用于泥沙的拖曳力的对比.洛赫庆系数ϕh1愈大,河床愈稳定/横向稳定系数:横向稳定与河岸稳定密切相关,决定河岸稳定的因素是主流顶冲地点及走向,河岸土壤抗冲能力./造床流量:造床作用与多年流量过程的综合造床作用相当的流量.马卡维也夫法:相应于最大峰值的流量值约相当于多年平均最大洪水流量,其水位约于河漫滩齐平,此流量为第一造床流量.决定中水河槽流量,通常所说的造床流量为~/相应次大峰值的流量略大于多年平均流量,其水位约与边滩高程相当,此为第二造床流量,仅对枯水河槽有作用.平滩水位法在河段内取若干个有代表性的断面,取平滩水位时平均流量作为造床流量/造床流量保证率不同国家相差很大/河相关系:自由发展的冲积平原河流河床在水流长期作用下形成与所在河段条件相适应的均衡水力几何形态,在这种均衡形态的有关因素和表达来水来沙条件及河床地质条件的特征物理量之间存在的函数关系称为河相关系或均衡关系//沿程河相关系:相对某一特征流量的河相关系.适用一个河段不同断面,同一河流不同河段,甚至不同河流/断面河相关系:同一断面相应于不同流量的河相关系/早期河相关系是经验性质的.选比较稳定或冲淤幅度不大,年内输沙率接近平衡的可自由发展的人工渠道和天然河道进行观测,在形态因素与水力泥沙因素之间建立经验关系/近代:量纲分析法,联解公式,量纲分析/ζ:河相系数,河型有关.B0.5/h=ζ.反映天然河流随河道尺度或流量的增大,河宽增加远较河深增加为快的一般性规律/河流纵剖面:也属于一种河相关系,分为河床纵剖面和水流纵剖面/河道整治是在总体规划的基础上,通过修建整治建筑物或采用其他整治手段,调整水流结构及局部河床形态,使河床向着有利的方向发展/河道整治规划1洪水整治规划2中水整治规划(河势规划)3枯水整治规划/河势指一条河流或一个河段的基本流势,也称基本流路.河势规划遵循因势利导综合整理的原则/堤防工程:包括规划.设计.施工.防汛抢险和岁修管理等..规划与设计包括1堤线选择2堤顶高程和堤防间距3堤身横断面(一般设计为梯形.主要设计参数是堤身稳定性、堤顶宽度及临、背水边坡系数)/护岸工程1下层工事(枯水位以下,包括护底护脚,总称护脚)2中层工事(两者之间,块石护坡可分为抛石和砌石两种)3上层工事(洪水位加波浪爬高和安全超高以上,平整岸坡,栽种树木,修建集水沟)/枯水河床整治:在碍航浅滩上修建整治建筑物,以改善通航条件/通航保证率:在规定的航道水深下一年内能够通航的天数与全年天数之比,常用百分率表示/航道尺度:1航道最小水深2航道宽度3航道曲率半径/4流速及流态5过河设施/设计水位:根据通航标准达到航道尺度的起算水位1算术平均2保证率法3保证率频率法/整治水位:与整治建筑物头部高程齐平时水位1经验数据法:由边滩高程确定2造床流量法:第二造床流量相应水位//整治手段:枯水河床整治是要解决枯水期碍航问题,整治手段与浅滩整治相同1修建枯水整治建筑物:丁坝(长丁坝束狭河槽改变主流位置,短丁坝迎托水流外移)顺坝(束狭河槽导引水流,调整河岸)锁坝(塞支强干)导流建筑物(激起人工环流)2采用疏浚或爆破工程:山区石质河流.爆破工程多用于山区河流质河床的疏浚/顺直型河段/几何形态:从平面看,这种河段比较顺直,河槽两侧分布的犬牙交错的边滩和深槽或上下深槽之间存在的较短的过渡段,常称浅滩/主要判断指标是曲折系数:顺直型河段一般小于1.2(蜿蜒型河段曲折系数更大)边滩长宽比为 5./曲折系数:自上游过渡段中点起沿河道中心线至最后一个过渡段中点止的曲线长度与起点至终点的直线长度之比/水流:造床流量下,边滩头部水位沿程降低,滩尾水位略有升高,深水部分相反.低水位浅滩段水深小比降陡流速大,深槽段水深大比降缓流速小.流量增加时,浅滩段比降减小,深槽段比降增大/输沙:横向分布看,边滩的推移质输沙率远大于深槽.纵向分布,边滩中部输沙率大于滩头和滩尾的.深槽相反,中部输沙率小于深槽头部和尾部的,此规律与流速场相应//边滩长度定量b=0.57B,l=2.8B/流量变化浅滩影响:1洪水期浅滩淤积深槽冲刷2枯水期浅滩冲刷深槽淤积3推移质和悬移质中的床沙质参加造床运动/演变规律:通过推移质运动使边滩深槽浅滩作为一个整体下移/不利结果:1边滩下移使河道不稳定2航运困难3港口淤积4取水困难/整治原则固定边滩使其不向下游移动,稳定整个顺直型河段.措施修建上挑式淹没丁坝群/蜿蜒型河段/几何形态:由一系列正反相间的弯道和介乎其间的过渡段衔接而成横断面:弯道段呈不对称三角形,凹岸坡陡水深,凸岸坡缓水浅.过渡段呈对称的抛物线形或梯形/水流:横比降导致凹岸凸岸纵比降不同,形成横向环流,环流的方向,上部恒指向凹岸,下部恒指向凸岸/横向环流:是否产生环流:水流是否弯曲来确定.横向环流:上部恒指向凹岸,下部恒指向凸岸./输沙:横向环流存在,决定泥沙运动特点1洪水期弯道段水流挟沙力大于过渡段,枯水期弯道段水流挟沙力小于过渡段2洪水期槽冲滩淤,枯水期槽淤滩冲3床沙:异岸输移同岸输移,聚散现象/演变:2种/一般:曲折程度加剧,河长增加,曲折系数增大.横断面变形表现为凹岸崩退凸岸淤长.两岸冲淤面积接近相等,断面形态不变,断面接近平衡/突变1自然裁弯:河段发展由于某些原因使同一岸两个弯道弯顶崩退,形成急剧河环和狭颈.狭颈的起止点相距很近,水位差较大,如遇水流漫滩,在比降陡流速大时可将狭颈冲开,分泄部分水流形成新河2撇弯:曲率半径很小的急弯,凹岸淤积3切滩:凸岸边滩较低,抗冲能力低/形成条件:1从能量观点解释:要求河流比降小流速小2认为顺直水流的不稳定性是形成蜿蜒型河段的原因/裁弯工程:规划设计:引河线路与引河平均形式(根据地质,引河平面形态,与上下游河段的衔接统筹考虑.引河长度以裁弯比为控制标准.断面为梯形)/引河断面可设计成最终过水断面的1/5~1/15/分汊型河段/1平面形态:上端放宽,下端收缩中间最宽2横断面:分流区汇流区均呈马鞍形,分汊段为江心洲分隔复式断面3纵剖面:两端低中间高上凸形态,呈起伏相间形态/演变规律:汊道演变特点:主支汊易位(上游水流动力轴线摆动,引起分流分沙变化)/整治措施1分汊河段固定:在上游节点,汊道入口及江心洲首尾修建整治建筑物2改善汊道(调整水流调整河床)3堵汊工程:塞支强干,修挑水坝锁坝/水流/分流区高水下移低水上提.水位:支汊高于主汊/汇流区水位:支汊高于主汊/输沙:分流区两侧含沙量大中间较低.汇流区两侧含沙量小中间大,底部含沙量更大/游荡型河段/形态特征:河身顺直,曲折系数小于1.3.较长范围内往往宽窄相间.河段内河床宽浅,洲滩密布,汊道交织/水流:河床宽浅,平均水深小,流速大.洪水暴涨暴落.年内流量变幅大/输沙:含沙量大,同流量下含沙量变化大,流量与含沙量关系不明显/演变规律1多年平均河床逐年抬高2年内冲淤变化是汛期主槽冲刷滩地淤积.非汛期主槽淤积滩地冲刷3平面变化规律:主流摆动剧烈,主槽位置摆动,摆动幅度大,河势变化迅速/形成原因:流量一定时比降陡流速大.组成河槽物质为颗粒细的散粒泥沙,在较强水流作用下易冲易淤.来水量小来沙量大河床比降大/整治措施:综合治理.水土保持修建水库发展灌溉和河床整治/浅滩特征类型:处于两反向弯道间的沙梗即常见浅滩.五部分:上边滩.下边滩.上深槽.下深槽.浅滩脊.类型1正常2交错3复式4散乱/演变因素:1流速减小2环流变化3洪枯水流向不一致4输沙不平衡//规律:有纵向变形横向变形,单向变形与复归变形,主要为复归.即随河道水文过程而呈周期性变化,浅滩与淤积周期性交替.整治:修建整治建筑物和浅滩疏浚(维护性.基建性)/挖槽水力计算:1设计挖槽横断面2确定挖槽方向角θ.3估算水位降落.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、堵汊工程
2、堵汊工程类型 c、锁坝的位置
③、锁坝
锁坝修建在首部,其优点是: 江心洲首部一般较高,锁坝坝 根衔接条件较好,溃决的机会 较少;汊道首部紧靠航道,施 工所需物质及工程器材可以直 接运到工地,施工条件较方便。
10
三、堵汊工程
2、堵汊工程类型
③、锁坝
c、锁坝的位置
锁坝修建在首部,其缺点是:将上游 来的泥沙全部导向通航汊道,有时会 引起通航汊道的淤积,达不到显著增 加水深的效果;在锁坝下游被堵塞的 汊道,由于缺乏泥沙来源,淤积较慢, 当洪水水流漫溢坝顶时,还会引起大 量的冲刷。
20
第八章 游荡型河段的演变及整治
第四节 河势控制及整治措施 4、游荡型河段控制河势的工程措施 游荡型河段在自然情况下整治的主要任务是控制河势。
控制河势的措施主要是护岸工程、护滩工程、堤防工程。
21
第八章 游荡型河段的演变及整治
第四节 河势控制及整治措施 4、游荡型河段控制河势的工程措施 ①、护岸工程
③、锁坝
锁坝修在中部,其缺点是: 水运条件较差,不利于水运 将施工物资和器材运到工地; 此外,锁坝下游汊道仍将发 生冲刷。
13
三、堵汊工程
2、堵汊工程类型
c、锁坝的位置
锁坝修在尾部,其优点是: 锁坝上游的全部汊道,能较 快地为泥沙淤塞;施工物资 及器材便于从航道直接运到 工地;锁坝下游由于洪水漫 溢坝顶引起的冲刷,对加深 主槽有利。
第七章 分汊型河段的演变及整治
第四节 汊道整治 一、分汊型河段的固定
1 3 6
2
4
6 5
2、节点控导及稳定弯道采用的建筑物 3、汊道出口处的整治建筑物类型
1
第四节 汊道整治 一、分汊型河段的固定 4、江心洲首部整治建筑物-上分水堤
①、工程目的
②、工程型式
2
第四节 汊道整治 一、分汊型河段的固定 5、江心洲尾部整治建筑物-下分水堤 ①、汇流区水流泥沙特征
③、锁坝
14
三、堵汊工程
2、堵汊工程类型
c、锁坝的位置
锁坝修在尾部,其缺点是: 江心洲尾部一般较低,坝根 衔接条件差,其溃决的危险 性大;洲尾一般河面较宽, 锁坝须做得较长,工程量增 大;在比降较大的河流上, 由于锁坝的雍水作用,常易 淹没河岸。
③、锁坝
15
三、堵汊工程
2、堵汊工程类型
③、锁坝
d、多道锁坝
3
第四节 汊道整治 一、分汊型河段的固定
5、江心洲尾部整治建筑物-下分水堤
①、工程目的
②、工程型式
4
第四节 汊道整治 二、分汊型河段的改善
改善汊道的整治措施
调整水流:修建顺坝与丁坝 调整河床:疏浚与爆破
改善上游河段→在上游节点修建控导工程 增加浅滩上的水深→修建丁坝或进行疏浚 改工程措施
②、黄河护岸工程
b、工程布置
在河道宽阔,主流横向摆动大,河势流向变化剧烈的河段, 以坝为主,以垛为辅,如有必要,则在坝档间进行护坡。
5
第四节 汊道整治 二、分汊型河段的改善
6
第四节 汊道整治 三、堵汊工程 2、堵汊工程类型 堵塞汊道的措施,视具体情况不同,可采取修建 挑水坝、锁坝或编篱建筑物等多种。
①、编篱建筑物
7
第四节 汊道整治 三、堵汊工程 2、堵汊工程类型 ②、挑水坝(顺坝或丁坝)
8
第四节 汊道整治 三、堵汊工程 2、堵汊工程类型 ③、锁坝 a、适用条件 b、锁坝的结构
生物措施:植树造林、种植牧草等。
18
第八章 游荡型河段的演变及整治
第四节 河势控制及整治措施
3、综合措施之二 —— 修建水库
•下泄清水,对冲刷下游游荡型河段,促使其减弱游 荡强度并向非游荡型转化,当然是有利的;
•采用蓄清排浑运用方式,上述问题在一定程度上得 到了解决,但对黄河下游游荡型河段存在的问题并 无明显改善;
当汊道较长,比降较大,落差较 大时,为了保证建筑物的安全, 可以修建几道锁坝,使锁坝与锁 坝之间形成静水区,有利于泥沙 落淤;同时,还可将水头均衡地 分配在各个锁坝上,可以降低锁 坝的高度。 锁坝的数目可按下式决定 n y
h
△y为设计水位时江心洲洲头至洲尾的水位总落差,m; △h为一个锁坝所担负的落差,通常为0.5~0.8m。
•利用修建在黄河中游的水库,拦截粗沙,排泄细沙, 并针对黄河水沙异源的特点,调水调沙以增大下游 的水流输沙能力,减少淤积。
19
第八章 游荡型河段的演变及整治
第四节 河势控制及整治措施 3、综合措施之三 —— 泥沙利用
引洪淤灌、淤临淤背等,不仅减少了河道的泥 沙,而且促进了农业生产,加固了堤防,变害 为利,收到了很好的效果。
11
三、堵汊工程
2、堵汊工程类型 c、锁坝的位置
③、锁坝
锁坝修在中部,其优点是: 锁坝上游的汊道淤塞较快; 有较多的选择合适坝址的范 围,可使锁坝坝身同时垂直 于中、洪水流向,改善锁坝 的水流条件,同时可把锁坝 坝址选择在汊道较窄处,以 减少工程量。
12
三、堵汊工程
2、堵汊工程类型 c、锁坝的位置
16
第八章 游荡型河段的演变及整治
第四节 河势控制及整治措施 1、游荡型河段整治的目的和综合措施 游荡型河段整治的目的是把宽浅散乱、主流多变的河 段整治成比较窄深归顺的河道。
综合治理措施:水土保持、修建水库、发展淤灌和河床整治。
17
第八章 游荡型河段的演变及整治
第四节 河势控制及整治措施 2、综合措施之一 —— 水土保持措施 工程措施: 治坡工程,如修造梯田等; 治沟造田工程,如建坝淤地,削山填沟等; 小型蓄水拦沙、用洪用沙工程,如水堰、涝池、引洪淤灌等。
坝的类型:
长坝:坝身较长而突入河中,呈下挑式,其作用是挑托主流
离开堤岸,掩护其下游的堤岸不受冲刷。
短坝:也叫垛,坝身较短,也略呈下挑式,其作用是迎托水
流,消减水势,不使急流沿堤岸冲刷,但不能挑托水流远离 堤岸。
护坡:也称护挡或护沿,系将石块直接铺护在堤岸坡面,以
防止坝间正流或回流冲刷堤坡,同时挡御风浪对堤坡的冲击。
控制河势最主要的目的是控制主流,固定险工位置,以保 护堤岸。为此,必须修建护岸工程。
游荡型河段,一般是根据汛后变化了的河势实地查勘,运 用以往经验来预估可能发生的变化,然后确定需要护岸的 部位。
22
4、游荡型河段控制河势的工程措施
②、黄河护岸工程
a、工程类型
黄河的护岸主要是修建坝工,是一种非淹没式的下挑丁坝, 这是黄河现有护岸工程的特点。