数列求和与最值(高考一轮复习)

合集下载

高考数学一轮复习《数列求和》练习题(含答案)

高考数学一轮复习《数列求和》练习题(含答案)

高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。

数列的求和-高考数学一轮复习(新高考专用)

数列的求和-高考数学一轮复习(新高考专用)

第43讲 数列的求和【基础知识回顾】 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).1、数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100【答案】 D【解析】 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 2、数列{}n a 的前n 项和为n S ,若()11n a n n =+,则5S 等于( )A .1B .56 C .16D .130【答案】:B 【解析】:因为()11111n a n n n n ==-++,所以5111111111151122334455666S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选B . 3、设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】:A 【解析】:由11111++++2612(1)S n n =++,得11111++++122334(1)S n n =+⨯⨯⨯+,111111112111++++222334111n S n n n n +=+-==+++----,故选:A.4、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________.【答案】 2 022【解析】 a n =1n (n +1)=1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.5、已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.【答案】:5000【解析】:由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5000.6、 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 【答案】:2n【解析】:因为数列{a n }为等比数列,则a n =2q n -1,又数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0q =1,即a n =2,所以S n =2n .考向一 公式法例1、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】4 42【解析】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-,514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42. 故答案为:(1)4;(2)42.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.考向二 利用“分组求和法”求和例2、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.变式1、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+ (12)-1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12 =12n -1+2n -2. 变式2、 已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3.又S 2=2a 1+d ,所以a 1=d , 易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.变式3、(2021·广东高三专题练习)设数列{a n }满足a n +1=123n a +,a 1=4. (1)求证{a n ﹣3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n . 【答案】(1)证明见解析,11()33n n a -=+;(2)31(1)323n n -+.【解析】(1)数列{a n }满足a n +1=123n a +,所以113(3)3n n a a +-=-, 故13133n n a a +-=-, 所以数列{a n }是以13431a -=-=为首项,13为公比的等比数列. 所以1131()3n n a --=⋅,则1*1()3,3n n a n N -=+∈. (2)因为11()33n n a -=+,所以011111()()()(333)333n n T -=++++++⋯+=11(1)33113n n -+-=31(1)323n n -+. 方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考向三 裂项相消法求和例3、(2021·四川成都市·高三二模(文))已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得20T 的值为( )A .1939B .3839C .2041D .4041【答案】C 【解析】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n nT n n n n =⨯-+-++-=⨯-=-+++,所以202020220141T ==⨯+,故选:C.变式1、(2021·全国高三专题练习)已知在数列{}n a 中,14,0.=>n a a 前n 项和为n S ,若1,2)-+=∈≥n n n a S S n N n .(1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:132020n T <<【解析】(1)在数列{}n a 中,1(2)n n n a S S n -=-≥①∴1n n n a S S -=且0n a >,∴①式÷②11n n S S -= (2)n ≥, ∴数列{}nS 1142S a ===为首项,公差为1的等差数列,2(1)1n S n n =+-=+ ∴2(1)n S n =+当2n ≥时,221(1)21n n n a S S n n n -=-=+-=+;当1n =时,14a =,不满足上式,∴数列{}n a 的通项公式为4,121,2n n a n n =⎧=⎨+≥⎩.(2)由(1)知4,121,2n n a n n =⎧=⎨+≥⎩,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,∴当1n =时,114520n T ==⨯, ∴当1n =时,120n T =,满足132020n T ≤<,∴12233411111n n n T a a a a a a a a +=++++1111455779(21)(2n =++++⨯⨯⨯+111111111111()()()()45257792123202523n n n ⎡⎤=+⨯-+-++-=+⨯-⎢⎥⨯+++⎣⎦ 312046n =-+ ∴在n T 中,1n ≥,n ∈+N ,∴4610n +≥,∴114610n ≤+,∴1104610n >-≥-+,∴131320204620n ≤-<+.所以132020n T << 变式2、(2021·辽宁高三二模)已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【解析】解:(1)因为2n n a S n =+①, 所以()11212n n a S n n --=+-≥② 由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列. (2)令1n =,1121a S =+,则11a =. 由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭. 因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+< ⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝ ⎛⎭⎪⎫1n -1n +k ,此类数列适合使用裂项相消法求和. (2)数列的通项公式形如a n =1n +k +n时,可转化为a n =1k(n +k -n ),此类数列适合使用裂项相消法求和.考向四 错位相减法求和例4、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N*=+∈,且12a =.(1)求数列{}n a 的通项公式;(2)设()12n an n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==, 所以2n a n =(2)由(1),(1)2=(21)4n ann n b a n =--, 所以 12314+34+54++(21)4n n T n =⨯⨯⨯-231414+34++(23)4(21)4n n n T n n +=⨯⨯-+-…两式相减得:23134+2(4+4++4)(21)4n n n T n +-=⨯--…,2+114434+2(21)414n n n T n +--=⨯---,化简得120(65)4+99n n n T +-= 变式1、(2020·全国高三专题练习(文))已知数列{}n a 是等差数列,其前n 项和为n S ,且22a =,5S 为10和20的等差中项;数列{}n b 为等比数列,且319b b -=,4218b b -=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n M . 【解析】(1)设等差数列{}n a 的公差为d ,因为22a =,5S 为10和20的等差中项,所以112541020522a d a d +=⎧⎪⎨⨯++=⎪⎩,解得111a d =⎧⎨=⎩,所以n a n =. 设等比数列{}n b 的公比为q ,因为319b b -=,4218b b -=,所以2121(1)9(1)18b q b q q ⎧-=⎨-=⎩,解得132b q =⎧⎨=⎩, 所以132n n b -=⋅.(2)由(1)可知132n n n a b n -⋅=⋅,所以213(122322)n n M n -=+⨯+⨯++⋅,令21122322n n P n -=+⨯+⨯++⋅ ①, 则232222322n n P n =+⨯+⨯++⋅ ②,-①②可得2112122222(1)2112nn nn n n P n n n ---=++++-⋅=-⋅=---,所以(1)21nn P n =-+,所以3(1)23n n M n =-+.变式2、(2020·湖北高三期中)在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分. 【解析】(1)由题意,等差数列{}n a 中35a =且636S =,可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121nb n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得:()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。

下面给出一些数列求和的方法指导,希望对高考复习有所帮助。

1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。

对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。

2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。

对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。

3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。

首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。

4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。

首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。

5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。

首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。

6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。

该公式是等差数列求和公式的一个变形。

首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。

2025年高考数学一轮复习-6.4-数列求和-专项训练【含解析】

2025年高考数学一轮复习-6.4-数列求和-专项训练【含解析】

2025年高考数学一轮复习-6.4-数列求和-专项训练【原卷版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.82.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.93.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.634.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.45.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C.12,D.23,+∞6.(多选)已知数列{a n}满足a1=1,且对任意的n∈N*都有a n+1=a1+a n+n,则下列说法中正确的是()A.a n=n(n+1)2B2020项的和为20202021C2020项的和为40402021D.数列{a n}的第50项为25507.(多选)设数列{a n}的前n项和为S n,若S2nS4n为常数,则称数列{a n}为“吉祥数列”.则下列数列{b n}为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.9.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .202011.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n n 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +1412.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.2025年高考数学一轮复习-6.4-数列求和-专项训练【解析版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.8解析:A设{a n}的公差为d,根据题意得a23=a2·a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2,所以数列{a n}的前6项和为S6=6a1+6×52d=1×6+6×52×(-2)=-24.2.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.9解析:C∵1+2+22+…+2n-1为公比为2,首项为1的等比数列的前n项和S n,∴S n=12-1(2n-1)=2n-1>128=27,∴n≥8,∴n的最小值为8.故选C.3.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.63解析:D因为log2a n+1=1+log2a n,所以log2a n+1=log22a n,即a n+1=2a n,即数列{a n}是以2为公比的等比数列,又a3=4,所以a1=a34=1,因此S6=a1(1-26)1-2=26-1=63.故选D.4.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.4解析:A显然数列{a n}的公比不等于1,所以S n=a1·(q n-1)q-1=a1q-1·q n-a1q-1=4n+b,所以b=-1.5.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C .12,D .23,+∞解析:D设等比数列{a n }的公比为q ,q ≠0,则q 3=a 4a 1=18,解得q =12,所以a n =12n -1,所以a n a n +1=12n -1×12n =122n -1,所以数列{a n a n +1}是首项为12,公比为14的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=21-14=<23.因为a 1a 2+a 2a 3+…+a n a n +1<k ,所以k ≥23.故k 的取值范围是23,+D .6.(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是()A .a n =n (n +1)2B2020项的和为20202021C2020项的和为40402021D .数列{a n }的第50项为2550解析:AC因为a n +1=a 1+a n +n ,a 1=1,所以a n +1-a n =1+n ,即a n -a n -1=n (n ≥2),所以n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,a 1=1也适合此式,所以a n =n (n +1)2,a 50=1275,A 正确,D 错误;1a n =2n(n +1)=2020项和S 2020=-12+12-13+…+12020-=40402021,B 错误,C 正确.故选A 、C .7.(多选)设数列{a n }的前n 项和为S n ,若S2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n解析:BC对于A ,S n =(1+n )n 2,S 2n =n (1+2n ),S 4n =2n (1+4n ),所以S2n S 4n =n (1+2n )2n (1+4n )=1+2n 2(1+4n )不为常数,故A 错误;对于B ,由并项求和法知:S 2n =n ,S 4n =2n ,S 2n S 4n =n 2n =12,故B 正确;对于C ,S n =2+4n -22×n =2n 2,S 2n =8n 2,S 4n =32n 2,所以S 2n S 4n =14,故C 正确;对于D ,S n =2(1-2n )1-2=2(2n -1),S 2n =2(4n -1),S 4n =2(16n -1),所以S2n S 4n =4n -116n -1=14n +1不为常数,故D 错误.故选B 、C .8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析:S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n ,∴S n-na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案:59.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d a 1+10d =20,1+2d )2=(a 1+d )(a 1+4d ),化简得1+2d =4,1d =0,因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *,因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n n -n 2,n 为偶数,a n ,n 为奇数,n 为偶数,n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2)=n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .2020解析:D设{a n }的公差为da 1+6d =a 1+3d +7,1+9d =19,1=1,=2,∴a n =2n-1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2019+b 2020)=2×20202=2020.11.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A nn 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +14解析:ABD由a n =a 2n -1+a n -1,得a 2n -1=a n -a n -1≥0,所以a n ≥a n -1≥32,A n =a 21+a 22+…+a 2n =a 2-a 1+a 3-a 2+…+a n +1-a n =a n +1-a 1=a n +1-32,故A 正确;由a n =a 2n -1+a n -1=a n-1(a n -1+1),得1a n =1a n -1(a n -1+1)=1a n -1-1a n -1+1,即1a n -1+1=1a n -1-1a n ,所以B n =1a 1+1+1a 2+1+…+1a n +1=1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=23-1a n +1,故B 正确;易知A n ≠0,B n ≠0,所以A nB n =a n +1-3223-1a n +1=32a n +1,故C 不正确;易知a n =a 2n -1+a n -1<2a 2n -1,所以a n +1<2a 2n <23a 4n -1<…<22n -1a 2n 1=22n-1n =12×32n ,所以A n B n=32an +1<32×12×32n =32n +14,故D 正确.故选A 、B 、D .12.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2,两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2,即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1),则数列{a n -1}是首项为1,公比为3的等比数列,则a n -1=3n -1,故a n =1+3n -1.(2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1),设M n =1·30+2·31+3·32+…+n ·3n -1,3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n=1-3n 1-3-n ·3n ,化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.证明:二项展开式的通项为T k +1=C -k=C -k x12-3k,令12-3k =0,得k =4,得展开式的常数项为a 1=12.可选择的条件为①或②或③:若选择①:在S n =-a n +t 中,令n =1,得t =1,所以S n =-a n +1,当n ≥2时,S n -1=-a n -1+1.两式相减得a n =12a n -1,故{a n }是以12为首项,12为公比的等比数列,所以S n =a 1(1-q n )1-q =1<1.所以S n <1对任意的n ∈N *恒成立.若选择②:由(n +1)b n +1=nb n 得b n +1b n =nn +1,所以b n =b n b n -1·b n -1b n -2·…·b 2b 1b 1=1n (n ≥2),n =1时也满足,则a n =1n (n +1)=1n -1n +1,S n …1-1n +1<1.所以S n <1对任意的n ∈N *恒成立.若选择③:由题意得3a 2n +1-3a 2n =-(a n +1+a n ),得a n +1-a n =-13或a n +1+a n =0,又a 1=12,当a n +1+a n =0时,有S n n 为偶数,n 为奇数,所以S n <1,当a n +1-a n =-13时,有S n =n 2-n (n -1)6=-16(n 2-4n )=-16(n -2)2+23,当n =2时,S n 有最大值,为23<1.所以S n <1对任意的n ∈N *恒成立.。

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)
n 1
)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:

1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数

(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,

13Sn=312+333+…+2n3-n 3+23nn-+11.

两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.

新高考2023版高考数学一轮总复习练案37第六章第四讲数列求和

新高考2023版高考数学一轮总复习练案37第六章第四讲数列求和

第四讲 数列求和A 组基础巩固一、单选题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n[解析] 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则⎩⎨⎧⎭⎬⎫1a n 的前100项和为( D )A .100101B .99100C .101100D .200101[解析] ∵a n +1=a 1+a n +n ,a 1=1,∴a n +1-a n =1+n . ∴a n -a n -1=n (n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n n +12.∴1a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1. ∴⎩⎨⎧⎭⎬⎫1a n 的前100项和为2⎝ ⎛⎭⎪⎫1-12+12-13+…+1100-1101=2⎝ ⎛⎭⎪⎫1-1101=200101.故选D.3.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( D )A .13B .10C .9D .6[解析] ∵a n =2n-12n =1-12n ,∴S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -1+12n .而32164=5+164,∴n -1+12n =5+164.∴n =6.4.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( B )A .(3n-1)2B .12(9n-1) C .9n -1D .14(3n-1) [解析] 因为a 1+a 2+…+a n =3n-1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则当n ≥2时,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2·3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列,a 21+…+a 2n =41-9n1-9=12(9n-1).故选B.5.(2021·黑龙江哈尔滨三中期末)数列{a n }的前n 项和为S n ,且a n =(-1)n(2n -1),则S 2 023=( C )A .2 021B .-2 021C .-2 023D .2 023[解析] 本题考查用并项相加求数列的前n 项和.由已知a n =(-1)n·(2n -1),a 2 023=(-1)2 023(2×2 023-1)=-4 045,且a n +a n +1=(-1)n (2n -1)+(-1)n +1(2n +1)=(-1)n +1(2n +1-2n +1)=2×(-1)n +1,因而S 2 023=(a 1+a 2)+(a 3+a 4)+…+(a 2 021+a 2 022)+a 2 023=2×1 011-4 045=-2 023.故选C.6.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:(1)构造数列1,12,13,14,…,1n;①(2)将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,a 4,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( C ) A .n 24B .n -124 C .n n -14D .n n +14[解析] 依题意可得新数列为n 2,n 4,n 6,…,1n ×n2,所以a 1a 2+a 2a 3+…+a n -1a n =n 24⎣⎢⎡11×2+12×3+…+⎦⎥⎤1n -1n=n 24⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n=n 24×n -1n =n n -14.故选C. 二、多选题7.(2022·重庆月考)已知数列{a n }满足a 1=-2,a n a n -1=2n n -1(n ≥2,n ∈N *),{a n }的前n 项和为S n ,则( ABD )A .a 2=-8B .a n =-2n·n C .S 3=-30D .S n =(1-n )·2n +1-2[解析] 由题意可得,a 2a 1=2×21,a 3a 2=2×32,a 4a 3=2×43,…,a n a n -1=2×n n -1(n ≥2,n ∈N *),以上式子左、右分别相乘得a n a 1=2n -1·n (n ≥2,n ∈N *),把a 1=-2代入,得a n =-2n·n (n ≥2,n ∈N *),又a 1=-2符合上式,故数列{a n }的通项公式为a n =-2n·n (n ∈N *),a 2=-8,故A ,B 正确;S n =-(1×2+2×22+…+n ·2n ),则2S n =-[1×22+2×23+…+(n -1)·2n+n ·2n +1],两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2(n ∈N *),故S 3=-34,故C 错误,D 正确.8.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,以下说法正确的是( ACD ) A .a 24=38B .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列C .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4D .若存在正整数k ,使S k <10,S k +1≥10,则a k =57[解析] 对于选项A ,a 22=18,a 23=28,a 24=38,故A 正确.对于选项B 、C ,数列12,1,32,2,…等差数列,T n =n 2+n4,故B 错,C 正确.对于选项D ,S 21>10,S 20<10,a 20=57,正确.故选A 、C 、D.三、填空题 9.数列{a n }中,a n =1nn +1,若{a n }的前n 项和为2 0222 023,则项数n 为 2 022 . [解析] a n =1nn +1=1n -1n +1,S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1=2 0222 023,所以n =2 022. 10.122-1+132-1+142-1+…+1n +12-1= 34-12⎝ ⎛⎭⎪⎫1n +1+1n +2 .[解析] ∵1n +12-1=1n 2+2n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴122-1+132-1+142-1+…+1n +12-1=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.11.(2021·海南三亚模拟)已知数列{a n }的前n 项和S n =10n -n 2,数列{b n }满足b n =|a n |,设数列{b n }的前n 项和为T n ,则T 4= 24 ,T 30= 650 .[解析] 当n =1时,a 1=S 1=9,当n ≥2时,a n =S n -S n -1=10n -n 2-[10(n -1)-(n -1)2]=-2n +11,当n =1时也满足,所以a n =-2n +11(n ∈N *),所以当n ≤5时,a n >0,b n =a n ,当n >5时,a n <0,b n =-a n ,所以T 4=S 4=10×4-42=24,T 30=S 5-a 6-a 7-…-a 30=2S 5-S 30=2×(10×5-52)-(10×30-302)=650.12.(2021·广东省五校协作体高三第一次联考)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数3a n +1,a n 为奇数,如果a 1=1,则a 1+a 2+a 3+…+a 2 018= 4 709 .[解析] 由已知得a 1=1,a 2=4,a 3=2,a 4=1,a 5=4,a 6=2,周期为3的数列,a 1+a 2+…+a 2 018=(1+4+2)×672+1+4=4 709.四、解答题13.(2021·宁夏银川金凤模拟)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2n (n +1),设b n =a nn.(1)证明数列{b n }是等差数列,并求其通项公式; (2)若c n =2b n -n ,求数列{c n }的前n 项和. [解析] (1)∵na n +1-(n +1)a n =2n (n +1), ∴a n +1n +1-a nn=2, ∵b n =a nn ,∴b n +1-b n =2,b 1=a 11=2,∴数列{b n }是等差数列,首项与公差都为2. ∴b n =2+2(n -1)=2n . (2)c n =2b n -n =22n-n =4n-n , ∴数列{c n }的前n 项和为41-4n1-4-n n +12=4n +1-43-n n +12.14.(2021·太原二模)已知数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n =a n +a n +1(n∈N *).(1)求数列{b n }的通项公式;(2)若c n =log 2a n (n ∈N *),求数列{b n ·c n }的前n 项和T n . [解析] (1)当n =1时,a 1=S 1=2, 当n ≥2时,a n =S n -S n -1=2n, 又a 1=2满足上式,∴a n =2n (n ∈N *),∴b n =a n +a n +1=3×2n. (2)由(1)得a n =2n ,b n =3×2n, ∴c n =log 2a n =n ,∴b n ·c n =3n ×2n,∴T n =3×(1×2+2×22+3×23+…+n ×2n),① ①×2,得2T n =3×(1×22+2×23+3×24+…+n ×2n +1),②①-②,得-T n =3×(2+22+…+2n -n ×2n +1)=3×[(1-n )×2n +1-2],∴T n =3(n -1)×2n +1+6.B 组能力提升1.(多选题)(2021·山东济宁期末)若S n 为数列{a n }的前n 项和,且S n =2a n +1,则下列说法正确的是( AC )A .a 5=-16B .S 5=-63C .数列{a n }是等比数列D .数列{S n +1}是等比数列[解析] 因为S n 为数列{a n }的前n 项和,且S n =2a n +1,所以a 1=S 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,故C 正确;a 5=-1×24=-16,故A 正确;S n =2a n +1=-2n+1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{S n +1}不是等比数列,故D 错误.故选AC.2.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( C )A .1 026B .1 025C .1 024D .1 023[解析] ∵2n+12n =1+⎝ ⎛⎭⎪⎫12n,∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,恒成立 ∴整数m 的最小值为1 024.3.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( D )A .1 009B .1 010C .2 019D .2 020[解析] 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,……,∴数列{a n cos n π}的前2 020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.4.记S n 为等差数列{a n }的前n 项和,已知,S 9=-a 5,若a 1>0,使得S n ≥a n 的n 的取值范围 [1,10]n ∈N .[解析] 由S 9=-a 5得a 5=0即d =-a 14故a n =-n -5a 14,S n =-n n -9a 18由S n ≥a n 可得-n n -9a 18≥-n -5a 14由于a 1>0,故S n ≥a n 等价于-n n -98≥-n -54即:n 2-11n +10≤0 解得1≤n ≤10所以n 的取值范围是[1,10]n ∈N .5.(2021·山东省济南市历城第二中学高三模拟考试)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和T n ,求T 2n .[解析] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =103+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2q =2.∴a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 当n 为奇数,c n =2S n =1n -1n +2,当为偶数,c n =2n -1.∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+21-4n1-4=2n 2n +1+23(4n-1).。

2025高考数学一轮复习-6.4-数列求和【课件】

2025高考数学一轮复习-6.4-数列求和【课件】
【解析】 ∵an=nn1+1=1n-n+1 1 ∴数列{an}的前 n 项和 Sn=1-n+1 1=n+n 1 又 Sn=22001290,∴n=2019,故选 B.
易错易混 4.在数列{an}中,已知 an=n+11n+3(n∈N*),则{an}的前 n 项和 Sn=
_____12__56_-__n_+1__2_-__n_+1__3_ ______. 【解析】 ∵an=n+11n+3=12n+1 1-n+1 3, ∴Sn=1212-14+13-15+14-16+15-17+…+n+1 1-n+1 3 =1212+13-n+1 2-n+1 3 =1256-n+1 2-n+1 3.
第六章 数列
第四节 数列求和
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.公式法 (1)等差数列{an}的前 n 项和 Sn=na12+an=na1+nn-2 1d. 推导方法:倒序相加法.
na1,q=1, (2)等比数列{an}的前 n 项和 Sn=a111--qqn,q≠1. 推导方法:乘公比, 错位相减法 .
6.若{log2an}是首项为 1,公差为 2 的等差数列,则数列{nan}的前 n 项和为 _S_n_=__2_+__6_n_9-__2__·4_n_.
【解析】 由题意可得 log2an=1+2(n-1)=2n-1, ∴an=22n-1=2·4n-1,∴nan=2n·4n-1, ∴数列{nan}的前 n 项和 Sn=2(1×40+2×41+3×42+…+n×4n-1), ∴12Sn=1×40+2×41+3×42+…+n×4n-1, ∴2Sn=1×41+2×42+3×43+…+n×4n,
课堂考点突破
——精析考题 提升能力
考点一 分组转化求和 【例 1】 已知数列{an}满足 a1=1,an+an-1=2n(n≥2,n∈N*). (1)记 bn=a2n,求数列{bn}的通项公式; (2)求数列{an}的前 n 项和 Sn.

2025届高考数学一轮复习教案:数列-数列求和

2025届高考数学一轮复习教案:数列-数列求和

第五节数列求和课程标准1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.考情分析考点考法:高考命题常以等差、等比数列为载体,考查裂项相消、错位相减求和等数列求和方法,涉及奇偶项的求和问题是高考的热点,常以解答题的形式出现.核心素养:数学建模、数学运算、逻辑推理.【核心考点·分类突破】考点一分组、并项、倒序相加求和[例1](1)数列112,214,318,…的前n项和为S n=()A.2-1B.(r1)2+2nC.(r1)2-12+1D.2-1【解析】选C.数列112,214,318,...的前n项和为S n=(1+2+3+...+n)+(12+14+18+ (12)=(r1)2+12(1-12)1-12=(r1)2-12+1.(2)设f(x)=21+2,则f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024)=________.【解析】因为f(x)=21+2,所以f(x)+f(1)=1.令S=f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024),①则S=f(2024)+f(2023)+…+f(1)+f(12)+…+f(12024),②所以2S=4047,所以S=40472.答案:40472(3)(2023·深圳模拟)已知公差为2的等差数列的前n项和为S n,且满足S2=a3.①若a1,a3,a m成等比数列,求m的值;②设b n=a n-2,求数列的前n项和T n.【解析】①由题意知数列是公差为2的等差数列,设公差为d,则d=2,又因为S2=a3,所以a1+a2=a3,即2a1+d=a1+2d,得a1=d=2,所以a n=a1+(n-1)d=2n(n∈N*).又因为a1,a3,a m成等比数列,即32=a1a m,所以36=2×2m,得m=9.②因为b n=a n-2=2n-4n,所以T n=(2×1-41)+(2×2-42)+…+(2×n-4n)=2×(1+2+…+n)-(41+42+…+4n)=2×(r1)2-4×(1-4)1-4=n(n+1)-43×(4n-1)=n2+n+43-4r13.【解题技法】分组转化与并项求和法(1)数列的项可以拆分成两类特殊数列,分别对这两类数列求和,再合并后即为原来的数列的前n项和;(2)数列的项具有一定的周期性,相邻两项或多项的和是一个有规律的常数,可以将数列分成若干组求和.【对点训练】1.已知数列的通项公式为a n=n cos(n-1)π,S n为数列的前n项和,则S2023=()A.1009B.1010C.1011D.1012【解题提示】将a n=n cos(n-1)π化为a n=n×-1-1,利用并项法求和.【解析】选D.因为当n为奇数时cos(n-1)π=1,当n为偶数时cos(n-1)π=-1,所以cos(n-1)π=-1-1,所以a n=n cos(n-1)π=n×-1-1.S2023=(1-2)+(3-4)+…+(2021-2022)+2023=-1011+2023=1012.2.设f(x)=44+2,若S=f(12024)+f(22024)+…+f(20232024),则S=________.【解析】因为f(x)=44+2,所以f(1-x)=41-41-+2=22+4,所以f(x)+f(1-x)=44+2+22+4=1.S=f(12024)+f(22024)+…+f(20232024),①S=f(20232024)+f(20222024)+…+f(12024),②①+②,得2S=[f(12024)+f(20232024)]+[f(22024)+f(20222024)]+…+[f(20232024)+f(12024)]=2023,所以S=20232.答案:202323.已知是公差d≠0的等差数列,其中a2,a6,a22成等比数列,13是a4和a6的等差中项;数列是公比q为正数的等比数列,且b3=a2,b5=a6.(1)求数列和的通项公式;(2)令c n=a n+b n,求数列的前n项和T n.【解析】(1)因为a2,a6,a22成等比数列,所以62=a2a22,即(1+5)2=(a1+d)(a1+21d)①.因为13是a4和a6的等差中项,所以a4+a6=26,即(a1+3d)+(a1+5d)=26②,由①②可得:a1=1,d=3,所以a n=1+(n-1)×3=3n-2,从而b3=a2=4,b5=a6=16.因为数列是公比q为正数的等比数列,所以b5=b3q2,即16=4q2,所以q=2,从而b n=b3q n-3=2n-1.(2)由于b n=2n-1,所以b1=1.因为c n=a n+b n,所以T n=c1+c2+…+c n=(a1+b1)+(a2+b2)+…+(a n+b n)=(a1+a2+…+a n)+(b1+b2+…+b n)=+(-1)2×3+1-21-2=2n+32n2-12n-1.考点二裂项相消法求和[例2](1)已知函数f(x)=x a的图象过点(4,2),令a n=1(r1)+(),n∈N*.记数列{a n}的前n项和为S n,则S2025=________.【解析】由f(4)=2可得4a=2,解得a=12,则f(x)=12,所以a n=1(r1)+()==+1-,S2025=a1+a2+a3+…+a2025=(2-1)+(3-2)+(4-3)+…+(2025-2024)+(2026-2025)=2026-1.答案:2026-1(2)已知数列的各项均为正数,S n是其前n项的和.若S n>1,且6S n=2+3a n+ 2(n∈N*).①求数列的通项公式;②设b n=1r1,求数列的前n项和T n.【解析】①因为6S n=2+3a n+2,(i)n=1时,6S1=6a1=12+3a1+2,即12-3a1+2=0,解得a1=2或a1=1,因为S n>1,所以a1=2;(ii)n≥2时,由6S n=2+3a n+2,有6S n-1=-12+3a n-1+2,两式相减得6(S n-S n-1)=2--12+3a n-3a n-1,所以6a n=2--12+3a n-3a n-1,所以2--12-3a n-3a n-1=0,所以(a n+a n-1)(a n-a n-1)-3(a n+a n-1)=0,所以(a n+a n-1)(a n-a n-1-3)=0.因为数列的各项均为正数,所以a n+a n-1≠0,所以a n-a n-1-3=0,即a n-a n-1=3,综上所述,是首项a1=2,公差d=3的等差数列,所以a n=a1+(n-1)d=2+(n-1)×3=3n-1,所以数列的通项公式为a n=3n-1.②由①知a n=3n-1,所以a n+1=3(n+1)-1=3n+2,所以b n=1r1=1(3-1)(3r2)=13×(3r2)-(3-1)(3-1)(3r2)=13×(13-1-13r2),所以T n=13×(12-15)+13×(15-18)+13×(18-111)+…+13×(13-1-13r2)=13×(12-15+15-18+18-111+…+13-1-13r2)=13×(12-13r2)=13×3r2-22(3r2)=6r4,所以数列的前n项和T n=6r4.【解题技法】破解裂项相消求和的关键点(1)定通项:根据已知条件求出数列的通项公式.(2)巧裂项:根据通项公式的特征进行准确裂项,把数列的每一项,表示为两项之差的形式.(3)消项求和:通过累加抵消掉中间的项,达到消项的目的,准确求和.(4)常见的裂项结论:①设等差数列的各项不为零,公差为d(d≠0),则1r1=1(1-1r1);②142-1=12(12-1-12r1);③1(r1)(r2)=12(r1)(1-1r2)=12[1(r1)-1(r1)(r2)];④242-1=14(42-1)+1442-1=14+18(12-1-12r1);⑤a n=2(2+)(2r1+)=12+-12r1+;⑥a n=r12(r2)2=14[12-1(r2)2].提醒:要注意正负相消时,可以通过写出前几项观察消去规律的方法,确定消去了哪些项,保留了哪些项,不可漏写未被消去的项.【对点训练】1.{a n }是等比数列,a 2=12,a 5=116,b n =r1(+1)(r1+1),则数列{b n }的前n 项和为()A .2-12(2+1)B .2-12+1C .12+1D .2-12+2【解析】选A .a 5=a 2·q 3,所以q 3=18,所以q =12,a 1=1,所以a n =(12)n -1.b n =(12)[(12)-1+1][(12)+1]=1(12)+1-1(12)-1+1,所以b 1+b 2+b 3+…+b n =[1(12)1+1-1(12)0+1]+[1(12)2+1-1(12)1+1]+[1(12)3+1-1(12)2+1]+…+[1(12)+1-1(12)-1+1]=1(12)+1-12=2-12(2+1).2.已知数列{a n }的前n 项和为S n ,且a 2=8,S n =r12-n -1.(1)求数列{a n }的通项公式;(2)n 项和T n .【解析】(1)因为a 2=8,S n =r12-n -1,所以a 1=S 1=22-2=2.当n ≥2时,a n =S n -S n -1=r12-n -1-(2-n ),即a n +1=3a n +2.又a 2=8=3a 1+2,所以a n +1=3a n +2,n ∈N *,所以a n +1+1=3(a n +1),所以数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,所以a n +1=3×3n -1=3n ,所以a n =3n -1.(2)因为2×3=2×3(3-1)(3r1-1)=13-1-13r1-1,r1n 项和T n =(13-1-132-1)+(132-1-133-1)+…+(13-1-13r1-1)=12-13r1-1.考点三错位相减法求和[例3]已知数列中,a 1=8,且满足a n +1=5a n -2·3n .(1)证明:数列-3为等比数列,并求数列的通项公式;(2)若b n =n (a n -3n ),求数列的前n 项和S n .【解析】(1)因为a n +1=5a n -2·3n ,所以a n +1-3n +1=5a n -5·3n =5(a n -3n ),所以数列-3是以a 1-31=5为首项,以5为公比的等比数列,所以a n -3n =5×5n -1=5n ,所以a n =3n +5n .(2)因为a n =3n +5n ,所以b n =n (a n -3n )=n ×5n ,所以S n =b 1+b 2+b 3+…+b n ,即S n =1×51+2×52+3×53+…+n ×5n ①,所以5S n =1×52+2×53+3×54+…+n ×5n +1②,由①-②得:-4S n =1×51+1×52+1×53+…+1×5n -n ×5n +1,-4S n =5(1-5)1-5-n ×5n +1,化简得:S n =5+(4-1)×5r116.【解题技法】错位相减法求和的解题策略(1)巧分拆,即将数列的通项公式分拆为等差数列与等比数列积的形式,并求出公差和公比.(2)构差式,即写出S n的表达式,再乘公比或除以公比,然后将两式相减.(3)后求和,根据差式的特征准确进行求和.提醒:错位相减法求和的注意点①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式必须注意公比q是否等于1,如果q=1,应用公式S n=na1.【对点训练】已知数列的前n项和为S n=3n2+8n-6,是等差数列,且a n=b n+b n+1(n≥2).(1)求数列和的通项公式;(2)令c n=b n·2n+2n+1,求数列的前n项和T n.【解析】(1)S n=3n2+8n-6,所以n≥2时,S n-1=3(n-1)2+8(n-1)-6,所以a n=S n-S n-1=6n+5.n=1时,a1=S1=5,不满足a n=6n+5,所以a n=5(=1)6+5(≥2);设的公差为d,a n=b n+b n+1(n≥2),所以a n-1=b n-1+b n(n≥3),所以a n-a n-1=b n+1-b n-1,所以2d=6,所以d=3.因为a2=b2+b3,所以17=2b2+3,所以b2=7⇒b1=4,所以b n=3n+1;(2)c n=3(n+1)2n,所以T n=3×2+3×22+…+(+1)2①,所以2T n=32×22+3×23+…+(+1)2r1②,①-②得,-T n=3[2×2+22+23+…+2n-(n+1)2n+1]+1)2r1=-3n·2n+1,所以T n=3n·2n+1,所以数列的前n项和T n=3n·2n+1.。

高三数学第一轮复习《数列求和》讲义

高三数学第一轮复习《数列求和》讲义
=3+2× -(2n+1)3n
=3n-(2n+1)3n=-2n·3n.
∴Tn=n·3n.
③.在等差数列 中, ,前 项和 满足条件 ,
(Ⅰ)求数列 的通项公式;
(Ⅱ)记 ,求数列 的前 项和 。
解:(Ⅰ)设等差数列 的公差为 ,由 得: ,所以 ,即 ,所以 。
(Ⅱ)由 ,得 。所以 ,
当 时, ;
例题分析:
题型一 分组转化求和
例1 求和:(1)Sn= + + + +…+ ;
(2)Sn= 2+ 2+…+ 2.
解 (1)由于an= =n+ ,
∴Sn= + + +…+
=(1+2+3+…+n)+
= + = - +1.
(2)当x=±1时,Sn=4n.当x≠±1时,
Sn= 2+ 2+…+ 2= + +…+
∴Sn=3+2×32+3×33+…+n·3n,③
∴3Sn=32+2×33+3×34+…+n·3n+1.④
④-③得2Sn=n·3n+1-(3+32+33+…+3n),即2Sn=n·3n+1- ,
∴Sn= + .
变式训练2①已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
,
故 ( )
(2)
两式相减得

数列求和练习(1)
1.数列 的通项公式是 ,若它的前 项和为10,则其项数 为
A.11 B.99 C.120 D.121
解: ,则由 ,得 ,选C
2.数列 的通项是 , ,则数列 的的前 项和为
A. B. C. D.
解: ,则
,选A
3.已知数列 的前 项和为 ,则 的值是

高考总复习一轮数学精品课件 第6章 数列 第4节 第1课时 分组转化法、并项转化法和错位相减法

高考总复习一轮数学精品课件 第6章 数列 第4节 第1课时 分组转化法、并项转化法和错位相减法

例 3(12 分)(2023·全国甲,理 17)记 Sn 为数列{an}的前 n 项和,已知 a2=1,2Sn=nan.
(1)求{an}的通项公式;
突破口:已知 Sn 与 an 的关系,可利用 an=Sn-Sn-1(n≥2)解答.
(2)求数列
+1
2
的前 n 项和 Tn.
+1
1 n
关键点:化简数列得通项公式 2 =n·(2) ,可看作一个等差数列与一个等比数
GAO KAO ZONG FU XI YOU HUA SHE JI
第1课时
分组转化法、并项转化法和错位相减法
研考点
精准突破
考点一
分组转化法求和
例1(2024·辽宁锦州模拟)已知数列{an}和{bn}满足an+bn=2n-1,数列{an},{bn}
的前n项和分别记作An,Bn,且An-Bn=n.
(1)求An和Bn;
(1)求{an}的公比;
(2)若a1=1,求数列{nan}的前n项和.
解 (1)设{an}的公比为q,由题设得2a1=a2+a3,a1≠0,即2a1=a1q+a1q2,
所以q2+q-2=0,解得q=1(舍去)或q=-2.故{an}的公比为-2.
(2)记Sn为{nan}的前n项和.
由(1)及题设可得,an=(-2)n-1.
n 项和,求 T2n.
解 (1)设等差数列{an}的公差为 d,
1 + 2 = 10,
1 = 2,
因为 a3=10,a5-2a2=6,所以
解得
= 4,
(1 + 4)-2(1 + ) = 6,
所以 an=2+4(n-1)=4n-2.

高三数学一轮复习备考数列的求和说课

高三数学一轮复习备考数列的求和说课

高三数学一轮复习备考数列的求和说课高三数学一轮复习备考中,数列的求和是一个重要的考点。

在本文中,我将对数列的求和进行深入解析,包括常见的等差数列和等比数列的求和公式,以及一些应用题的解题方法。

首先,让我们来回顾一下数列的概念。

数列是由一系列按照一定规律排列的数所组成的集合。

数列的每一项称为数列的项,用ai表示,其中i表示项的位置。

数列中的规律可以用一个通项公式来表示。

对于等差数列来说,通项公式为an=a1+(n-1)d,其中a1为首项,d为公差;而对于等比数列来说,通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。

接下来,我们来看一下等差数列的求和公式。

对于等差数列来说,其求和公式是非常有用的。

设等差数列的首项为a1,公差为d,前n项和为Sn。

那么等差数列的求和公式可以表示为Sn=n/2*(a1+an),其中an表示等差数列的第n项。

在使用等差数列的求和公式时,需要明确几个关键的概念。

首先,当n为奇数时,a1和an为等差数列中间的一项;当n为偶数时,a1和an分别为等差数列的相邻两项,此时中间没有项。

其次,等差数列的前n项和与等差数列的倒序前n项和相等。

例如,对于等差数列1,3,5,7,9来说,其首项为1,公差为2。

我们可以使用等差数列的求和公式来计算前3项的和。

根据公式,n=3,所以Sn=3/2*(1+5)=9。

除了等差数列外,我们还有等比数列的求和公式。

对于等比数列来说,其求和公式也是非常重要的。

设等比数列的首项为a1,公比为r,前n项和为Sn。

等比数列的求和公式可以表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。

在使用等比数列的求和公式时,需要注意一些特殊情况。

当公比|r|小于1时,等比数列的前n项和随着n的增加而趋近于一个常数,即Sn的极限存在;当公比|r|大于1时,等比数列的前n项和随着n的增加呈无穷趋近于正无穷或负无穷;当公比|r|等于1时,等比数列不存在有限的前n项和,但存在极限。

高考数学一轮复习数列求和

高考数学一轮复习数列求和

解:(1)因为 an=2n,所以 a1=2,a2=4, 当 n=1 时,由题设可得 a1b1=2-21-1, 即 2b1=12,所以 b1=14; 当 n=2 时,由题设可得 a2b1+a1b2=22-22-1, 即 1+2b2=2,所以 b2=12. 当 n≥2 时,由题设可得 2nb1+2n-1b2+…+22bn-1+2bn=2n-n2-1, ①
a1+6d=9, [解] (1)设公差为 d,由 S4=18,a7=9,即4a1+4×42-1d=18,
解得ad1==13,, 所以 an=a1+(n-1)d=n+2.
(2)由 an=log2(bn+1),即 log2(bn+1)=n+2,所以 bn+1=2n+2,即
bn=2n+2-1,所以bn2bnn+1=2n+2-12n2n+3-1=142n+12-1-2n+13-1,所以
[典例] (2023·石家庄二中模拟)已知公差不为 0 的等差数列{an}中,
a2=3 且 a1,a2,a5 成等比数列.
(1)求数列{an}的通项公式; (2)求数列{3nan}的前 n 项和 Tn.
[解题微点] (1)根据等差数列的通项公式和等比中项可求出结果;
切入点 (2)根据错位相减法可求出结果
2n-1b1+2n-2b2+…+2bn-1=2n-1-n-2 1-1,此式两边同乘以 2,得 2nb1+2n-1b2+…+22bn-1=2n-n-1, ②
由①-②得 2bn=n2,即 bn=n4. 又由上可知,b1=14也适合上式, 故数列{bn}的通项公式为 bn=n4(n∈N *).
(2)由(1)知,cn=16×nn-n+112n =16×n2+n+11-2nn,则 c1+c2+…+cn =16×222-21+233-222+…+n2+n+11-2nn =16×n2+n+11-2.

2025版高考数学一轮总复习学案 第6章 高考大题规范解答——高考中数列问题的热点题型

2025版高考数学一轮总复习学案  第6章 高考大题规范解答——高考中数列问题的热点题型

n2-1+22n-5+n214+24n+6=3n2+2 7n.(10 分)
当 n>5 时,Tn-Sn=3n2+2 7n-(n2+4n)=n2-2 n=nn2-1>0,
所以Tn>Sn.(11分) 综上可知,当n>5时,Tn>Sn.(12分)
第六章 数列
高考一轮总复习 • 数学
名师点拨:求解数列与不等式综合问题的步骤 1.根据题目条件,求出数列的通项公式; 2.根据数列项的特征,选择合适的方法(公式法、分组转化法、裂项 相消法、错位相减法等)求和; 3.利用2中所求得的数列的和,证明不等式或求参数的范围; 4.反思解题过程,检验易错点,规范解题步骤. 提醒:解决数列与不等式的综合问题时,若是证明题,则要灵活选 择不等式的证明方法,如比较法、综合法、分析法、放缩法等;若是含 参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.
第六章 数列
高考一轮总复习 • 数学
(2)第 1 步:取等差数列{bn}的前 3 项,再利用 bn=n2a+n n,得 a1 与 d 的关系式
因为 bn=n2a+n n,且{bn}为等差数列, 所以 2b2=b1+b3,即 2×a62=a21+1a23, 所以a1+6 d-a11=a1+6 2d,所以 a21-3a1d+2d2=0,
(1)求{an}的通项公式; (2)证明:当n>5时,Tn>Sn.
第六章 数列
高考一轮总复习 • 数学
[解题思路] (1)要求数列{an}的通项公式,就需求出首项与公差.观 察已知条件知,可利用等差数列的通项公式与前n项和公式建立方程组 求出.(2)由于数列{bn}的通项分n为奇数与n为偶数给出,为此在求Tn时, 也需分n为奇数与n为偶数求解.而数列{bn}的奇数项与偶数项分别构成等 差数列,故求和时选用分组法,然后利用作差法证明不等式.

高考数学一轮复习第6章数列第4节数列求和课件理新人教A版

高考数学一轮复习第6章数列第4节数列求和课件理新人教A版

(2)由(1)得 bn=3n+2n-1,
所以
Sn

(3

32

33



3n)

(1

3

5



2n

1)

3(1-3n) 1-3

n(1+2n-1) 2
=32(3n-1)+n2
=3n2+1+n2-32.
考点二 裂项相消法求和问题 【例 2】 (2020 届合肥调研)已知在等差数列{an}中,a2=12,a5=24,数列{bn}满 足 b1=4,bn+1-bn=an(n∈N*). (1)求数列{an},{bn}的通项公式; (2)求使得b11+b12+b13+…+b1n>187成立的最小正整数 n 的值.
(2)由(1)得b1n=2n2+1 2n=2n(n1+1)=121n-n+1 1, ∴b11+b12+b13+…+b1n=121-12+12-13+…+1n-n+1 1=121-n+1 1=2(nn+1),即 2(nn+1)>187,解得 n>16, ∴满足条件的最小正整数 n 的值为 17.
►名师点津 利用裂项相消法求和的注意事项
|跟踪训练| 2.(2019 届安徽模拟)已知数列{an}满足 a1=1,an+1=2an+1. (1)证明:{an+1}是等比数列,并求{an}的通项公式; (2)求证:aa1+1a21+aa2+2a31+…+aanna+n+11<1._________
证明:(1)由 an+1=2an+1,得 an+1+1=2(an+1). 又 a1+1=2,所以{an+1}是首项为 2,公比为 2 的等比数列. 所以 an+1=2n,因此{an}的通项公式为 an=2n-1. (2)由(1)知aanna+n+11=(2n-1)2(n 2n+1-1)=2n-1 1-2n+11-1,于是aa1+1a21+aa2+2a31+…+ aanna+n+11=21-1 1-22-1 1+22-1 1-23-1 1+…+2n-1 1-2n+11-1=1-2n+11-1,所以aa1+1a21+ aa2+2a31+…+aanna+n+11<1.

数列求和课件高三数学一轮复习(完整版)

数列求和课件高三数学一轮复习(完整版)

考点一 分组(并项)法求和
【点拨】分组求和法就是对一类既不是(或不明显是)等差数列,也不 是(或不明显是)等比数列的数列,若将这类数列适当拆开,分为几个 等差、等比数列或常见的数列,然后分别求和,最后将其合并的方法.
考点二 裂项相消法求和
考点三 倒序相加法求和
考点四 错位相减法求和
祝你学业有成
2024年5月3日星期五9时47分29秒
6.4 数列求和
【常用结论】
1.判断下列命题是否正确,正确的在括号内画“√”,错误的著,程大位著,共17卷,书中有这样一个 问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到 其关,要见次日行里数,请公仔细算相还.”大致意思是:有一个人要到距离 出发地378里的地方,第一天健步行走,从第二天起因脚痛每天走的路程为 _____.

新高考2023版高考数学一轮总复习第6章第4讲数列求和课件

新高考2023版高考数学一轮总复习第6章第4讲数列求和课件

考点二 角度 1
例2
裂项相消法——多维探究 形如 bn=ana1n+1({an}为等差数列)型
(2021·广东省七校联考)已知公差不为 0 的等差数列{an}
的前 n 项和为 Sn,且 S4=26,a1,a3,a11 成等比数列.
(1)求数列{an}的通项公式;
(2)若数列Sn+1 n的前 n 项和为 Tn,求 Tn.
[解析] 由 f(4)=2 可得 4α=2,解得 α=12,
则 f(x)=x12.
∴an=fn+11+fn=
1 n+1+
= n
n+1-
n,
S2 022=a1+a2+a3+…+a2 022=( 2- 1)+( 3- 2)+( 4- 3)
+…+( 2 023- 2 022)= 2 023-1.
角度 3 形如 bn=an+kaann+1+k×q-1 1({an}为等比数列)型
(2)由题意知,数列{a2n}是首项为 1,公比为 2 的等比数列,数列{a2n -1}是首项为 1,公差为 2 的等差数列,故数列{an}的前 20 项和为 1×11--2210+10×1+102×9×2=1 123.
MING SHI DIAN BO
分组转化法求和的常见类型 (1)若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和 法求{an}的前 n 项和. (2)通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}是 等比数列或等差数列,可采用分组求和法求和.
第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.





Sn

na1+an 2
=n_a_1+__n__n_-2__1_d=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的求和与最值(高考一轮复习)
数列的最值
①10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;
②n S 最值的求法:①若已知n S ,n S 的最值可求二次函数2n S an bn =+的最值;可用二次函数最值的求法(n N +∈);②或者求出{}n a 中的正、负分界项,即:
若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或1
00n n a a +≤⎧⎨≥⎩。

1、等差数列{}n a 中,12910S S a =>,,则前 项的和最大。

2、已知数列{}n a ,22103n a n n =-+,它的最小项是
3、设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..
的是( ) A .d <0 B .a 7=0
C .S 9>S 5
D .S 6与S 7均为S n 的最大值
4、在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,
若S n 取得最大值,则n =____
5、已知数列{a n }中,6
.15-=
n n a n )(*∈N n ,求数列{a n }的最大项
6、已知}{n a 是各项不为零的等差数列,其中10a >,公差0d <,若100S =,求数列}{n a 前n 项和的最大值
7、在等差数列}{n a 中,125a =,179S S =,求n S 的最大值
8、设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,
⑴求出公差d 的范围, ⑵指出1221S S S ,,
, 中哪一个值最大,并说明理由。

数列通项公式
一、公式法(定义法)根据等差数列、等比数列的定义求通项
1.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式
2.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式
3.已知数列}{n a 满足)1(3,211≥===n a a a n n ,求数列}{n a 的通项公式
4.已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;
二、t ka a n n +=+1 (1≠k )型
在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________
三、累加法(适用于:1()n n a a f n +=+)
1.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式
2.已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式
四、累乘法(适用于: 1()n n a f n a +=)
已知数列{}n a 满足321=
a ,n n a n n a 1
1+=+,求n a
五、待定系数法(适用于1()n n a qa f n +=+)
六、递推公式法
1.数列{a n }的前n 项和为S n ,且a 1=1,113
n n a S +=
,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式
2.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列
数列的求和总结
一、直接用等差、等比数列的求和公式求和。

d n n na a a n S n n 2)1(2)(11-+=+= ⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q q
q a q na S n n 公比含字母时一定要讨论 二、倒序求和法
三、分组求和法
四、并项求和法
五、裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项:111)1(1+-=+n n n n )121121(21)12)(12(1+--=+-n n n n
)211(21)2(1+-=+n n n n ])
2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n 数列{}n a 是等差数列,数列⎭
⎬⎫⎩⎨⎧+11n n a a 的前n 项和
1.数列{}n a 的前n 项和为n S ,若1(1)n a n n =
+,则5S 等于( ) A .1 B .56 C .16 D .130
2.已知数列}{n a 的通项公式为n a =
12n +,设13242111n n n T a a a a a a +=+++⋅⋅⋅ ,求n T
3.求)(,32114321132112111*N n n
∈+++++++++++++++
4.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈⋅=,求数列{}n b 的前n 项和n S
5.已知等差数列}{n a 满足02=a , 1086-=+a a
⑴求数列}{n a 的通项公式及n S ⑵求数列}2
{
1-n n a 的前n 项和
6.设数列}{n a 满足21=a ,12123-+⋅=-n n n a a
⑴求数列}{n a 的通项公式
⑵令n n na b =,求数列}{n b 的前n 项和n S
7.已知等差数列}{n a 满足:26,7753=+=a a a ,}{n a 的前n 项和n S
⑴求n a 及n S ⑵令112-=
n n a b (+∈N n ),求数列}{n b 前n 项和n T
六、错位相减法求和:如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++
1.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b += ⑴求{}n a ,{}n b 的通项公式 ⑵求数列n n a b ⎧⎫⎨
⎬⎩⎭
的前n 项和n S
2、设向量a =(2,x ),b =(12,-+x n x )(n N +∈),函数=y a ·b 在[0,1]上的最小值与最大值的和为n a ,又数列{n b }满足:110
9)109()109(
2)1(21121++++=+++-+--- n n n n b b b n nb . ⑴求证:1+=n a n
⑵求n b 的表达式 ⑶n n n b a c ⋅-=,试问数列{n c }中,是否存在正整数k ,使得对于任意的正整数n ,都有n c ≤k c 成立?证明你的结论。

相关文档
最新文档