碳纤维表面处理的方法有
碳纤维表面处理方法的探讨
碳纤维表面处理方法的探讨1 引言碳纤维在混凝土中的分散状态是碳纤维混凝土制备和应用过程中的关键问题,对其导电性能、电一力和力一电等效应具有重要的影响。
国内外学者对碳纤维的分散开展了大量研究工作,美國纽约州立大学布法罗分校的D.D.L.Chung最早采用甲基纤维素(MC)作为分散剂对纤维分散进行改善。
此外,她还提出对碳纤维进行表面改性的两种方法:一种是将碳纤维浸泡在强氧化剂溶液中或在臭氧中处理[1],在其表面形成具有亲水性的含氧官能团;另一种方法是将碳纤维浸泡在硅烷偶联剂溶液中,在纤维表面形成硅烷涂层而提高亲水性。
孙辉、孙明清等发现在水泥浆体中掺加羧甲基纤维素钠(CMC)和硅灰能显著改善碳纤维的分散性。
王闯等[2]使用甲基纤维素(MC)、羧甲基纤维素钠(CMC)、羟乙基纤维素(HEC)3种常用分散剂后发现分散剂对短碳纤维的分散效果为HEC>CMC>MC。
2 常用表面处理方法2.1 阳极氧化法阳极氧化法,又称为电化学氧化表面处理,是以碳纤维作为电解池的阳极,石墨作为阴极,在电解水的过程中利用阳极生产的“氧”,氧化碳纤维表面的碳及其含氧官能团,将其先氧化成羟基,之后逐步氧化成酮基、羧基和二氧化碳的过程。
阳极氧化法对碳纤维的处理效果不仅与电解质的种类密切相关,并且增加电流密度与延长氧化时间是等效的。
该表面处理方法可以通过改变反应温度、电解质浓度、处理时间和电流密度等条件进行控制。
通过此方法处理后,使碳纤维表面引入各种功能基团而改善纤维的浸润和黏接等特性,显著增加碳纤维增强复合材料的力学性能。
庄毅等[3]采用碳酸氢铵为电解质,对PAN基碳纤维进行阳极氧化处理后,测试发现复合材料的层间剪切断裂转变为张力断裂,使其ILSS提高了49%。
阳极氧化法的特点是氧化反应缓和,易于控制,处理效果显著,可对氧化程度进行精确控制,目前已得到广泛应用,是目前最具有实用价值的方法之一。
但是处理后残留电解质的洗净和干燥十分繁琐,需要连续的电化学处理设备,对处理后的碳纤维进行充分的水洗、烘干,会增加处理成本。
对碳纤维表面处理的认识与理解
对碳纤维表面处理的认识与理解碳纤维是一种新型的纤维材料,因其具有轻质、高强度、耐腐蚀等优良性能而被广泛应用于航空、航天、汽车、体育器材等领域。
然而,碳纤维表面具有一定的亲水性和表面能,与其他材料接触时易产生剥离、分层等问题,因此碳纤维的表面处理变得尤为重要。
本文将对碳纤维表面处理的认识与理解进行详细阐述。
一、碳纤维表面处理的必要性由于碳纤维表面的亲水性和表面能,对各类粘接剂的黏附能力强,同时对于各种腐蚀环境的敏感度也较高。
在实际生产、应用过程中,碳纤维经常需要和其他不同材料进行接触,如金属、陶瓷等。
此时若没有进行必要的表面处理,易造成产物剥离、结构松散、化学腐蚀等问题,从而影响产品的使用性能。
二、碳纤维表面处理的方法1、物理处理:该方法主要包括氧气、等离子体、激光等方法。
其中,氧气处理是目前较为常用的方法。
氧气在高温下与碳纤维表面发生氧化反应,改善纤维表面亲水性,增加其表面能。
等离子体、激光处理也能有效地改善碳纤维表面性质。
除此之外,还可采用研磨、喷砂等方法将碳纤维表面的油污、杂质清除,提高其粘接性和耐腐蚀性。
2、表面涂层:这种方法是通过在碳纤维表面覆盖一层特殊涂层,来改善其表面性质。
常用的涂层有聚合物、金属、氧化物等,可根据需要选择不同材料的涂层。
例如,以聚合物涂层为例,可以通过电泳沉积、喷涂等方式在碳纤维表面涂覆一层聚合物薄膜,以增加碳纤维表面的粘接力和耐腐蚀性。
3、化学处理:该方法通过在碳纤维表面引入一些化学物质,改变其表面性质,以提高其粘接性和耐腐蚀性。
常用的化学处理方法有表面喷涂、表面改性等。
例如,采用表面改性法,可以将碳纤维表面进行阳离子化改性,增加其表面的化学反应活性,改善其粘接性和耐腐蚀性。
三、表面处理后的碳纤维性质变化经过表面处理的碳纤维,其表面能被有效改善,亲水性变强,粘接力和耐腐蚀性能都能得到提高,从而可在更广泛、更复杂的应用中发挥更为优异的性能。
四、总结碳纤维表面处理是当前碳材料领域的一个热点问题,对于完善碳材料的力学性能和表界面性能至关重要,是碳材料研究和应用的必经之路。
碳纤维布施工工艺方法和要求
碳纤维布施工工艺方法和要求一、应根据施工现场和被加固构件混凝土实际状况,拟定施工方案和施工计划。
对所使用的碳纤维片材、配套树脂、机具等做好施工前准备工作。
(一)表面处理:1、应清除被加固构件表面的剥落、疏松、蜂窝、腐蚀等劣化混凝土,露出混凝土结构层,并用修复材料将表面修复平整。
2、应按设计要求对裂缝进行灌缝或封闭处理。
3、被粘贴混凝土表面应打磨平整,除去表层浮浆、油污等杂质,直至完全露出混凝土结构新面。
转角粘贴处要进行导角处理并打磨成圆弧状,圆弧半径不应小于20㎜。
4、混凝土表面应清理干净并保持干燥。
(二)涂刷底层树脂:1、按产品供应商提供的材料配比进行配制;甲、乙两组胶按配比装入容器桶内,采用电锤及扩大头钻头,转速在600转/分,搅拌时间约8分钟;使胶无色差。
搅拌均匀后方可使用。
2、应用滚筒刷将底层树脂均匀涂抹于混凝土表面。
应在树脂表面指触干燥后立即进行下一步工序施工。
(三)找平处理:1、应按产品供应商提供的工艺规定配制找平材料。
2、应对混凝土表面凹陷部位用找平材料填补平整,且不应有楞角。
3、转角处应用找平材料修复为光滑的圆弧,半径应不小于20㎜。
4、应在找平材料表面指触干燥后立即进行下一步工序施工。
(四)粘贴碳纤维片材:1、粘贴碳纤维布应符合下列要求:(1)按设计要求的尺寸裁剪碳纤维布;(2)应按产品供应商提供的工艺规定配制浸渍树脂并均匀涂抹于所要粘贴的部位;(3)用专用的滚筒顺纤维方向多次滚压,挤除气泡,使浸渍树脂充分浸透碳纤维布。
滚压时不得操作碳纤维布;(4)多层粘贴重复上述步骤,应在纤维表面浸渍树脂指触干燥后立即进行下一层的粘贴;(5)在最后一层碳纤维布的表面均匀涂抹浸渍树脂。
2、应按下列步骤粘贴碳纤维板:(1)应按设计要求的尺寸裁剪碳纤维板,按产品供应商提供的工艺规定配制粘结树脂;(2)将碳纤维板表面擦拭干净至无粉尘。
如需粘贴两层时,对底层碳纤维板两面均应擦拭干净;(3)擦拭干净的碳纤维板应立即涂刷粘结树脂,胶层应呈突起状,平均厚度不小于2㎜;(4)将涂有粘结树脂的碳纤维板用手轻压贴于需粘贴的位置。
碳纤维施工工艺
碳纤维施工工艺碳纤维是一种轻质高强度材料,具有优异的机械性能和化学稳定性,因此在建筑、航空航天、汽车等领域得到广泛应用。
碳纤维施工工艺是指利用碳纤维材料进行建筑结构加固、修复和新建的工艺方法。
在本文中,我们将介绍碳纤维施工工艺的常用方法和操作步骤。
1. 表面处理在进行碳纤维施工前,首先需要对施工表面进行处理。
表面处理的目的是去除污垢、油脂和松散的材料,确保碳纤维能够与基材充分粘结。
通常采用的表面处理方法包括喷砂、化学清洗和机械磨削等。
2. 粘结剂选择选择合适的粘结剂是碳纤维施工工艺中非常重要的一步。
常见的粘结剂有环氧树脂、聚酯树脂和水泥基粘结剂等。
不同的粘结剂有不同的特性和适用范围,需要根据具体情况进行选择。
3. 碳纤维布铺贴将预先浸渍好的碳纤维布贴在待加固或修复的结构表面上。
碳纤维布要紧密贴附在结构表面,并确保没有气泡或皱褶。
在施工过程中,要注意避开横梁、支撑等构件,保证碳纤维布的贴附均匀。
4. 粘接将碳纤维布粘接到结构表面上,使用适当的粘结剂进行固化。
具体的粘接方法取决于使用的粘结剂类型,通常有刷涂、滚涂或喷涂等。
在施工过程中,要注意确保粘结剂均匀涂抹,避免粘结剂过多或过少。
5. 压实在粘接完成后,使用专门的工具对碳纤维布进行压实。
压实的目的是确保碳纤维与结构表面之间的紧密接触,并提高粘结强度。
常用的压实工具包括滚筒、刮板和喷涂等。
6. 后处理碳纤维施工完成后,需要进行适当的后处理工作。
后处理包括修整、填缝和打磨等。
修整是指修剪或切割多余的碳纤维布,使其与结构表面保持一致。
填缝是指使用特殊的填缝材料填补碳纤维布。
碳纤维后处理工艺流程
碳纤维后处理工艺流程碳纤维是一种轻、强、高模量的新型纤维材料,具有优异的力学性能和化学稳定性,广泛应用于航空航天、船舶、汽车、体育器材等领域。
然而,碳纤维作为一种高性能材料,在生产过程中仍然需要进行后处理工艺,以提高其表面质量和增强其性能。
碳纤维后处理工艺涉及到表面处理、改性处理和功能化处理等环节,本文将详细介绍碳纤维后处理工艺流程。
一、碳纤维后处理工艺流程概述碳纤维后处理工艺是在碳纤维制备过程中的最后一个环节,主要目的是改善碳纤维的表面性质,提高其粘接性、润湿性、导热性等特性,进而增强其在复合材料中的应用效果。
碳纤维后处理工艺流程主要包括表面处理、改性处理和功能化处理三个环节,具体步骤如下:1.表面处理碳纤维的表面处理是后处理工艺的第一步,主要是利用物理或化学方法清洁碳纤维表面,去除尘埃、油脂和其他污染物,以确保后续处理工艺的顺利进行。
常用的表面处理方法包括喷砂、溶剂清洗、气体等离子处理等。
2.改性处理改性处理是碳纤维后处理工艺的核心环节,通过改性处理可以有效改善碳纤维的表面特性,增强其黏附性和润湿性,提高其力学强度和耐热性。
常用的碳纤维改性处理方法包括氧化、氢化、表面活性剂处理、离子注入、化学涂层等。
3.功能化处理功能化处理是对碳纤维进行特定功能的表面改性,以赋予其特定的性能,如增强导电性、抗静电性、耐化学腐蚀性等。
常用的碳纤维功能化处理方法包括导电涂层、化学修饰、阳离子改性等。
以上是碳纤维后处理工艺流程的概述,下面将详细介绍每个环节的具体处理工艺。
二、碳纤维后处理工艺流程详解1.表面处理表面处理是碳纤维后处理工艺的第一步,其目的是清洁碳纤维表面,去除表面杂质和污染物,提高后续处理工艺的效果。
常用的表面处理方法包括:(1)喷砂:利用高速气流将砂粒冲击碳纤维表面,去除表面污染物和氧化层,增加表面粗糙度,提高黏附性。
(2)溶剂清洗:采用有机溶剂如丙酮、丙醇等对碳纤维表面进行清洁,去除油脂、树脂等污染物。
碳纤维表面处理与改性
碳纤维表面处理与改性碳纤维很少单独使用,主要用作复合材料的增强体,其力学性能优势通过复合材料发挥出来。
但复合材料的性能不仅取决于碳纤维本身,更取决于碳纤维与基体之间的界面。
良好的界面结合才能将载荷有效传递给碳纤维,从而充分发挥碳纤维的高强度、高模量特性。
反之,如果碳纤维与基体之间的界面性能较差,应力无法在界面有效传递,则碳纤维的力学性能优势难以发挥出来,将导致复合材料的性能下降。
碳纤维经过高温炭化处理后,大部分非碳元素被脱除,纤维表面呈现较高的惰性,导致在制造复合材料时基体对碳纤维的浸润性变差。
通过对碳纤维进行表面改性,可以改善其表面活性以及与基体的浸润性,增强纤维与基体之间的相互作用,从而有利于复合材料力学性能的提高。
因此,表面处理工艺是碳纤维制备过程中的重要环节之一。
碳纤维的表面改性处理方法有很多,如气相氧化法(包括空气氧化、臭氧氧化)、等离子体处理、液相氧化法(包括酸液氧化、阳极氧化)、表面涂层法、表面接枝法等。
每种处理方法都有自己的优缺点,如气相氧化法流程短,碳纤维经过气相氧化处理后可直接上浆,不需要配套水洗和干燥设备,但是其氧化程度不易控制。
而阳极氧化法具有氧化程度易于控制、氧化过程缓和、氧化效果显著等特点,但该方法需要配套水洗和干燥设备,流程较长。
阳极氧化法的最大优点是处理时间短,能够满足连续生产的要求,因而成为目前国内外碳纤维生产线在线配套的主要方法。
此外,近几年表面涂层法和表面接枝法也发展迅速,特别是基于纳米材料和高分子材料的碳纤维表面改性方法研究较多,在实验室取得了良好的效果,有望成为新一代在线配套的表面处理方法。
1、阳极氧化法阳极氧化法通常是在电解质溶液中以碳纤维为阳极、石墨板为阴极对碳纤维表面进行电化学处理。
电解质溶液种类较多,主要可以分为酸性、碱性及中性三种。
酸性电解质主要为无机含氧酸,如硫酸、硝酸、磷酸、硼酸等;碱性电解质有氢氧化钠、氢氧化钡、氢氧化钙、氢氧化镁磷酸钾、磷酸钠等;中性电解质主要有硝酸钾、硝酸钠以及碳酸氢铵、碳酸铵、磷酸铵等铵盐类电解质。
碳纤维表面处理及其复合材料性能研究
2020年01月碳纤维表面处理及其复合材料性能研究张安花(厦门新凯复材科技有限公司,福建厦门361021)摘要:碳纤维具有耐高温、导电、导热、耐腐蚀等性能,可制作成各种复合材料产品,应用于不同领域中。
为提升航空复合材料强度,研究使用浓硝酸、浓硝酸超声处理碳纤维表面,经处理会影响碳纤维表面的微结构、表面化学组成,达到增强复合材料性能效果。
关键词:碳纤维;表面处理;复合材料性能碳纤维主要和树脂等材料复合,具有增强作用,可制造出更先进的复合材料。
但因类石墨结构其表面存在一定化学惰性,很难浸润树脂及化学反应,表面难与树脂结合,进而影响复合材料强度。
故需改变碳纤维表面性质,以增加碳纤维表面的极性官能团及表面活化,进而更容易浸润和发生化学反应,使复合材料界面更紧密连接而增加强度。
通常采用偶联剂涂层法、氧化法、等离子等处理方法.在航空领域因耐燃效果需求高使用酚醛树脂,而市面上的碳纤维较少有偶联剂涂层适用酚醛树脂,本文研究液相氧化法与超声协同处理碳纤维表面,达到增加酚醛树脂碳纤维复合材料强度。
1实验方法1.1碳纤维表面处理方法(1)碳纤维表面的上浆剂脱除选用PAN 基碳纤维,型号为Toray T700,使用乙醇/丙酮进行回流处理,其体积比为1:1,处理时间为48h ,将碳纤维表面的上浆剂(即偶合剂)脱除(2)脱浆后碳纤维再进行表面处理处理方法有两种:第一,在浓硝酸中浸泡,温度为60℃,处理时间为2h ;第二,浓硝酸超声处理2h ,浓度为65%,250E II 型超声波,功率和频率分别为250W 和40kHz 。
所有处理工作的结束后,去离子水清洗碳纤维,使其为中性,再在真空中烘干,温度为80℃,直到碳纤维恒重量为止。
1.2复合材料制备采用碳纤维与PF475酚醛树脂制成复合材料预浸布,酚醛树脂与异丙醇制成固成份70%的树脂,使用缠绕法进行制作预浸材,制成纤维含量FAW 100g/m 2,树脂含量RC%37%,用55度将溶剂烘烤至VC%1%以下的预浸材,再将预浸材进行积层堆叠成试片,采用成型温度160度,时间50min 进行加压固化,制成2mm 厚度复材试片。
碳纤维破损修复方法
碳纤维破损修复方法
碳纤维破损的修复方法主要有以下几种:
1. 砂纸打磨法:首先需要准备一张砂纸,将碳纤维损伤的部位表面清洁干净,然后使用砂纸蘸水轻轻摩擦损伤部位。
2. 冰镇可乐法:将一点点可乐倒在抹布上,然后在损伤部位不断擦拭。
多次擦拭后,划痕的痕迹可能会逐渐变轻。
3. 牙膏修复法:使用抹布将划痕清洁干净,然后将牙膏挤到湿毛巾或软海绵上,对着划痕上下进行擦拭。
4. 风油精修复法:这种方法适用于碳纤维划痕不重的情况。
如果划痕很严重,需要去修车店处理。
5. 碳纤维布修复法:需要先去除损伤部位的表面漆层,然后梯度打磨4-5层碳纤维。
接下来裁剪相同纹路、大小碳纤维布,用环氧树脂胶浸透纤维布,铺层。
最后进行固化、打磨,并进行表面处理(喷漆、上光油、打磨、抛光)。
以上方法仅供参考,如果碳纤维损伤严重,建议寻求专业人士帮助。
碳纤维的可持续生产技术考核试卷
A.使用可再生能源
B.提高原料利用率
C.废气、废水处理
D.提高生产速度
2.以下哪些因素影响碳纤维的力学性能?()
A.纤维的直径
B.前驱体的类型
C.碳化过程中的温度控制
D.纤维的表面处理
3.碳纤维的前驱体材料主要包括哪些?()
A.聚丙烯腈
B.粘胶
1.碳纤维主要成分是:()
A.碳
B.硅
C.氧
D.氮
2.下列哪种不是碳纤维的制备原料?()
A.聚丙烯腈
B.煤油
C.粘胶
D.聚乙烯
3.碳纤维生产过程中的前驱体是什么?()
A.聚合物纤维
B.硅纤维
C.金属纤维
D.玻璃纤维
4.碳化过程中,碳纤维的含碳量是多少?()
A. 90%以上
B. 70%以上
C. 50%以上
4.碳纤维的表面处理可以提高其与树脂的粘结性能。(√)
5.碳纤维的可持续生产主要关注的是降低生产成本。(×)
6.碳纤维的直径越小,其力学性能越好。(√)
7.碳纤维复合材料在汽车制造中的应用主要是为了增加汽车的重量。(×)
8.碳纤维生产过程中的废水可以未经处理直接排放。(×)
9.碳纤维的可持续生产与环境保护无关。(×)
()
4.讨论在碳纤维生产中如何实现废水、废气和固体废物的减量化、无害化和资源化。
()
标准答案
一、单项选择题
1. A
2. B
3. A
4. A
5. D
6. C
7. D
8. D
9. D
10. D
11. D
12. C
碳纤维表面处理技术分析
碳纤维表面处理技术分析随着近些年我国工业技术水平的不断提升,当前碳纤维材料的应用变得越来越广泛,且其相关的处理技术,也有这较为迅猛的发展趋势,进一步巩固了碳纤维材料在航空航天、建筑、化工、汽车等领域的应用成效。
为了强化相关人员的认识,本文通过对碳纤维表面处理技术的内容展开分析,希望能够起到一些积极的参考作用。
标签:碳纤维;表面处理;技术分析;探究在工业应用上,由于碳纤维材料具有较小的相对密度,且其比强较高、比模量高、热膨胀系数小等特点,所以其应用效果比着以往的材料更具优越性。
为了更好发挥碳纤维材料的作用,需要对其表面进行有效的处理,降低碳纤维表面的惰性,发挥其高性能的使用特点。
在调查中发现,针对碳纤维这种材料,国内外的表面改性研究都极为活跃,通过提升表面活性,能够强化碳纤维与基体树脂之间的界面性能,进而巩固复合材料层间剪切强度。
1 非氧化法1.1 气相沉积法针对碳纤维表面处理技术的内容,采用气相沉积法,可以对材料界面的黏结性能进行巩固,进一步增强复合材料的层间剪切强度。
在技术应用的过程中,主要可以采取两种方法:一种是对碳纤维材料进行加热,当其温度达到1200℃的时候,再利用相应的混合气体展开处理,甲烷等混合气体,会在碳纤维表面形成无定型碳的涂层,整个材料的剪切强度可以提升两倍;另一种是利用喹啉溶液来进行处理,同时经过干燥程序后,碳纤维复合材料层间的剪切强度能够提升2-3倍。
尽管这种方法能够提升复合材料的界面性能,但是其工艺条件比较苛刻,执行过程中具有一定的危险性,所以在工业化应用上并不是十分的广泛。
1.2 电聚合法在电场力的作用下,电聚合法可以令那些含有活性基团的单体,在碳纤维表面聚合为膜,进而对材料的表面形态、组成进行改善。
在对电聚合法进行应用的时候,主要采用一些热塑性的聚合物,但是由于这些聚合物自身不具备耐高温的性能,所以复合材料的高温层间剪切强度、湿态层间剪切强度,均会出现不同程度的下降。
碳纤维表面打磨方法
碳纤维表面打磨方法碳纤维是一种轻质、高强度、耐腐蚀的材料,在航空航天、汽车和运动器材等领域具有广泛的应用。
为了使碳纤维的外观更加光滑、美观,通常需要进行表面打磨。
下面介绍一些碳纤维表面打磨的方法。
方法一:手工打磨手工打磨是最基本的打磨方法,适用于较小的碳纤维零件或表面面积不大的碳纤维板材。
打磨时需要使用砂纸或磨纸轮,先用较粗的砂纸或磨纸轮进行初步打磨,然后逐渐转换到较细的砂纸或磨纸轮进行细致的打磨。
打磨时要保持手工稳定,力度均匀,避免在碳纤维表面留下凹陷或凸起。
方法二:机械打磨机械打磨使用专业的打磨设备,既能提高效率,又能保证打磨的质量。
常用的机械打磨设备包括研磨机、抛光机和砂光机等。
其中,研磨机适用于初步打磨,抛光机适用于细致打磨,砂光机适用于对大面积碳纤维板材进行打磨。
在使用机械打磨时,需要根据碳纤维的特性以及要求的表面质量选择合适的打磨工具和打磨参数,以避免对碳纤维造成损害。
方法三:化学处理化学处理是一种专业的碳纤维表面处理方法,可以有效地消除碳纤维表面的污垢和瑕疵,并使其表面更加光滑。
常用的化学处理方法包括电化学抛光、酸洗、硝酸处理等。
在进行化学处理前,需要了解碳纤维的化学性质以及要求的表面处理效果,以避免对碳纤维造成化学损害或表面毁坏。
需要注意的是,无论采用哪种碳纤维表面打磨方法,都需要严格控制打磨力度和打磨持续时间,以免对碳纤维造成损坏或影响碳纤维的性能。
同时,在进行碳纤维表面打磨时,还需要遵循相关的安全操作规程,戴好手套、口罩、防护眼镜等安全防护措施,以保障人身安全和健康。
总之,碳纤维表面打磨是一项需要专业技术和经验的技术活,需要根据不同打磨材料和要求,选择合适的打磨方法和工具,并掌握正确的打磨技巧和安全操作规程,才能实现理想的打磨效果。
碳纤维表面处理方法
碳纤维表面处理方法碳纤维是一种高强度、高模量的纤维材料,广泛应用于航空航天、汽车、体育器材等领域。
然而,碳纤维表面的处理对其性能和应用有着至关重要的影响。
本文将介绍几种常见的碳纤维表面处理方法。
1.化学处理碳纤维表面的化学处理方法包括氧化、硝化、酸洗等。
这些方法可以使碳纤维表面产生一层氧化层或硝化层,提高其表面活性和亲水性。
同时,酸洗可以去除碳纤维表面的杂质和残余物,提高其表面的纯度。
2.机械处理碳纤维表面的机械处理方法包括砂纸打磨、切割、磨削等。
这些方法可以去除碳纤维表面的毛刺或不平整部分,提高其表面平整度和光泽度。
同时,机械处理也可以使碳纤维表面更容易进行涂覆或粘接。
3.等离子体处理等离子体处理是一种新兴的碳纤维表面处理方法。
它利用等离子体产生的离子和电磁波对碳纤维表面进行处理,可以使其表面产生化学反应或物理变化。
等离子体处理可以在不改变碳纤维本身结构的情况下改善其表面性质,如增强其表面活性、提高其耐热性、增强其耐候性等。
4.硅化处理硅化处理是一种常用的碳纤维表面处理方法。
它将碳纤维表面涂覆一层硅化物,可以提高其表面硬度和抗磨损性能。
硅化处理还可以改变碳纤维表面的摩擦系数和耐腐蚀性能,提高其应用范围和使用寿命。
5.表面修饰表面修饰是一种较为简单的碳纤维表面处理方法。
它利用化学涂覆或物理吸附的方法,在碳纤维表面涂覆一层表面活性剂或功能化分子。
这些分子可以使碳纤维表面产生特定的化学反应或物理特性,如吸附、催化、防腐等。
碳纤维表面处理是提高碳纤维性能和应用范围的重要手段。
不同的处理方法可以根据不同的应用场景和需求进行选择和组合,以达到最佳效果。
碳纤维的表面处理技术
碳纤维表面改性技术摘要碳纤维是一种高性能的材料,它在军事及工业等领域已得到广泛的应用,但由于表面结构的不足,而限制其在复合材料中的部分应用,因此,为了提高碳纤维复合材料的界面结合力,目前国内外的多种表面改性技术得到广泛的应用,主要包括氧化处理,表面涂层法,射线、激光辐射改性及其他处理方法等。
关键词碳纤维,表面改性,氧化处理,表面涂层1 前言碳纤维是纤维状的碳素材料,含碳量在85%以上,它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得[1]。
碳纤维具有十分优异的力学性能,具有比强度高、比模量高等优异特性,在国民经济各个领域得到广泛应用。
是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。
除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高,非磁体但有电磁屏蔽性等。
作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。
因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。
碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响[2]。
2 碳纤维的简介碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的,其含碳量在85%以上,在热裂解过程中排出其它元素,形成石墨晶格结构。
根据性能的不同可分为高强度、高模量碳纤维,活性碳纤维和离子交换碳纤维。
再生碳纤维表面处理及其应用
摘要再生碳纤维及其复合材料应用具有很大的环境价值和经济价值。
通过制备水性聚氨酯上浆剂并对再生碳纤维进行表面处理,可以有效改善碳纤维表面润湿性,并进一步增强其与热塑性树脂的界面结合。
实验结果表明,再生碳纤维经表面改性后,再生碳纤维/ABS树脂基复合材料展现出良好的拉伸强度以及弹性模量。
旨在丰富再生碳纤维热塑性树脂基复合材料的相关研究,为后续再生碳纤维表面再构造及其热塑性复合材料制备提供参考依据,有望促进再生碳纤维在工业领域的应用。
碳纤维增强树脂基复合材料具有高比强度、比模量、耐超高温、耐疲劳等特性,越来越广泛地应用在汽车高铁、体育用品、医疗器械、风电产业、航空航天,以及国防、卫星、导弹等尖端武器装备材料领域中。
然而,随着碳纤维增强树脂基复合材料在上述工业领域内的规模化应用,其零部件更新换代,产品使用期限到期,产生了大量的废弃物料。
为实现复合材料产业的结构优化与循环创新发展,降低碳排放与环境污染,碳纤维树脂基复合材料的绿色回收与高值利用势在必行。
热解处理法可以有效的分解碳纤维复合材料中的热固性树脂基体并获得表面光洁的再生碳纤维(recycled carbon fibre,rCF)。
然而,经过热解高温处理的再生碳纤维需要进行表面再构造,以利于构建与树脂基体的良好界面结构。
复合材料界面构造影响纤维与树脂基体之间应力传递与分散,因此对再生碳纤维进行表面改性以增强其界面性能是获得优良综合性能复合材料的关键。
上浆表面处理是一种有效改善纤维表面性能的方式。
通过利用上浆剂在碳纤维表面形成一层致密均匀的保护膜,可以提高碳纤维集束性、表面润湿性,增加纤维与树脂之间界面粘结性。
上浆剂可以分为溶剂型上浆剂和乳液型上浆剂,溶剂型上浆剂将功能性聚合物树脂溶解于有机溶剂(如丙酮、甲苯、氯仿、四氢呋喃等)中形成均匀的溶液,其可以在纤维表面形成均匀的聚合物层,但是有机溶剂对环境和人体的危害较大。
乳液型上浆剂采用去离子水作为主要溶剂,对环境和人体更为友好,同时具有成本低、稳定性高等优点。
聚丙烯腈基碳纤维的制备-表面处理
碳纤维表面处理之阳早格格创做碳纤维动做一种具备下强度下模量的进步资料,常常需要与其余基体资料举止复合造备成复合资料举履止用.由于碳纤维自己通过1300℃以上的下温处理,纤维中90%以上由碳元素组成,纤维表面活性官能团很少,具备较强的惰性,与下分子树脂等基体举止复适时,纤维与树脂的分离较好,效率纤维劣同力教本能的收挥,并最后效率复合资料的本能.果此正在碳纤维造备历程中,常常需要对付碳纤维举止表面处理,减少其表面的活性基团,巩固与树脂等基体之间的分离..1 表面处理要领由于碳纤维表面处理对付其复合资料本能普及的效率,果此表面处理要领的钻研也是碳纤维造备技能钻研的重面.通过多年的钻研,科研处事者启垦了多种对付碳纤维举止表面处理要领,表列出了不妨对付碳纤维举止表面处理的分歧要领及其效率果素.正在那些处理要领中,暂时应用正在工业化死产上的基础上皆是电解氧化法.表碳纤维表面处理要领战效率果素序号典型处理要领效率果素1 气相氧化O2、O3、NO2、NO、SO2、NH3、气氛、火蒸气/气氛、NO/气氛时间、温度、浓度、流量2 液相氧化HNO3、H2O、KMnO4、NaClO3、Na2Cr2O7/H2SO4、H2O2/H2SO4、NaClO3/ H2SO4、KMnO4/ H2SO4时间、温度、组成比率、3 电解氧化氨火、碳酸氢铵、H2SO4、HNO3、H3PO4、NaOH、KOH、NaCl、Na2CO3、NH4NO3、NaHCO3等火溶液时间、电压、电流稀度、电解量浓度4 催化氧化硝酸铜、醋酸铜、硝酸铅、硝酸亚铅、硝酸铁、硫酸铁、硝酸铋、钒酸盐、钼酸盐时间、温度、催化剂量5 电激励散合物涂层丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、苯乙烯、醋酸乙烯、丙烯酰胺、乙烯基吡咯烷时间、电压、电流、溶剂、单体浓度6 散合物电重积涂层苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、乙烯基甲基醚与马去酸酐共散物时间、电压、电流、溶剂、共散物离子浓度7 表面涂覆PV A、PVC、PAN、硅烷物,硬性散氨酯冰乌树脂组成含量、涂覆量8 下温气相重积SiC、TiC、TiO2、ErC、NiC、B、BN、NbC、TaC、石朱晶须、碳温度、时间、载气、试剂含量9 表面散合物接枝丙烯酸、丙烯酸甲酯、苯乙烯、丙烯腈-苯乙烯、丙烯腈、同氰酸酯时间、氧化程度、接枝量、浓度10 等离子体处理O2、NH3、Ar、N2、气氛、SiC涂层、AN散合时间、真空度、功率、震动速度11 电子辐照γ射线等辐照剂量、时间.1.1 气相氧化法气相氧化法是将碳纤维表露正在气相氧化剂(如气氛、氧等)中,正在加温、加催化剂等特殊条件下使其表面氧化死成一些活性基团(如羟基战羧基).气相氧化处理不妨灵验普及碳纤维与基体间的界里剪切强度.如将碳纤维正在450℃的气氛气氛中氧化10分钟,所造备的复合资料的剪切强度战推伸强度皆有所普及;采与浓度为0.5-15mg/L的臭氧连绝导进碳纤维表面处理炉中举止表面处理,碳纤维的界里剪切强度可达78-105MPa;氧气气氛中用卤素、二氧化硫等搞压造剂,也可灵验革新表面个性.气相氧化法的便宜是较便当的正在线配套使用,处理速度快,缺面是对付碳纤维的处理匀称性不敷理念,工艺条件苛刻,统造艰易,简单对付碳纤维力教本能爆收较大的益伤,而且有毒有害气体的使用对付环境效率较大..1.2 液相氧化法液相氧化法是利用强氧化性液体大概者溶液,如硝酸、重铬酸钾、次氯酸钠、过氧化氢、过硫酸钾等对付碳纤维举止表面处理,使其表面爆收羧基、羟基、羰基等含氧基团,进而达到巩固与树脂界里分离的脚法.由于液相氧化法较气相氧化法较为温战,氧化程度较简单统造,阻挡易使纤维爆收太过氧化效率其力教本能,是钻研较多的要领之一.然而该要领由于处理时间较少,很易与碳纤维死产线匹配,通时常使用于碳纤维的间歇表面处理,而且强氧化性液体对付设备腐蚀宽重,也不利于从碳纤维中扫除搞洁..1.3 催化氧化法催化氧化法是利用金属盐类对付碳纤维举止催化氧化,该要领不妨灵验普及表面处理速度,然而由于碳纤维与催化剂很易匀称交战,其氧化匀称性受到效率,而且也存留催化剂扫除艰易的问题.该要领基础只停顿正在钻研阶段..1.4 散合物涂层法电激励散合物涂层、散合物电重积涂层、表面散合物接枝战表面涂覆等要领皆是正在碳纤维表面引进一薄层散合物膜,进而达到与基体树脂匹配的效验.其中电激励散合物涂层、散合物电重积涂层皆是利用碳纤维自己具备导电性的个性,正在电场的效率下正在碳纤维表面激励散合大概者重积散合物,进而引进活性基团,普及与基体树脂的界里分离.表为分歧涂层典型对付碳纤维复合资料本能的效率.通过电化教涂层改性后,碳纤维复合资料的层间剪切强度战抗直强度皆比已处理时有明隐普及,而且正在一些条件下还不妨普及抗冲打强度.然而是那些要领自己本去不真真改变碳纤维表面结构,果此基础不会对付碳纤维力教效率爆收明隐效率.共时根据基体树脂的个性采用符合的单体大概者散合物,不妨较佳天达到普及复合资料本能的脚法.涂层薄度战匀称性统造是那些要领的易面.表电化教涂层对付碳纤维复合资料本能的效率涂层典型层间剪切强度/MPa抗冲强度/kJ/m2抗直强度/MPa马去酸酐/苯乙烯=1:1 68 57 1100 马去酸酐/苯乙烯=2:1 59 72 1100 马去酸酐/苯乙烯=3:1 62 56 1000 马去酸酐/己烯=1:1 61 42 1000 马去酸酐/十八烯=1:1 52 44 910 马去酸酐/甲基乙烯基醚=1:1(分子量50万)48 86 900 马去酸酐/甲基乙烯基醚=1:1(分子量75万)59 130 950 马去酸酐/甲基乙烯基醚=1:1(分子量125万)54 140 860 已处理34 63 780下温气相重积是正在下温条件下将碳化硅、石朱晶须等重积到碳纤维表面,所重积的物量对付树脂起到物理锚定效率,进而减少碳纤维与树脂之间的分离.该要领不妨小批量处理碳纤维,然而真动工业化死产较为艰易..1.5 等离子体法等离子体是具备脚够数量而电荷数近似相等的正背戴电粒子的物量汇集态.用等离子体氧化法对付纤维表面举止改性处理,是指利用非散合性气体对付资料表面举止物理战化教效率的历程.采与矮温等离子大概微波等离子对付碳纤维举止表面处理也是止之灵验的要领,该要领的个性是气一固反应,无传染,处理时间较短,常常几秒钟便不妨达到所需处理效验.等离子体所用气体不妨是活性气体(如氧、氨气、一氧化碳等),也不妨是惰性气体,如氦气、氮气战氩气等.时常使用的氧等离子体具备下能下氧化性,与碳纤维表面碰碰时,不妨将碳纤维微晶棱角、边沿战缺陷等处的碳碳单键结构氧化成含氧活性基团.表为分歧等离子体对付碳纤维处理效验的比较,证明氧等离子体较惰性气体等离子体的劣势.然而是,等离子体的爆收需要一定的真空环境,所以设备搀纯,连绝、宁静战万古间处理具备一定的艰易.表分歧等离子体对付碳纤维处理效验比较等离子体羰基含量酮基含量醚键含量表面碳含量/%表面氧含量/%表面氮含量/%ILSS/MPa氧等离子体氮等离子体氩等离子体.1.6 电解氧化法电解氧化法也成为阳极氧化法,是将碳纤维动做阳极,石朱板动做阳极,正在电解量火溶液中施加曲流电场举止电解氧化处理,使碳纤维表面爆收计性官能团的处理要领.电化教氧化反应条件慢战, 处理时间短,工艺设备较为简朴,可与碳纤维死产线贯串战匹配真止工业化死产.通过统造电解温度、电解量含量战含量、电流稀度等工艺条件不妨真止对付氧化程度以及纤维表面官能团天采用性统造.电解氧化法是暂时碳纤维工业化死产中被广大应用的要领.图9为阳极氧化法对付碳纤维举止表面处理的工艺过程示企图.图9 阳极氧化法工艺过程示企图正在阳极氧化表面处理时由于以碳纤维自己动做阳极,果此正在施加一定电流后,电解液中含氧阳离子正在电场效率下背碳纤维移动,正在其表面搁电死成新死态氧,既而使其氧化, 死成羟基、羧基、羰基等含氧官能团, 共时碳纤维也会受到一定程度的刻蚀,使得碳纤维自己的表面物理结构爆收变更.采与电化教氧化法, 合理采用电化教氧化拆置是包管真施碳纤维有良佳的表面处理效验的前提条件.正在采用电化教氧化拆置时,要思量的果素包罗阳极的资料、电解量战电流的采用.阳极资料既要导电, 又要耐腐蚀.石朱板具备良佳的导电本能战耐腐蚀性, 正在工业化死产中被广大应用.电解量可用酸、碱大概盐类,如硝酸、硫酸、磷酸氢氧化钾、氢氧化钠、磷酸钾、硝酸钠、碳酸铵、碳酸氢铵、碳酸二氢铵等.对付于酸性电解量,火被电解死成的氧本子被碳纤维表面的不鼓战碳本子吸附,并与相邻吸附氧的碳本子相互效率而爆收二氧化碳,进而使石朱微晶被刻蚀.边沿与棱角的碳本子数目缩小,是表面官能团减少的一个要害果素;对付于碱性电解量,氢氧根离子被碳纤维表面的活性碳本子吸附,并与相邻吸附氢氧根的碳本子相互效率而死成氧,进而减少了表面活性碳本子数目.阳极表面处理常常采与曲流电,也有报导采与接流电举止处理,较小的电量不妨得到灵验的处理效验.表为分歧电解量正在10mA/mg电流下阳极氧化处理10分钟后碳纤维表面弛力、极性的变更.表分歧电解量系统对付阳极氧化表面处理效验的效率电解量γ/mN/m γp/mN/m γd/mN/m X p已处理K2CO3/KOHK2HPO4/KOHKHCO3/KOHKH2PO4/KOHNaHSO4/NaOHKHSO4/KOHK2SO4/KOHKNO3/KOHKClO4/KOH.1.7 下能量电子辐照近些年去,下能量电子辐照技能也被用去动做碳纤维表面处理的脚法.下能量电子辐照常常采与Co60γ射线,辐照剂量从几十到几百kGy.由于γ射线具备极下能量(1.17战1.33MeV ),具备极强的脱透性,果此不妨正在所有温度下无需催化剂存留条件下正在气、固、液资料中激励化教反应,具备无传染、节能等便宜,而且对付碳纤维还不妨正在支卷后举止,大概者对付碳纤维织物举止间接处理,而无需思量织物大小、形状、薄度等.图5.40为利用γ射线对付碳纤维举止处理的拆置示企图.图1为分歧剂量γ射线辐照后碳纤维的表面形貌变更,不妨瞅出辐照后碳纤维表面形貌爆收了很大变更,符合剂量的辐照使得纤维表面沟槽变细变多,有好处IFSS的普及.图5.40γ射线处理碳纤维拆置示企图图1 分歧剂量γ射线处理后碳纤维的表面形貌.2 表面处理效验评介.2.1 表面形貌分解碳纤维通过表面处理后,由于物理、化教及涂层的效率,其表面形貌必定爆收改变.扫描电子隐微镜(SEM)不妨比较曲瞅天反应碳纤维表面处理后表面形貌的变更.采与本子力隐微镜(AFM)不妨瞅察到1μm2天区碳纤维三维坐体形态结构,共时不妨给出表面细糙度的统计数据.图2 为分歧电解量阳极氧化处理后纤维的形貌,不妨创造通过表面处理后,碳纤维表面沟槽有所缩小.通过AFM谱图的表面细糙度分解,通过电化教氧化表面处理后,纤维的表面细糙度由于物理化教的刻蚀效率有明隐落矮(图3).图2 分歧电解量阳极氧化处理后纤维的形貌.图3碳纤维的表面AFM图(a:已处理b:碳酸氢铵处理c: 碳酸铵处理d: 磷酸铵处理).2.2 表面官能团分解通太过歧表面处理的碳纤维,其表面含氧官能团主要有羧基、羟基战羰基.碳纤维表面的含氧官能团不妨用X-射线电子能谱(XPS)、热得重分解(TGA)、电位滴定、酸碱滴定等举止分解.XPS不妨检测碳纤维表面含氧官能团的种类、浓度等,是一种较为敏捷、稳当的要领.普遍通过对付XPS谱图的分峰处理,以O1s/C1s去评介处理效验,共时通太过峰处理,还不妨得到羟基、羧基、羰基等的相对付含量.表为通太过歧条件处理后碳纤维C、O、N等元素的摩我分数,不妨瞅出通过处理后通过表面处理后,纤维表面C 含量落矮,O战N含量普及,O/C战N/C均普及.图4为碳纤维表面XPS谱图及其分峰示企图,其中284.6eV为C-C 的分离能,286.6eV为C-OH的分离能,288eV为C=O的分离能,291为羧基的分离能.碳纤维由于戴有含氧官能团,果此正在真空大概者惰性气氛下,碳纤维的热得重与含氧官能团的数量稀切相闭.普遍正在300-600℃下得重为羧基裂解爆收的CO2,正在600-1000℃下得重为羟基、羰基裂解爆收CO,果此通过TGA分解,不妨定性分解表面处理效验.表碳纤维表面C、O、N等元素摩我分数处理时间C1s/% O1s/% N1s/% O/C N/C已处理90s120s150s图4 表面处理后碳纤维XPS谱图及分峰处理.2.3 表面微晶结构分解碳纤维经表面处理后,由于纤维表层氧等的分离以及刻蚀效率,纤维表层石朱化程度落矮,石朱微晶变小.由于推曼光谱分解中激光对付碳纤维的脱透深度为几十纳米,对付纤维举止推曼光谱尝试也是灵验表征碳纤维表层石朱化程度变更.通过表面处理之后, D 峰战G峰均有一定程度的分启,半下宽减小, 而且二峰的推曼峰位背下波数沉微偏偏移(图5).图5 表面处理后碳纤维的推曼光谱及其分峰处理XRD是钻研碳纤维汇集态结构最时常使用的要领.将碳纤维磨成粉终举止XRD扫描可正在一定程度表征由于纤维表层石朱晶体结构变更引起的完全晶体结构的变更,然而那样无疑落矮了尝试的敏捷度.利用XRD表征碳纤维表面处理效验需要采与其纤维附件对付纤维完全举止XRD尝试,通过比较处理前后的纤维晶体结构变更去间接衡量处理效验..2.4 表面能分解碳纤维表面处理后,表面能减少,能隐著革新碳纤维与火、有机溶剂以及基体树脂之间的潮干性,使交战角缩小.表面能的测定常常通过测定交战角,再根据极化圆程去预计.那种要领所用仪器简朴、支配烦琐,是测定碳纤维表面处理后潮干性变更的一种灵验要领.表为表面处理前后碳纤维浸润性战交战角的变更.图6为分歧表面处理后碳纤维的交战角变更,对付于已处理的碳纤维战石朱纤维,测得的交战角分别为104战115o.随表面处理时间延少,潮干性普及,交战角缩小.表碳纤维表面浸润性变更已处理等离子体阳极氧化浸润删量/mg交战角θ/o图6 分歧表面处理后碳纤维表面交战角的变更.2.5 与树脂分离本能分解碳纤维表面处理效验最间接灵验的表征要领是层间剪切强度(ILSS)大概者界里剪切强度(IFSS)的尝试.碳纤维的层间剪切强度尝试要领按国标GB3357-82举止,尝试样品纤维体积含量60%安排,尺寸为少*宽*薄=10mm*5mm*2mm,尝试跨距5mm,加载速度10mm/min,每个样品尝试10次,与仄衡值.ILSS预计公式为:其中P为断裂背荷,b为样品宽度,d为样品薄度.IFSS数值与所用树脂体系、纤维体积含量、单背板纤维排布、清闲率等稀切相闭.采与环氧6101树脂体系,常常碳纤维的ILSS应达到90MPa以上,而采与环氧AG80体系,ILSS则应正在120MPa以上.该要领是对付碳纤维处理效验最间接灵验的评介,然而对付样品造备央供较下,需要碳纤维样品量较多.界里剪切强度IFSS是其余一种不妨曲瞅表征碳纤维表面处理效验的参数.普遍以纤维单丝形式举止尝试,并利用数教模型预计得到纤维战树脂之间的IFSS.尝试要领有单丝断裂法、单丝拔出法、微脱粘法、单丝顶出法等,那些要领的便宜是所需样品量少,然而尝试得到的IFSS值受样品造备、数据剖析等的效率较大,分歧要领得到的数值好别较大.单丝断裂法是将一根纤维埋进树脂中造成推伸试样,通过对付试样举止推伸,纤维正在试样中爆收碎裂,利用纤维强度战碎裂少度预计IFSS.该要领是鉴于单纤维复合资料正在蔓延历程中,当复合资料蔓延率达到纤维断裂蔓延率时,纤维爆收断裂.当纤维-基体界里爆收益害,推伸应力将不克不迭传导到纤维上,纤维断裂终止,断裂少度达到鼓战时纤维少度为临界少度.界里剪切强度由纤维临界少度、纤维曲径战纤维的推伸强度预计得到.单丝拔出法是将纤维单丝一端埋进树脂中,利用单丝推伸设备将纤维从树脂中拔出,通过拔出应力以及纤维曲径、埋进深度预计IFSS.单丝拔出法的样品造备极为闭键,过少的包埋深度常引导纤维正在受推历程中自己断裂而不是纤维从基体中拔出, 所以埋置深度一定要小于rσ/(2τ) , 其中σ为纤维抗推强度, r为纤维半径,τ为界里剪切强度,而太短又效率尝试的准确性.微脱粘法是将树脂滴正在碳纤维单丝上产死树脂微球,利用钳心卡住树脂微球而对付纤维举止推伸处理,使纤维从微球中脱粘拔出.正在脱黏历程中沿碳纤维/树脂基体产死的界里目标上爆收剪切应力,界里剪切强度预计公式为τ=F/πD f Le.式中τ为复合资料界里剪切强度,F为小球爆收脱黏时最大载荷,D f为碳纤维曲径,Le为埋进少度.埋进少度过少,纤维/树脂间剪切强度超出了碳纤维单丝强度,此时碳纤维爆收断裂与代微球脱黏成为主要的益害办法;而埋进少度过矮,树脂基体正在碳纤维表面铺展时产死的微球曲径小,上下剥离刀片产死的钳心易以夹持,尝试时易滑脱.果此,使用微脱黏法测界里剪切强度时,采用尝试微球的曲径宜统造正在40~80 μm.利用微脱黏法测得复合资料的界里剪切强度数值具备较大的分别性,那与纤维表面产死树脂微球的半月板天区、脱黏历程中上下刀片产死的钳心及碳纤维表面形态结构等果素有闭.单丝顶出法使用脆硬的金刚刚石压头将碳纤维从树脂中压出,界里剪切强度预计公式为τ= F/ ( 2πRL ),其中τ为复合资料界里剪切强度,F为顶出载荷,R为碳纤维半径,L 为顶出距离.正在顶出历程中思量的果素较多(如残存应力、摩揩果子等),存留主要问题是顶出历程中正在笔曲于滑移目标爆收的侧背力数值易以预计..3 表面处理对付碳纤维本能的效率碳纤维通过表面处理后最间接的效率是普及了纤维与树脂间的界里分离本能,不妨使得复合资料的剪切强度有明隐普及.常常碳纤维通过表面处理后,由于物理化教的刻蚀等本果,碳纤维强度会有所落矮,特天是正在处理程度较下时,纤维强度下落明隐.也有报导通过符合表面处理后,由于表面刻蚀使得纤维表面缺陷尺寸缩小,碳纤维强度不妨有一定普及.碳纤维的表面处理常常对付模量基础不效率.对付与阳极氧化表面处理,由于碳纤维正在阳极氧化历程中动做阳极,通电时纤维表面匀称搁出氧气,随电流稀度减少,相映的氧气搁出量减少使碳纤维上的单薄面受到刻蚀,纤维强度出现落矮.表为碳纤维通过阳极氧化后单丝强度及品量变更.电流稀度小于5mA/cm2时,纤维强度基础稳定,电流稀度继承减少,纤维强度有一定下落.碳纤维通过表面处理后,纤维品量出现耗费,随着电流稀度的普及,品量益坏删大.表碳纤维通过阳极氧化后的单丝强度及品量变更电流稀度/mA/cm2推伸强度/GPa CV/% 品量益坏/%0 0510利用等离子体举止表面处理使得碳纤维强度普及有较多报导.表为几种分歧碳纤维通过等离子体表面处理后碳纤维本能的变更.等离子体表面处理后碳纤维强度普及大概是由于纤维表面细晶化效率及表面缺陷细化的截止.表几种分歧碳纤维通过等离子体表面处理后碳纤维推伸本能样品推伸强度/MPa 断裂伸少/%Hercules allylcyanide 100W,5min 3460Hercules allylcyanide 200W,5min 3430Hercules allylcyanide 300W,5min 3780Grafil untreated 3340Grafil allylcyanide 100W,5min 3820Grafil allylcyanide 200W,5min 3950Grafil allylcyanide 300W,5min 3650Grafil xylene/air/argon 200W,20min 3350碳纤维通过表面处理后其电本能也会所变更.由于通过表面处理后,纤维中有一部分碳元素被氧化成羟基、羧基战羰基.氧本子上戴有部分背电荷,而碳本子上戴有部分正电荷.戴有正电荷的碳本子能俘获电子,对付电子的迁移有阻拦效率,进而落矮碳纤维的导电性.。
碳纤维的制作过程
芳纶纤维的弹性模量高,可达1.27 ~ 1.577 MPa, 比玻璃纤维高一倍,为碳纤维0.8倍。
芳纶纤维的断裂伸长在3%左右,接近玻璃纤维, 高于其他纤维。
芳纶与各种纤维性能比较
纤维名称
密度(g/cm3) 拉伸强度 (MPa)
(1) 压缩性差,压缩强度仅有不到拉伸强 度的1/5。 (2) 紫外线照射时强度大幅下降。
10.2 芳纶纤维的结构与特性
10.2.1 芳纶纤维的结构
(1) 聚对苯甲酰胺 (聚对胺基苯甲酰) 纤维Poly (P-benzamide) 简称PBA纤维。
NH
NH2
CO n
O C CH3
(2)聚对苯二甲酰对苯二胺纤维 Poly (P-Phenlene terephthalamide) 简称PPTA纤维
C、芳纶纤维的化学性能
芳纶纤维具有良好的耐介质性能,对中性化学 药品的抵抗力一般是很强的,但易受各种酸碱的侵 蚀,尤其是强酸的侵蚀。
芳纶的湿强度几乎与干强度相等。对饱和水蒸 气的稳定性,比其它有机纤维好。芳纶对紫外线是 比较敏感的。若长期裸露在阳光下,其强度损失很 大,因此应加能阻挡紫外光的保护层。
芳纶纤维是苯二甲酰与苯二胺的聚合体,经溶 解转为液晶纺丝而成。
(1) 分子链由苯环和酰胺基按一定规律排列而成,具有良好 的规整性。致使芳纶纤维具有高度的结晶性。
(2) 键合在芳香环上刚硬的直线状分子键在纤维轴向是高度 定向的,各聚合物链是由氢键作横向连结。
沿纤维方向的强共价键和横向弱的氢键,造成芳纶纤维 力学性能各向异性,即纤维的纵向强度高,而横向强度低。
KevIar纤维表面缺少化学活性基团,用 等离子体空气或氯气处理纤维表面,可使 Kevlar纤维表面形成一些含氧或含氮的官能团, 提高表面活性及表面能,显著地改善对树脂的 浸润性和反应性,增加界面粘结强度。
碳纤维的表面处理方法及作用效果
碳纤维的表面处理方法及作用效果碳纤维的表面处理方法有多种,包括表面清洁处理、气相氧化法、液相氧化法、阳极氧化法、表面涂层法、表面沉积元机物、电聚合处理以及冷等离子处理。
这些方法的作用效果如下:1. 表面清洁处理:碳纤维表面易吸附水分及有机污染物,影响与基体的结合。
通过在惰性气体保护下加热到一定高温并保温一定时间,可以清除吸附水,净化表面,从而提高纤维与基体的结合强度。
2. 气相氧化法:在加热下用空气、氧气、CO2、臭氧等处理碳纤维,处理后CF比表面积和表面粗糙度增加,使表面产生胺基、羟基、羰基等含氧极性基团,有利于碳纤维与基体树脂界面结合,从而提高CF增强复合材料的综合力学性能。
3. 液相氧化法:以浓HNO3、H3PO4、HClO、KMnO4、NaClO等氧化剂与CF长时间接触,在纤维表面形成羧基、羟基等基团,增强与树脂的结合力。
4. 阳极氧化法:对碳纤维进行阳极氧化表面处理后,碳纤维的浸润性有一定程度的增强,碳纤维与水的接触角也有一定程度的降低;碳纤维强度出现了一定程度的下降,强度离散性也略有增大。
5. 表面涂层法:碳纤维表面涂层的制备不仅能够提高碳纤维抗氧化性,也是提高碳纤维与基体润湿性,改善复合材料界面结构性能的主要方法。
6. 表面沉积元机物:通过在碳纤维表面镀覆一层金属或金属化合物膜能够改善纤维与基体间的界面结合,优化界面,充分发挥碳纤维增强体在复合材料中的作用。
7. 电聚合处理:通过电化学处理后能够形成较为均匀的聚合物层,形成的环氧树脂复合材料断面较为平整,纤维拔出量少。
8. 冷等离子处理:用放电、高频电磁振荡、冲击波及高能辐射等方法使惰性气体或含氧气体产生等离子体,对材料的表面进行处理。
低温等离子体技术是20世纪60年代出现的一种新的材料表面处理技术。
具有节能、无公害、处理时间短、效率高以及能满足环境保护要求等优点。
总的来说,这些方法的作用效果主要体现在提高碳纤维的表面粗糙度、极性、润湿性以及与基体的结合强度等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空题
1. 碳纤维表面处理的方法有、、
和。
2. 纤维增强树脂的机械性能特点:、、
、。
3. 玻璃纤维增强水泥(GRC)中玻璃纤维的掺量范围。
4. 复合材料选用聚合物需要考虑的因素、、。
5. 玻璃纤维表面处理方法有:、、。
6. 无机胶凝材料根据硬化条件不同分为和。
7. 镁质胶凝材料的原料主要有和。
8. 碳纤维表面处理的方法有、、
和。
9. 提高纤维增强塑料耐水性的方法有:、、
和。
判断题
1. 无碱玻璃纤维比有碱玻璃纤维耐酸性好。
( )
2. 菱镁矿的煅烧温度比白云石要高,菱镁矿的煅烧温度约为800~850°C,白云石的煅烧温度约为650~760°C。
( )
3. β型半水石膏硬化浆体比α型半水石膏硬化浆体的强度高。
( )
4. 在高分子化合物中引入庞大的侧基可以提高高分子化合物的热变形性。
( )
5. 用聚丙烯腈原丝制备碳纤维的碳化阶段,随热处理温度提高,纤维弹性模量和拉伸强度均提高。
( )
6. 活性填料与惰性填料在不同的场合,对于不同的树脂可以相互转化。
( )
7. 纤维状、片状填料既可以提高材料的机械强度也可提高材料的成型加工性能。
( )
8. 纤维增强塑料(FRP)的疲劳强度随纤维体积含量增加而提高。
( )
9. 树脂的电性能与其分子结构密切相关,一般,分子极性越大,电绝缘性越好。
( )
10. 纺织型浸润剂在玻璃钢成型时不必除去,可直接使用。
( )
11. 硅橡胶属于通用合成橡胶。
( )
12. 结晶聚合物没有精确的熔点,只存在一个熔融范围。
( )
13. 合成橡胶比天然橡胶工艺性好。
( )
14. 无碱玻璃纤维比有碱玻璃纤维耐水性好。
( )
15. 玻璃纤维增强水泥(GRC)的强度随纤维掺量增加而提高。
( )
16. 在玻璃纤维增强水泥(GRC)中,采用粉煤灰或细砂代替部分水泥用量,不仅能大大提高基体的体积稳定性,而且能提高GF的增强效果和复合材料的基本性
能。
( √)
17. 注射成型法是一种将纤维的树脂浸渍过程和复合材料的成形完全分开的一种成型法。
( )
名词解释
1. 复合材料
2. 无机胶凝材料
3. 有机胶凝材料
4. 气硬性胶凝材料
5. 水硬性胶凝材料
6. 镁质胶凝材料
7. 塑料
8. 橡胶
9. 纤维
10. 胶粘剂
11. 涂料
12. 高分子链的柔顺性
13. 不饱和聚酯树脂
14. 增强型浸润剂
15. 表面处理剂
16. 碳纤维
17. 活性填料
18. 聚合物基复合材料
问答题
1.什么是复合材料?举例说明聚合物基复合材料的特点。
2.简述复合材料的分类。
(10分)
3.举例说明复合材料选用聚合物需要考虑的因素。
4.无机胶凝材料特点是什么?
5.写出水泥熟料中的矿物及其对水泥强度的影响。
6.铝酸盐水泥的定义,其水化、凝结和硬化过程与硅酸盐有何区别?
7.镁质胶凝材料的煅烧,为什么菱镁矿的煅烧温度800ºC~850ºC左右,而白云
石的煅烧温度在650ºC~760ºC左右。
8.氯化镁在氧化镁浆体中的作用是什么?由此制成的镁质胶凝材料有什么缺
点,如何解决?
9.根据石膏产品的形状,石膏分为哪几类?各有什么特点?
10.简要说明应用于复合材料的三种合成树脂的优缺点。
11.提高石膏硬化浆体抗水性的途径有哪些?解释原因。
12.橡胶按其性能和用途分为哪几类?
13.线型与体型高分子化合物各有什么性质?
14.举例说明如何提高高分子化合物的热变形性?
15.聚合物熔体流动特点是什么?
16.不饱和聚酯树脂的定义是什么?组成成分有哪些?
17.橡胶按其性能和用途分为哪几类?
18.常用的复合材料聚合物基体有哪几种?
19.玻璃纤维的成分有哪些?各起什么作用?
20.简述玻璃纤维的化学成分对其化学稳定性的影响。
21.为什么玻璃纤维的拉伸强度比同成分的块状玻璃高几十倍?
22.微裂纹假说如何解释玻璃纤维具有高的强度?
23.为何玻璃纤维要使用玻璃纤维浸润剂
24.玻璃纤维表面处理方法有哪些?各有什么特点?
25.简述碳纤维的各级结构,并说明影响单纤维强度的因素有那些?
26.简述碳纤维的制造方法,并以聚丙烯腈原丝为例说明制备碳纤维的过程。
27.比较碳纤维表面处理方法中气相氧化法与液相氧化法各自的优缺点。
28.画出kevlar纤维的分子结构,解释芳纶纤维特性与结构之间的关系,并说明
制造芳纶纤维的纺丝工艺。
29.芳纶纤维从分子结构角度可分为三种类型,写出这三种芳纶纤维的结构式,
并说明其性能特点。
30.从化学组成角度说明无碱玻璃纤维和有碱玻璃纤维的性能差异?
31.什么是填料的补强作用?解释炭黑补强橡胶的原因。
32.云母的物理性质,采用云母作为填料的复合材料可提高哪些方面的性能?
33.简要说明石膏胶凝材料的制备及石膏制品的硬化过程。
比较α-石膏与β-石
膏的不同。
34.作为填料的碳酸钙主要可分为几类?说明其制备工艺及性质的不同。
35.滑石粉的物理、化学性能特点,以及采用其作填料的复合材料可提高那些方
面的性能?
36.比较金刚石与石墨在结构性能方面的异同。
37.为什么GRC的性能不随GF掺量增加而提高,而是存在一个纤维含量极限值?
38.水为什么能降低FRP的性能?提高FRP耐水性的方法有哪些?
39.聚合物基复合材料机械性能有何特点?
40.纤维增强塑料复合材料的静态特性。
41.聚合物基复合材料比强度、比模量高的特性是如何节省能源、提高构件的使
用性能的?
42.简述聚合物基复合材料的成型特点以及成型方法的优缺点(至少五种)。
43.由图1说明图中曲线1、2、3所代表的高聚物的类型,并说明曲线1在进入
粘流态时可能出现的情况。
44.比较结晶高分子化合物与非晶态高分子化合物的温度-形变曲线,解释为什
么当结晶高分子化合物的强度已满足使用要求时,总选用分子质量小一些的材料。
45.。