华东师范大学数学分析试题解答
数学分析课本(华师大三版)-习题及答案20+22
习 题 二十、二十二1.计算下列第一型曲线积分.(1) ,其中L 是的上半圆周. ()x y ds L +∫x y R 22+=2 (2) x y d L 22+∫s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22+∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路.x y x y ====004,,,2(5) ,其中: xds L∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧.(b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为.)10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x −=−=,,其中,0>a π20≤≤t .(7) ,其中L 是螺旋线弧段(x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a .(8) ,其中∫L yzds x 2L 为折线,这里依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2)ABCD D C B A ,,,2.计算下列第二型曲线积分.(1),其中∫−L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧.2x y =(2) ,其中L 为xdy ydx L −∫① 沿直线从点(,到点(,;)00)12② 沿抛物线x y =24从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,.)00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针方向的矩形回路.x y x y ====004,,,2(4) x dy y dxx y L 225353−+∫,其中L 是沿星形线在第一象限中从点(,x R t y R t ==cos sin 33,)R 0到(,)0R 的弧段(R >0).(5) ,其中L 是从点到xdx ydy zdz L ++∫A (,,)111B (,,)234的直线段. (6) ,其中L 为曲线∫−+Lydz zdy dx x 2θθκθsin cos ,a z a y x ===,上对应θ从0到π的一段弧.3.设质点受力F 作用,力的方向指向原点,大小等于质点到原点的距离.(1) 计算当质点沿椭圆在第一象限中的弧段从(,到(,时,F 所作的功;x a t y b t ==cos sin ,)a 0)0b (2) 计算当质点沿椭圆逆时针方向运动一圈时,力F 所作的功.4.利用格林公式计算下列积分.(1) ()()x y dx x y dy L +++∫222,L 是沿逆时针方向,以为顶点的三角形. A B C (,)(,)(,)113125,, (2)()()x y dx x y dy L ++−∫,L 是方程x y +=1所围成的顺时针方向的闭路.(3) []e ydx y y x L (cos (sin )1−−−∫dy x ,L 是沿y =sin 上从点(,)π0到点的一段弧.(,)00(4) dy ye x x dx e y x xy x y x x x L )2sin ()sin 2cos (222−+−+∫,其中L 为正向星形线)0(323232>=+a a yx . (5) dy y x x y dx x y xy x L )3sin 21()cos 2(223+−+−∫,其中L 为在抛物线上由点(0,0)到22y x π=)1,2(π的一段弧. (6) ,其中dy y x dx y x L ∫+−−)sin ()(22L 为在圆周22x x y −=上由点(0,0)到点(1,1)的一段弧.5.验证下列曲线积分与路径无关,并求它们的值.(1) ,L 是从点经圆周上半部到点的弧段.()()12222++−∫xe dx x e y dy y y L O (,)00+−2)2(x 42=y A (,)40 (2),L 是从点到点的任意弧段. e ydx ydy x L (cos sin )−∫(,)00(,)a b (3) ydx xdy x −∫22112(,)(,)沿右半平面的任意路线.(4) ,L 是从点经抛物线到点的弧段.()(x y xdx ydy L22++∫)(,)00y x =2(,)11 (5) ∫++L y x xcdxydy 322)(,L 是从点到点的不经过原点的弧段.(,)11(,)22 6.求椭圆所围图形的面积.x a t y b t ==cos sin , 7.求下列微分方程的通解.(1) .()()x xy y dx x xy y dy 222222+−+−−=0 (2) [][]e e x y y dx e e x y dy x y x y ()()−+++−+=1100=.(3) .()()x xy dx x y y dy 43224465++− 8.下列各式是否为某函数的全微分,若是,求出原函数.(1) ; (2)x dx y dy 22+xdx ydy x y ++22. 9.求下列第一型曲面积分.(1),其中S 是球面:. zds S ∫∫x y z R 222++=2 (2)(243x y z d S ++∫∫)s ,其中S 是平面x y z 2341++=在第一卦限的部分. (3) ,其中S 是锥面(xy z d S 222++∫∫)s z x y =+22)介于之间的部分.z z ==01、 (4) ,其中S 是由曲面和平面所围立体的表面.∫∫+Sds y x )(22x y z 2220+−=z h h =>(0(5) ,其中S 是锥面(xy yz zx dsS ++∫∫)z x y =+22x 被柱面所截得的部分.x y a 222+=(6) ∫∫SxyzdS ,其中S 是由平面0,0,0===z y x 及1=++z y x 所围成的四面体的整个边界曲面.(7) ,其中S 为锥面∫∫++S ds zx yz xy )(z x y =+22x )0被柱面所截得的有限限部分.x y a 222+= 10.计算下列第二型曲面积分.(1) , 其中S 是三个坐标平面与平面所围成的正方体的表面的外侧.()()()x yz dydz y zx dzdx z xy dxdy S222−+−+−∫∫x a y a z a a ===>,,(0(2) ,其中S 是由平面 xydydz yzdzdx xzdxdy S++∫∫x y z ===00,,与平面x y z ++=1所围成的四面体表面的外侧.(3),其中S 是上半球面yzdzdx S ∫∫z a x y =−−222的下侧. (4) e x y dxdy z S 22+∫∫,其中S 是锥面z x y =+22与平面所围成立体边界曲面的外侧.z z ==12, 11.利用奥-高公式计算下列第二型曲面积分. (1) x dydz y dzdx z dxdy S333++∫∫,其中S 是球面:的外侧.x y z a a 22220++=>() (2) xdydz y dzdx z dxdy S 222++∫∫,其中S 是锥面与平面所围成的立体表面的外侧.x y z 22+=2)z h =(h >0 (3) ()()x y dxdy x y z dydz S−+−∫∫,其中S 为柱面及平面所围立体的表面外侧.x y 221+=z z ==0,1(4) ,其中S 为三个坐标平()()()x y z dxdy y z z dzdx S+++++−∫∫23212面与平面x y z ++=1所围成的四面体的外侧.(5)∫∫++S yzdxdy dzdx yxzdydz 24,其中为平面S 0,0,0===z y x ,所围成的立方体的表面外侧.1,1,1===z y x 12.利用斯托克斯公式计算下列第二型曲线积分. (1) x y dx dy dz L 23++∫,其中L 为坐标平面上圆周,并取逆时针方向. Oxy x y a 22+=2 (2) ()()()y z dx x z dy x y d L 222222+++++∫z ,其中L 是x y z ++=1与三个坐标平面的交线. (3) x yzdx x y dy x y d L 2221+++++∫()(z ),其中L 为曲面与曲面的交线,且从面对z 轴正向看去取顺时针方向.x y z 2225++=z x y =++221 13.验证下列的空间曲线积分与路径无关,并求它们的值.(1) . 22000xe dx z x e dy y zdz y y x y z −−+−−∫(cos )sin (,,)(,,) (2) . xdx y dy z dz +−∫23111234(,,,)(,,) 14.求下列各式的原函数.(1) yzdx xzdy xydz ++.(2) . ()()(x yz dx y xz dy z xy dz 222222−+−+−)15.计算,其中为圆周 ∫L ds x 2S ⎩⎨⎧=++>=++.0),0(2222z y x a a z y x 16. 若dy cx Y dy ax X +=+=,,且L 为包围坐标原点的简单的封闭曲线,计算∫+−=L YX YdX XdY I 2221π. 17.证明:若L 为封闭的曲线且l 为任意的方向,有∫=Lds l 0),cos(. 18.若半径为的球面上每点的密度等于该点到球的某一直径上距离的平方,求球面的质量.a 19.为了使线积分()F x y ydx xdy L (,)+∫与积分路径无关,可微函数F x y (,)应满足怎样的条件?20.设磁场强度为E x y z (,,),求从球内出发通过上半球面的磁通量.x y z a z 22220++=≥,。
华东师范大学_数学分析_第1章
§1 实 数1、设a 为有理数,x 为无理数,试证明(1)x a +为无理数; (2)当0≠a 时,ax 是无理数。
证明:用反证法:(1)若x a +为有理数,由条件可得-a 也为有理数,故x x a a =++-)()(为有理数,此与条件矛盾,所以x a +为无理数。
(2)若ax 为有理数,由条件可得1-a 也为有理数,所以x ax a =⋅-)(1为有理数,此与条件矛盾,所以ax 为无理数。
2、试在数轴上表示出下列不等式的解: (1)0)1(2>-x x ;(2)31-<-xx;(3)23121-≥---x x x ;(4)13≥+x x 。
解:(1)由⎩⎨⎧<<-<⎩⎨⎧⎩⎨⎧>-<>⇒>->⇒>-1101100100)1(22x x x x x x x x x 或或如图2-1; (2)两边平方得29612)3()1(22<⇒+-<+-⇒-<-x x x x x ,如图2-2;(3)两边平方得1210)12)(1(223)12)(1(223==⇒≥---⇒-≥----x x x x x x x x 且,此为矛盾,故解集为空集;(4)用图形法给出数轴表示,如图2-3图2-1 图2-2 图2-3 3、设R b a ∈,.证明:若对任何正数ε有ε<-b a ,则b a =.证 用反证法.若b a ≠,则令00>-=b a ε,由已知得b a b a -=<-0ε,此为矛盾.故b a =.4、设0≠x ,证明21≥+xx ,并说明其中等号何时成立。
证明:只需证明0>x 时结论成立。
因为0>x ,故可令2yx =,由210211222≥+⇒≥-+=⎪⎪⎭⎫ ⎝⎛-x x y y y y ,当1±=x 时,等号成立。
5、证明:对任何实数R x ∈有(1)121≥-+-x x ;(2)2321≥-+-+-x x x 。
华东师大数学分析习题解答5
《数学分析选论》习题解答第 五 章 级 数1.下列命题中有些是真命题,有些是伪命题.对真命题简述理由;对假命题举出反例(题中“∑n a ”是“∑∞=1n n a ”的简写): (1)∑n a ,∑n b 发散⇒∑±)(n n b a 发散; (2)∑n a ,∑n b 收敛⇒∑nn b a 收敛; (3)∑∑n nb a 22,收敛⇒∑nn b a 收敛; (4)∑n a ,∑n b 绝对收敛⇒∑nn b a 绝对收敛;(5)∑n a 收敛,∑n b 绝对收敛⇒∑nn b a 绝对收敛;(6)∑n a 收敛,1lim=∞→n n b ⇒∑nn b a 收敛;(7)∑||n a 收敛,1lim =∞→n n b ⇒∑||n n b a 收敛;(8)0lim =∞→n n a ⇒ -+-+-+-332211a a a a a a 收敛; (9)∑n a 收敛⇒∑na n收敛; (10)∑n a 收敛⇒0lim =∞→n n a n ;(11)∑||n a 收敛⇒∑++)(1n n a a a 收敛;(12)∑na 收敛⇒∑+-||1n n a a 收敛;(13){}n a 与∑++)(1n n a a 收敛⇒∑n a 收敛;(14)∑+||1n n a a 收敛⇒∑n a 收敛;(15)1||≥n a n ⇒∑n a 发散;(16)∑na 2收敛⇒∑na 3收敛;(17)0lim =∞→n n a ⇒∑+-||1n n a a 收敛;*(18)∑+-||1n n a a 收敛⇒{}n a 收敛;(19)||n a ~)(∞→n n c p⇒∑||n a 与∑pn 1同敛态; *(20)∑n a 收敛⇒0)2(1lim21=+++∞→n n a n a a n . 解 其中有十二个真命题:(3),(4),(5),(7),(8),(9),(11), (13),(16),(18),(19),(20);其余八个是伪命题.现依此简述如下:(1)反例:0)(,,=+-==∑n n n n b a n b n a 为收敛.(2)反例:∑-nn)1(收敛,∑∑=⎪⎪⎭⎫⎝⎛-n n n 1)1(2为发散. (3)因nn n n b a b a 22||+≤. (4),(5) 因∑n a 收敛⇒)(1||0lim N n a a n n n >≤⇒=∞→∑∑⇒⎭⎬⎫≤⇒||||||||n n n n n n b a b b b a 收敛收敛.(6)反例:nb na nn nn )1(1,)1(-+=-=,∑∑⎪⎪⎭⎫⎝⎛+-=n n b a n n n 1)1(为发散.(7)因 1lim =∞→n n b ⇒)(2||N n b n >≤,∑∑⇒⎭⎬⎫≤⇒||||||2||n n n n n n b a a a b a 收敛收敛.(8)因0lim )(0,0122=⇒∞→→==∞→-n n n n n S n a S S . (9)据阿贝尔判别法,∑n a 收敛,⎭⎬⎫⎩⎨⎧n 1单调有界,故∑na n收敛. (10)反例:=∑n a ∑-nn)1(收敛,而{}{}n n a n )1(-=不存在极限.(11)由∑||n a 收敛,∑++⇒≤++⇒≤++≤++⇒.绝对收敛)(||)(||||1111n n n n n n n a a a a M a a a M a a a a(12)反例:=∑n a ∑-n n )1(收敛,∑∑++=-+)1(12||1n n n a a n n 发散. (13){}.收敛收敛已知收敛收敛∑∑∑⇒-⎭⎬⎫+-⇒++n n n n n n a a a a a a 2)()()(11(14)反例:=∑n a ++++=-+∑10102)1(1n发散,但因01≡+n n a a ,故0||1=∑+n n a a 为收敛.(15)反例:=∑n a ∑-nn)1(收敛,满足1||≥=n a n n .(16)∑∑⇒>≤⇒>≤⇒.绝对收敛收敛3232)(||)(1||n nn n n a N n a a N n a a (17)反例:同(12)题.(18)∑+-||1n n a a 收敛N n N >∈∃>ε∀⇔+当,,0N 时,+∈∀N p ,有.ε<-++-≤-⇒ε<-++-+-++++++++++pn p n n n p n n p n p n n n a a a a a a a a a a 1211121,所以{}n a 满足柯西条件,从而收敛.(19)||n a ~)(∞→n nc p∞+<=⇔∞→c a n n p n ||lim .可见∑||n a 与∑pn 1同时收敛,或同时发散. (20)设∑na 的前n 项部分和为 ,2,1,=n S n ,且S S n n =∞→lim .则有()..011lim 21lim )(,)()(2212121121112121=-=⎥⎦⎤⎢⎣⎡--+++-=+++⇒+++-=-++-+=+++-∞→∞→--S S n n n S S S S a n a a n S S S S n S S n S S S a n a a n n n n n n n n n n □2.设∑∞=1n n a 为证项级数,试证对数判别法:(1)若存在0>ε和+∈N N ,使得当N n > 时,有ε+≥11ln ln 1n a n., 则∑∞=1n n a 收敛;(2)若存在+∈N N ,使得当N n > 时,有11ln ln 1≤n a n .,则∑∞=1n n a 发散. 证 把不等式分别改写成: (1)ε+ε+≤≥111,ln 1lnn a n a n n 即; (2)na n a n n 1,ln 1ln≥≤即.根据比较法则,(1)时∑∞=1n n a 收敛;(2)时∑∞=1n n a 发散. □3.利用对数判别法鉴别下列正项级数的敛、散性: (1)∑∞=1ln 31n n; (2)∑∞=1ln ln )ln (1n nn ; (3))0(1ln >∑∞=x n n x.解 (1)n n a ln 31=,050109813ln 1ln ln 1...+>≈=n a n,故收敛. (2)nn n a ln ln )ln (1=,)16(0101ln ln 1ln ln 1≥+>=n n a nn ..,故收敛. (3)x n n a ln =,由于x n n x a nn 1ln ln ln ln 1ln ln 1=-=., 故当)0(e 101>ε∀≤<ε+x 时收敛;e1≥x 时发散. □ 4.证明:(1)若∑∞=1n n a n 收敛,则∑∞=1n n a 收敛;(2)若∑∞=1n p n n a 收敛,则p x >时∑∞=1n x nn a 也收敛. 证 (1)∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛=111n n n n n a n a ..由阿贝尔判别法,已知∑∞=1n n a n 收敛,而⎭⎬⎫⎩⎨⎧n 1 单调有界,故∑∞=1n n a 收敛.(2)同理,由∑∑∞=-∞=⎪⎪⎭⎫ ⎝⎛=111n px p n n x n n n a n a .,∑∞=1n p n n a 收敛,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-p x n 1当p x >时单调有界,故∑∞=1n xnn a 收敛. □ 5.证明:若{})(x f n 与{})(x g n 都在E 上一致收敛,则{})()(x g x f n n ±在E 上也一致收敛.证 设)(x f n →→)(x f ,)(x g n →→)(x g ,E x ∈.依据定义,+∈∃>ε∀N N ,0,当N n >时,对一切E x ∈,恒有2)()(ε<-x f x f n , 2)()(ε<-x g x g n ; 于是又有[][]ε<-+-≤±-±)()()()()()()()(x g x g x f x f x g x f x g x f n n n n .所以)()(x g x f n n ±→→)()(x g x f ±,E x ∈.注:本题也可用确界逼近准则( p .138 定理5.2 )来证明. □6.设f 在区间I 上一致连续,)(x n ϕ→→)(x ϕ,E x ∈,且)(,)(E I E n ϕ⊂ϕ,,2,1=n .试证:))((x f n ϕ→→))((x f ϕ,E x ∈.证 因f 在I 上一致连续,故0,0>δ∃>ε∀,只要δ<''-'u u ),(I u u ∈''', 便有ε<''-')()(u f u f .对上述δ,由)(x n ϕ→→)(x ϕ,E x ∈,必定+∈∃N N ,当N n >时,对一切E x ∈,均有δ<ϕ-ϕ)()(x x n .记I x u I x u n ∈ϕ=''∈ϕ=')(,)(,则有ε<ϕ-ϕ=''-'))(())(()()(x f x f u f u f n .这就证得 ))((x f n ϕ→→))((x f ϕ,E x ∈. □ 7.证明:∑∞=1)(n n x f 在E 上一致收敛的必要条件是)(x f n →→E x ∈,0.证 设,)()(1∑==nk k n x f x S )(x S n →→E x x S ∈,)(,则=)(x f n )(x S n )(1x S n --.由题5易知)(x f n →→E x x S x S ∈=-,0)()(. □8.设∑∞=1n n a 收敛,试证),0[e 1∞+-∞=∑在x n n n a 上一致收敛.证 由一致收敛的阿贝尔判别法,数项级数∑∞=1n na 收敛即一致收敛;对每个0≥x ,xn -e 对n 单调(减),且一致有界,),),0[,1e (+-∈∞+∈≤N n x x n 故xn n n a -∞=∑e 1在),0[∞+上一致收敛. □9.判别下列函数序列或函数项级数在指定的区间上是否一致收敛:(1)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n nxsin ,),(∞+∞-∈x ; (2)∑∞=+-1sin )1(n n x n ,),(∞+∞-∈x ; )3(*]1,0[,,)()(,,)()(,)(1121∈===-x x f x x f x f x x f x x f n n ;(4)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+1nn x x ,(ⅰ)]1,0[∈x ,(ⅱ))10(]1,0[<δ<δ-∈x ; (5)]1,0[,)(12∈+∑∞=+x nn x x n nn .解 (1)由于0sin lim=∞→nnx n ,且 )(010sin sup),(∞→→=-∞+∞-∈n nnnx x ,因此nnx sin →→0,),(∞+∞-∈x . (2)由函数项级数一致收敛的狄利克雷判别法,1)1(1≤-∑=nk k为一致有界;),(∞+∞-∈∀x ,xn sin 1+关于n 单调(减);且0sin 1lim=+∞→x n n , )(0110sin 1sup),(∞→→-=-+∞+∞-∈n n x n x ,从而x n sin 1+→→0,),(∞+∞-∈x .所以,∑∞=+-1sin )1(n nxn 在),(∞+∞-上为一致收敛.(3)事实上,)()()(211∞→=→=-n x x f xx f nn .记]1,0[,)()()(211∈-=-=-x x xx f x f x g nn n ,由 01211)(21=-⎪⎪⎭⎫⎝⎛-='-nx x g n n,求出)(x g n 的最大值点nn n x 2211⎪⎪⎭⎫⎝⎛-=,和最大值nn nn n x g 2211121)(⎪⎪⎭⎫ ⎝⎛--=.由于 )(0e 0)()(m ax )(sup 1-]1,0[]1,0[∞→=→==∈∈n x g x g x g n n n x n x .,因此)(x f n →→]1,0[,∈x x .(4)设1111)(+-=+=nnn n x x x x f ,则有⎪⎩⎪⎨⎧=∈==∞→.1,21,)1,0[,0)()(lim x x x f x f n n (ⅰ)由于)(0\21111sup )()(sup)1,0[)1,0[∞→→=⎪⎪⎭⎫⎝⎛+-=-∈∈n x x f x f nx n x ,因此{})(x f n 在)1,0[上不一致收敛,从而在]1,0[上更不一致收敛.(ⅱ)当)10(]1,0[<δ<δ-∈x 时,由于)(01)1(11)()(sup]1,0[∞→→+δ--=-δ-∈n x f x f nn x ,因此)(x f n →→)(x f ,)10(]1,0[<δ<δ-∈x .(5)设nn n nn x x x f ++=2)()(.由于]1,0[,0])1([)()(21∈>+++='+-x nn x n n x x f nn n ,因此有2223)11(1)1()1()(0nn n n n f x f nnn n n <+=+=≤≤+.根据优级数判别法,由∑∞=123n n收敛,可知∑∞=++12)(n nn nn x x 在]1,0[上一致收敛. □10.证明:∑∞=+-122)1(n n nn x 在任何闭区间],[b a 上一致收敛;但对任何x 不绝对收敛. 证 由于1)1(1≤-∑=nk k为一致有界,],[b a x ∈∀,22nn x +关于n 单调(减),0lim22=+∞→nn x n ,,(00sup2222],[∞→→+=-+∈n nn b nn x b a x 设)||||a b ≥,因此根据狄利克雷判别法,该级数在任何],[b a 上一致收敛.又因对任何x ,n n n x n1)1(22≥+-,所以∑∞=+-122)1(n n n n x 发散. □11*.设)(0x u 在],[b a 上可积,,2,1,d )()(1==⎰-n t t u x u xan n .试证∑∞=1)(n n x u 在],[b a 上一致收敛.证 设M x u ≤)(0,],[b a x ∈.则可依次估计得:)(d )(d )()(001a x M t t u t t u x u x axa-≤≤=⎰⎰,.........................,)(!2d )(d )()(212a x Mt a t M t t u x u xax a-=-≤≤⎰⎰n n x an n a b n Ma x n M t a t n M x u )(!)(!d )(!)1()(1-≤-=--≤⎰-.而∑∞=-1)(!n n a b n M易用比式判别法得知它收敛,故级数∑∞=1)(n n x u 在],[b a 上一致收敛. □12.已知∑∞=1)(n n x f 在E 上一致收敛.试讨论:当)(x g 在E 上满足何种条件时,就能保证∑∞=1)()(n n x f x g 在E 上一致收敛?解 这里可用一致收敛的柯西准则来讨论.由于∑∞=1)(n n x f 在E 上一致收敛,故+∈∃>ε∀N N ,01,当N n >时,对一切E x ∈和+∈N p ,恒使11)(ε<∑++=p n n i i x f .而∑∑++=++==p n n i i pn n i i x f x g x f x g 11)()()()(.,因此当设)(x g 在E 上有界,即E x M x g ∈≤,)(时,就有ε=ε<≤∑∑++=++=111)()()(M x f Mx f x g p n n i i pn n i i .此即表示∑∞=1)()(n n x f x g 在E 上一致收敛. □31*.证明:若对每个,n )(x f n 是],[b a 上的单调函数,且∑∞=1,)(n n a f ∑∞=1)(n n b f 都绝对收敛,则∑∞=1)(n n x f 在],[b a 上为绝对一致收敛.证 由假设条件,对每一个,n 有{})(,)(max )(a f a f x f n n n ≤[]nn n n n M b f a f b f a f ==-++=def )()()()(21. 由于∑∞=1)(n n a f 与∑∞=1)(n n b f 都收敛,因此[]∑∞=+1)()(n n n b f a f 与[]∑∞=-1)()(n n n b f a f也都收敛,从而∑∞=1n nM 收敛.依据优级数判别法,证得∑∞=1)(n n x f 在],[b a 上为一致收敛. □14.设]2,0[,)10(cos )(0π∈<<=∑∞=x r nx r x S n n .试求⎰π20d )(x x S .解 由于nnr nx r ≤cos ,而r r n n-=∑∞=110为收敛,因此∑∞=0cos n nnx r 为一致收敛,于是可以逐项求积.据此便可求得⎰π20d )(x x S π=+π==∑∑⎰∞=∞=π20.2d cos 120n n n nr x nx r. □51*.设函数f 在)1,(+b a 内连续可微)(b a <,记,2,1,),(,)()1()(=∈⎥⎦⎤⎢⎣⎡-+=n b a x x f n x f n x f n .试证:(1){})(x f n 在任何],[βα),(b a ⊂上一致收敛于)(x f ';(2))()(d )(limα-β=⎰βα∞→f f x x f n n .证 (1)由于)(x f '在],[βα上连续,从而一致连续.故0,0>δ∃>ε∀,只要∈'''u u ,],[βα 且δ<''-'u u , 便有ε<'''-'')()(u f u f .而由假设,..],[,)1,(,)(1)()()1()(βα∈+∈ξξ'=ξ'=⎥⎦⎤⎢⎣⎡-+=x n x x f nf n x f n x f n x f n n n n所以⎥⎦⎤⎢⎣⎡δ=∃1N ,当)1(δ<>n N n 时,对任何∈x ],[βα,恒有ε<'-ξ'='-)()()()(x f f x f x f n n .这就证得)(x f n →→)(x f ',∈x ],[βα),(b a ⊂.(2)利用逐项积分定理,易得)()(d )(d )(lim d )(lim α-β='==⎰⎰⎰βαβα∞→βα∞→f f x x f x x f x x f n n n n . □ 16.证明:函数∑∞==13sin )(n nnx x S 在),(∞+∞-上连续,且有连续的导数)(x S '. 证 由于331sin nn nx ≤,∑∞=131n n 收敛,因此∑∞=13sin n nnx 在),(∞+∞-上一致收敛.又 2231cos sin n n nx n nx ≤='⎪⎪⎭⎫ ⎝⎛,∑∞=121n n 收敛, 故∑∞='⎪⎪⎭⎫ ⎝⎛13sin n n nx 在),(∞+∞-上也一致收敛. 因为∑∞=13sin n nnx 在),(∞+∞-上满足定理45'.和定理65'.的条件,所以)(x S 在),(∞+∞-上连续,且有∑∞=='12cos )(n nnx x S ,),(∞+∞-∈x . 又因为∑∞=12cos n n nx 在),(∞+∞-上也满足定理45'.的条件,所以)(x S '在),(∞+∞-上同样也连续. □17.试求以下各级数的和函数:(1))1,1(,11-∈∑∞=+x nx n n ; (2)0,e 1>∑∞=-x n n x n .解(1)设)()(211211x T x nx x nx x S n n n n ===∑∑∞=-∞=+.由于 21111)1(11)()(x x x x x nx x T n n n n n n -='⎪⎪⎭⎫ ⎝⎛-='⎪⎪⎭⎫ ⎝⎛='==∑∑∑∞=∞=∞=-, 因此求得)1,1(,1)()(22-∈⎪⎪⎭⎫ ⎝⎛-==x x x x T x x S .(2)设0,e )(1>=∑∞=-x n x S n x n .类似地得到 .0,)1e (e1e 1e 1e )e (e )e ()(2111>-='⎪⎪⎭⎫ ⎝⎛--='⎪⎪⎭⎫⎝⎛--='⎪⎪⎭⎫ ⎝⎛-='⎪⎪⎭⎫ ⎝⎛-='-=--∞=-∞=-∞=-∑∑∑x x S x xx x x n n x n x n n x n □ 上必定不一致收敛;并可知道定理5.6的条件和结论都不成立. □。
考研数学华东师大《626数学分析》考研真题解析
考研数学华东师⼤《626数学分析》考研真题解析考研数学华东师⼤《626数学分析》考研真题解析
⼀、华东师范⼤学数学分析考研真题
⼆、华东师范⼤学数学系《数学分析》
⼀、判断题
1数列{a n}收敛的充要条件是对任意ε>0,存在正整数N,使得当n>N时,恒有|a2n-a n|<ε。
()[华东师范⼤学2008年研]
【答案】错~~
【解析】可举反例加以证明:设数列{a n}收敛,则对任意ε>0,存在正整数N,使得当n>N时,恒有|a2n-a n|<ε。
反之不真,例如设
显然有
但{a n}发散。
2对任意给定的x0∈R,任意给定的严格增加正整数列n k,k=1,2,…,存在定义在R上的函数f(x)使得
f(k)(x0)表⽰f(x)在点x0处的k阶导数)。
()[华东师范⼤学2008年研]
【答案】对~~
【解析】例如函数f(x)=(x-x0)n就满⾜条件。
3设f(x)在[a,b]上连续,且,则f(x)在[a,b]上有零点。
()[华东师范⼤学2008年研]
【答案】对~~
【解析】因为f(x)在[a,b]上连续,所以存在ξ∈(a,b),使得
即f(x)在(a,b)内有零点。
4对数列{a n}和
若{S n}是有界数列,则{a n}是有界数列。
()[北京⼤学研]
【答案】对~~
【解析】设|S n|<M,则|a n|=|S n-S n-1|≤2M。
数学分析 3,4,5章答案 华东师范大学
(2)若 存在,试问是否成立 ?
解:(1)证明因为 存在,设 ,则任给 ,存在 ,使得当 时,有 。此时取 ,则当 时, ,从而有 ,故有 。
(2)若若 存在, 并不一定成立。
例如
这里 存在,但 不存在,但是 则 。
3.函数极限存在的条件
1.叙述函数极限 的归结原则,并应用它证明 不存在。
所以 。
2.利用迫敛性求极限:
(1) ;(2) 。
解:(1)因为 趋于负无穷,所以当 时,
,而 ,由迫敛性定理得 。
(2)因为 趋于正无穷,所以当 时, 。而 , 。由迫敛性定理得 。
3.设 , ,证明:
(1) ;
(2) ;
(3) 。
证明:(1)因为 ,则对任给的 ,存在 ,当 时, 。 ,则对任给的 ,存在 ,当 时, 。对已给定的 ,取 ,当 时, 与 同时成立。当 时,
,对 ,存在 ,使得当 时,有 ,于是取 ,则当 ,即在 内有 。
8.求下列极限(其中 皆为正整数):
(1) ;(2) ;
(3) ;(4) ;
(5) 。
解:(1) 。
(2) 。
(3)由于
。由极限的四则运算法则,有
。
(4)由于 ,
。
(5)由于 ,当 时, 或 。对于两种形式,均有 ,由迫敛性定理得 。
解归结原则:设函数 为定义在 上的函数,则 存在的充要条件是:对任何含于 且趋于正无穷的数列 ,极限 都存在且相等。
证明由于 在 上有定义,设 ,则显然有 且 ,
但 ,有归结原则知 不存在。
2.设 为定义在 上的增(减)函数。证明: 存在的充要条件是 在 上有上(下)界。
证明只证一种情况即可。
数学分析课本(华师大三版)-习题及答案第八章
数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题1.若x e f x+='1)(,则=)(x f ___________2.设)(x f 的一个原函数为xxe ,则='?dx x f x )(_____________ 3.若xe-是)(x f 的一个原函数,则?=dx x xf )(________________4.若[]1)(3='x f ,则=)(x f ____________ 5.?=dx x x ),max(2___________________6.若)(x f 有原函数x x ln ,则?=''dx x f x )(_______________ 7.? =dx xx 2sin)ln(sin ________________8.若?+++=+xdx B xx A x dx cos 21cos 21sin )cos 21(2,则=A __________,=B __________9.设C x dx x xf +=?arcsin )(,则?=)(x f dx _________10.?=-)4(x x dx _________________11.?=-dx xx 21ln _________________12.[]=-?dx xx x a n)cos(ln )sin(ln ________________ 13.[]?='+dxx f x x f )()(________________14.?=+xedx 1_____________15.?=+dx x xex 2)1(_____________________16.=++?dx xx x x cos 2sin cos 3sin 4______________ 17.已知x x x f 22tansin )cos 2(+=+',则=)(x f _______________ 18.[]=+'dx x f x f 2)(1)(______________19. 若?+=C x F dx x f )()(,而),(x u ?=则?=du u f )(___________. 20设函数)(x f 的二阶导数)(x f ''连续,那么?=''__________)(dx x f x . 21设)(x f 的原函数是xx sin ,则?='__________)(dx x f x .22已知曲线)(x f y =上任一点的切线斜率为6332--x x ,且1-=x 时,211=y 是极大值,则)(x f __________=;)(x f 的极小值是__________.23已知一个函数的导数为211)(xx f -=,并且当1=x 时,这个函数值等于π23,则这个函数为__________)(=x F . 24 设)1(cos )(sin22<='x x x f ,则)(x f __________=.25 若)(x f 为连续函数,且)()(x f x f =',则?=__________)(dx x f . 26 若?='x dx x f ln ))((,则)(x f __________=. 27 已知2xe -是)(xf 的一个原函数,则?=__________sec )(tan 2xdx x f .28='__________)2(1dx x f x. 29 设C xxdx x f ++-=?11)(,则)(x f __________=.30 在积分曲线族?dx xx 1中,过(1,1)点的积分曲线是__________=y .二、选择填空题 1.设dx e e I xx+-=11,则=I ( )A.C e x++)1ln( B.C x e x+-+)1ln(2 C.C e x x++-)1ln(2 D.C e x+-)1ln(2.设)(x f 是连续的偶函数,则期原函数)(x F 一定是( ) A.偶函数B.奇函数 C.非奇非偶函数 D.有一个是奇函数3.设?+=++=)1(,)1(121u u du I dx xe x x I x,则存在函数)(x u u =,使( )A.x I I +=21B.x I I -=21C.12I I -=D.12I I = 4.当1-≠n 时,?=xdx x n ln ( ) A.C nx nxn+-)1(ln B.C n x n xn +----)11(ln 11C.C n x xn n ++-++)11(ln 111D.C x n xn +++ln 117.?=+dx x x )2sin2(cos ( )A.C x x +-)2cos2(sin 2 B.C x x +-)2sin2(cos2C.C xx +-2cos 2sin D.C x x +-2sin 2cos8.?=++dx xxx cos 1sin ( )A.C x x +2cotB.C x x +2tanC.C x x+cot 2 D.C x x +2tan 29.若)(x f 的导函数是x e xcos +-,则)(x f 的一个原函数为( )A.x excos -- B.x exsin +-- C.x e xcos --- D.x exsin +-10.若)(x f 是以l 为周期的连续函数,则其原函数( )。
华东师大数学分析答案完整版
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
华东师范大学数学分析第18章习题解答
1 第十八章
隐函数定理及其应用§1 隐函数1.方程xy e y x sin cos 能否在原点的某邻域内确定隐函数x f y 或y g x
? 分析:隐函数是否存在只须验证题目是否满足隐函数存在定理的条件
. 解令
xy e y x y x F sin cos ,,则有(1)
y x F ,在原点的某邻域内连续; (2)
00,0F ; (3)
xy y xy x xe y F ye x F cos ,sin 均在原点的上述邻域内连续; (4) 00
,0,010,0x y F F . 故由隐函数存在定理知
,方程xy e y x sin cos 在原点的某邻域内能确定隐函数x f y . 2.方程1ln xz e y z xy 在点1,1,0的某邻域内能否确定出某一个变量为另外两个变量的函数?
分析: 本题的解题思路与1题一样.
解令
1ln ,,xz e y z xy z y x F ,则(1)
z y x F ,,在点1,1,0的某邻域内连续; (2) 01
,1,0F ; (3) xz z y xz x xe y F y z
x F ze y F ln ,,均在原点的上述邻域内连续;
(4) 01,1,0,011
,1,0,021,1,0z y x F F F . 故由隐函数存在定理知,方程1ln xz e y z xy 在点1,1,0的某邻域内能确定隐函数
z y f x ,和z x g y ,.。
数学分析课本(华师大三版)-习题及答案01
第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。
证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、 设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明|22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗?7、 设x>0,b>0,a ≠b 。
证明xb x a ++介于1与ba 之间。
8、 设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、 设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。
§2数集、确界原理 1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6;(3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c ); (4)sinx ≥22。
2、 设S 为非空数集。
试对下列概念给出定义: (1)S 无上界;(2)S 无界。
3、 试证明由(3)式所确定的数集S 有上界而无下界。
4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。
华东师范大学数学分析第四版168页第五题
华东师范大学数学分析第四版168页第五题五、应用题1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4、刘军和张强付同样多的钱买了同一种铅笔,刘军要了13支,张强要了7支,刘军又给张强0.6元钱。
每支铅笔多少钱?答案:1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10—1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10—1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:455×3=4515=60(千克)答:3箱梨重60千克。
3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4、想:根据两人付同样多的钱买同一种铅笔和刘军要了13支,张强要了7支,可知每人应该得(137)÷2支,而刘军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13—(137)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
(完整版)华东师大数学分析标准答案
第四章函数的连续性第一节连续性概念1.按定义证明下列函数在其定义域内连续:(1); (2)。
x x f 1)(=x x f =)( 证:(1)的定义域为,当时,有xx f 1)(= ),0()0,(+∞-∞=D D x x ∈0,由三角不等式可得: ,0011x x x x x x -=-00x x x x --≥ 故当时,有00x x x <-002011x x x x x x x x ---≤- 对任意给的正数,取则,当 且时,ε,01020>+=x x εεδ0x <δD x ∈δ<-0x x 有ε<-=-0011)()(x x x f x f 可见在连续,由的任意性知:在其定义域内连续。
)(x f 0x 0x )(x f (2) 的定义域为对任何的,由于x x f =)(),,(+∞-∞),(0+∞-∞∈x,从而对任给正数,取,当时,00x x x x -≤-εεδ=δ<-0x x 有 =-)()(0x f x f 00x x x x -≤-ε< 故在连续,由的任意性知,在连续。
)(x f 0x 0x )(x f ),(+∞-∞2.指出函数的间断点及类型: (1); (2); (3);=)(x f xx 1+=)(x f x x sin =)(x f ]cos [x (4); (5);=)(x f x sgn =)(x f )sgn(cos x (6);(7)=)(x f ⎩⎨⎧-为无理数为有理数x x x x ,,=)(x f ⎪⎪⎩⎪⎪⎨⎧+∞<<--≤≤--<<∞-+x x x x x x x 1,11sin )1(17,7,71解: (1)在间断,由于不存在,故是的第二类间断点。
)(x f 0=x 1(lim xx x +∞→0=x )(x f(2)在间断,由于 ,)(x f 0=x 1sin lim )(lim 0==++→→xxx f x x故是的跳跃间断点。
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题
有界,由Dirichlet判别法,知 二、解答题
收敛.
1.设 ,求级数
的和.[苏州大学2004研]
解:设
, 的收敛区间为
,
,
令
,则
;
令
,则
则
从而
2.
.[武汉大学2004研]
解:原式 3.判断下列级数是绝对收敛、条件收敛还是发散:
(1)
;
(2)
.[北京科技大学2011研]
解:(1)因为
且
收敛,
所以由级数的比较判别法知,级数
上逐
点收敛,即由Osgood定理,得
上一致收敛.
(Osgood定理)设函数列 在有限闭区间 上连续, 在 上等 度连续,如果
则
(1)
上连续;
(2)
上一致收敛于 [哈尔滨工业大学2009研]
证明:(1)由 在 上等度连续,得
对
,当
成立;
时,不等式
令 取极限得,
由此得
上连续;
,对所有
(2)由 时,有
,
;对于任意的
目 录
第一部分 名校考研真题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续 第17章 多元函数微分学 第18章 隐函数定理及其应用 第19章 含参量积分
第20章 曲线积分 第21章 重积分 第22章 曲面积分 第23章 向量函数微分学 第二部分 课后习题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续
闭区间的性质可知,存在
即 这里
,由比值判别法知
绝对收敛.
数学分析课后习题答案(华东师范大学版)
P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222 C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
数学分析课后习题答案(华东师范大学版)
P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ Cx dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56tdx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dxx x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺.于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dxcos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴Cx x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,CxC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,duu dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I. .。
华东师范大学数学分析第四版第三章答案
华东师范大学数学分析第四版第三章答案一、填空题。
1.同学们做了80朵纸花,如果每5朵扎一束,可以扎( )束,如果每6朵扎一束,可以扎( )束,还剩下( )朵。
2.用46吨水泥去翻新房子,每套房子会用3吨,这些水泥最多能够翻新( )套房子。
3.有40人排队,至少出去( )人就可以平均站成3路纵队,至少增加( )人也可以站成3路纵队。
4.国庆节摆气球,按照“白、徐、蓝、黑、蓝”的顺序摆,一共摆了50个气球,其中第32个气球就是( )色,第50个就是( )色。
5.找规律填数。
(1)85,80,75,70,( ),( )。
(2)2,6,18,54,( ),( )。
(3)96,48,24,( ),( )。
二、选择题。
(把正确答案的序号填在括号里)1.做一套衣服枕头2米,35米短的布最多可以搞( )套这样的衣服。
A.16B.17C.182.某公司存有44吨货物须要装运,每辆车最多可以装3吨,最少须要( )辆这样的汽车。
A.14B.15C.163.某公园门票就是每张4元,82元最多可以卖( )张门票。
A.20B.21C.224.现在存有80个苹果须要放到包装盒里,至少换成( )个苹果就能够并使每个包装盒里的苹果都就是6个。
A.1B.2C.3三、计算题。
1.直接写出得数。
56÷7=32÷4= 20÷5=45÷9=48÷8=18÷3= 42÷7=84÷4=30×5=13×3= 50×4=80×7=2.列竖式计算。
75÷5=50÷4= 47÷3=68÷4=78÷6=92÷7= 85÷6=96÷8=四、解决问题。
1.科学小组的同学养了48条金鱼,每个鱼缸里养3条,需要多少个金鱼缸?2.学校图书馆存有故事书89本,平均值让给4个班级,每个班级可以分给多少本?还剩下多少本?一、1.16 13 22.153.1 24.黄蓝5.(1)65 60 (2)162 486 (3)12 6二、1.B 2.B 3.A 4.B三、1.8 8 4 5 6 6 6 21 150 39 200 5602.15 12......215......217 13 13 (1)14 (112)四、1.48÷3=16(个)。
(完整word版)数学分析 上册 第三版 华东师范大学数学系 编(word文档良心出品)
数学分析 上册 第三版 华东师范大学数学系 编部分习题参考解答P.4 习题1.设a 为有理数,x 为无理数,证明:(1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。
证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。
这与题设“x 为无理数”矛盾,故a + x 是无理数。
(2)假设ax 是有理数,于是aaxx =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。
3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。
证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。
另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。
这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。
5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x(2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x 6.设+∈R c b a ,,证明||||2222c b c a b a -≤+-+证明 建立坐标系如图,在三角形OAC 中,OA 的长度是22b a +,OC 的长度是22c a +,AC 的长度为||c b -。
因为三角形两边的差 大于第三边,所以有||||2222c b c a b a -≤+-+7.设 b a b x ≠>>,0,0,证明x b x a ++介于1与ba之间。
华东师范大学2004数学分析解答
华东师范大学2004数学分析一、(30分)计算题。
1、求2120)2(cos lim x x x x -→ 解:)0(21~2sin 21cos 22→--=x x x x∴ 1)1(120120120222)1(lim )1(lim )2(cos lim ---→→→=-=-=-e x x x x xx x x x x2、若)),sin(arctan 2lnx x e y x +=-求'y . 解:2ln '11)cos(arctan )sin(arctan ln 22xx x x e x x y x +++-=- 3、求⎰--dx x xe x2)1(. 解:=-⎰-dx x xe x 2)1(⎰--x d xe x 11=x xe x --1-=-⎰-dx x xe x 2')1()(x xe x --1-dx e x ⎰-=c e xxe x x ++---1 4、求幂级数∑∞=1n n nx的和函数)(x f .解:1||<x 时=∑∞=+'01)(n n nx∑∞=+0)1(n n x n =∑∞=0n n nx +∑∞=0n n x⇒ ∑∞=0n n nx ='01)(∑∞=+n n nx-∑∞=0n n x ==---x x x 11)1('=---x x 11)1(122)1(x x - 5、L 为过)0,0(O 和)0,2(πA 的曲线)0(sin >=a x a y ,求⎰+++L dy y dx y x .)2()(3xdx a x da dy x a y cos sin ,sin ===⎰+++L dy y dx y x )2()(3=⎰20πxdx +⎰2033sin πxdx a +⎰20cos 2πxdx a +⎰202cos sin πxdx x a =+82π+323a 222a a +6、求曲面积分⎰⎰++S zdxdy dydz z x )2(,其中)10(,22≤≤+=z y x z ,取上侧.解:应用Gauss 公式,并应用极坐标变换得:⎰⎰++S zdxdy dydz z x )2(=⎰⎰⎰∂∂+∂+∂V dxdydz zz x z x ))2(( =⎰⎰⎰⎰⎰⎰==100202333πθπz Vrd dr dz dxdydz . 二、(30分)判断题(正确的证明,错误的举出反例)1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则}{n x 至少存在一个聚点).,(0+∞-∞∈x 正确。
华东师大数学分析习题解答
《数学分析选论》习题解答第一章实数理论1 .把§例4改为关于下确界的相应命题,并加以证明.证设数集S有下确界,且inf S S,试证:(1)存在数列{a n} S,使lim a n;n(2)存在严格递减数列{ a n} S,使lim a n.n证明如下:(1)据假设, a S,有a ;且0, a S,使得a .现依1次取n n,n 1,2,,相应地a n S ,使得an n , n 1,2,.因n 0(n ),由迫敛性易知lim a nn(2)为使上面得到的{a n}是严格递减的,只要从n 2起,改取1n min 〒,a n 1,n2,3,,就能保证an 1 (an 1)n a n , n 2,3,□2.证明§例6的(ii).证设AB为非空有界数集,S A B , 试证:inf S min inf A, inf B .现证明如下.由假设,S A B显然也是非空有界数集,因而它的下确界存在•故对任何x S,有x A或x B,由此推知x inf A或x inf B,从而又有x min inf A, inf B inf S min inf A, inf B 另一方面,对任何x A,有x S,于是有x inf S inf A inf S ;同理又有inf B inf S •由此推得inf S min inf A, inf B综上,证得结论inf S min inf A, inf B 成立.3•设RB为有界数集,且A B •证明:(1)sup(A B) min sup A, sup B ;(2)inf (A B) max inf A, inf B .并举出等号不成立的例子.证这里只证(2),类似地可证(1).设inf A, inf B •则应满足:x A, y B ,有x , y .于是,z A B,必有zz max , ,z这说明max , 是A B的一个下界•由于A B亦为有界数集,故其下确界存在, 且因下确界为其最大下界,从而证得结论inf A B max inf A, inf B成立.上式中等号不成立的例子确实是存在的.例如:设A (2,4) ,B (0, 1) (3, 5),则A B (3, 4),这时inf A 2, inf B 0,而inf (A B) 3,故得inf A B max inf A, inf B •4•设RB为非空有界数集•定义数集A B c aba A, b B ,证明:(1) sup(A B) sup A sup B ;(2) inf (A B) inf A inf B •证 这里只证(2),类似地可证(1)由假设,inf A,inf B 都存在, 现欲证inf (A B).依据下确界定义,分两步证明如下: 1)因为 XA,B,有x ,所以 B ,必有这说明 的一个下界.2)0, X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos x(1 cos2 x) d (cos x)
1 cos2 x
t(t 2 1) dt
1t2
t
2t 1 t2
dt
= 1 cos2 x ln(1 cos2 x) C 2
yzF1 2xF2 xyF1 2zF 2
zxF1 2 yF2 xyF1 2zF2
,证明:
绕 x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出 S
的面积公式为:
A
2
b
a
f
(x)
1 f '(x)2 dx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
证明:f 在点 a 右连续,在点 b 左连续。
四、(14
( 1) I n
( 2)
I
n
分)设
In
2n 2n 1 In1, n
2 3n
,n
1
(1
0
1, 2,
x2 )n
dx
2, 3,
五、(12 分)设 S 为一旋转曲面,它由光滑曲线段
y f (x), x a,b, z 0 ( f (x) 0)
一、
⑴
证明:若 f (x) 在a,b上无零点,则当 n 充分大时, fn (x) 在
a,b上也无零点;并有 1 1 , x a,b。
fn (x) f (x)
lim x ln(1 x) lim
华东师范大学 2000 年数学分析解答
1 1 1 x
tangshan0315
1
t(1 t 2 ) 2t dt
1t2
t2 2
gradz
x a,b fn (x) f (x)
n1
ln(1 t 2 ) C
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
f (x)
六、(24 分)级数问题:
(1) 设
(2) 设
f
(x)
f (k) (0), k 1, 2,
n1
an
收敛,
sin x ,x0 x
1, x 0
lim
x
nan
fn (x)
1
fn (x) f (x)
0
,证明:
(3)设fn (x)为a,b上的连续函数序列,且 fn (x) f (x) , x a,b,
lim
x0 x ln(1 x) x0 ln(1 x) x x0 (1 x) ln(1 x) x x0 ln(1 x) 1 1 2
⑵
cos x sin 3 x dx
1 cos2 x
zx
⑶
zy
Fx Fz
Fy F
=
=
1 x
华东师大 2000 年数学分析试题
一、(24 分)计算题:
(1)求 lim( 1 1) ;
x0 ln(1 x) x
(2)
求
cos xAsin3 x dx
1 cos2 x
(3)设 z z(x, y) 是由方程 F (xyz, x2 y2 z2 ) 0 所确定的可微隐函数,
试求 grad z。
二、(14 分)证明:
(1)
(1
1
Байду номын сангаас
n
)1n
(2) 1 ln(1 1) 1 , n 1, 2
n 1
为递减数列:
nn
三、(12 分)设 f(x)在a,b中任意两点之间都具有介质性,而且 f 在
(a,b)内可导, f '(x) K (K 为正常数), x (a,b)