成都市中考数学试卷附答案
成都数学初三试题及答案
成都数学初三试题及答案一、选择题(每题3分,共30分)1. 已知a、b、c是三角形的三边长,下列条件中不能判定三角形为直角三角形的是()A. a² + b² = c²B. a² - b² = c²C. a² + b² > c²D. a² + c² = b²答案:B2. 函数y = 2x + 3的图象不经过第()象限。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C3. 下列各数中,是无理数的是()A. 0.5B. √2C. 0.33333D. π答案:B4. 已知x = 1是方程x² - 3x + 2 = 0的解,则另一个根是()A. 0B. 1C. 2D. -2答案:C5. 已知a、b、c是△ABC的三边,且a² + b² = c²,下列说法正确的是()A. △ABC是直角三角形B. △ABC是锐角三角形C. △ABC是钝角三角形D. 以上说法都不对答案:A6. 若函数y = 2x + 3与y = -x + 1的图象相交,则交点坐标为()A. (-4, -1)B. (1, 5)C. (-1, -4)D. (4, 1)答案:A7. 已知a、b、c是三角形的三边长,下列条件中不能判定三角形为直角三角形的是()A. a² + b² = c²B. a² - b² = c²C. a² + b² > c²D. a² + c² = b²答案:B8. 函数y = 2x + 3的图象不经过第()象限。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C9. 下列各数中,是无理数的是()A. 0.5B. √2C. 0.33333D. π答案:B10. 已知x = 1是方程x² - 3x + 2 = 0的解,则另一个根是()A. 0B. 1C. 2D. -2答案:C二、填空题(每题3分,共30分)11. 已知a、b、c是三角形的三边长,且a² + b² = c²,则△ABC 是________三角形。
成都市中考数学试题(含答案)
成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。
3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。
考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。
4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。
5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。
A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。
1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。
据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。
成都初三数学试题及答案
成都初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 4C. x = 2D. x = 5答案:A2. 如果一个数的平方等于其本身,那么这个数可以是:A. 0B. 1C. -1D. 0或1答案:D3. 函数y = 2x - 1的图像经过点:A. (0, -1)B. (1, 1)C. (2, 3)D. (3, 5)答案:A4. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x > 1D. x < 1答案:A6. 一个三角形的三个内角之和是:A. 90°B. 180°C. 270°D. 360°答案:B7. 一个等腰三角形的两个底角相等,如果一个底角是40°,那么顶角是:A. 100°B. 80°C. 120°D. 140°答案:A8. 一个数的立方等于其本身,那么这个数可以是:A. 0B. 1C. -1D. 0, 1或-1答案:D9. 以下哪个是二次方程x² - 5x + 6 = 0的根?A. 2B. 3C. 4D. 6答案:B10. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24cm³B. 36cm³C. 48cm³D. 52cm³答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个数的绝对值是4,那么这个数可以是______或______。
答案:4,-413. 一个直角三角形的两条直角边分别是3cm和4cm,那么它的斜边长度是______。
2022年四川省成都市中考数学试题(解析版)
2022年四川省成都市中考数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)37−的相反数是( ) A .37 B .37− C .73 D .73− 2.(4分)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A .21.610⨯B .51.610⨯C .61.610⨯D .71.610⨯3.(4分)下列计算正确的是( )A .2m m m +=B .2()2m n m n −=−C .222(2)4m n m n +=+D .2(3)(3)9m m m +−=−4.(4分)如图,在ABC ∆和DEF ∆中,点A ,E ,B ,D 在同一直线上,//AC DF ,AC DF =,只添加一个条件,能判定ABC DEF ∆≅∆的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠5.(4分)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( )A .56B .60C .63D .726.(4分)如图,正六边形ABCDEF 内接于O e ,若O e 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .237.(4分)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A .1000,41199979x y x y +=⎧⎪⎨+=⎪⎩B .1000,79999411x y x y +=⎧⎪⎨+=⎪⎩ C .1000,79999x y x y +=⎧⎨+=⎩ D .1000,411999x y x y +=⎧⎨+=⎩8.(4分)如图,二次函数2y ax bx c =++的图象与x 轴相交于(1,0)A −,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >−时,y 的值随x 值的增大而增大C .点B 的坐标为(4,0)D .420a b c ++>二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)计算:32()a −= .10.(4分)在平面直角坐标系xOy 中,若反比例函数2k y x −=的图象位于第二、四象限,则k 的取值范围是 . 11.(4分)如图,ABC ∆和DEF ∆是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC ∆与DEF ∆的周长比是 .12.(4分)分式方程31144x x x−+=−−的解为 . 13.(4分)如图,在ABC ∆中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为 .三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:11()93tan 3032|2−+︒+. (2)解不等式组:()3225,2123x x x x ⎧++⎪⎨−−<⋅⎪⎩①②… 15.(8分)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级 时长t (单位:分钟) 人数 所占百分比A02t <… 4 x B24t <… 20 C 46t <…36% D 6t …16% 根据图表信息,解答下列问题:(1)本次调查的学生总人数为 ,表中x 的值为 ;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.(8分)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin 720.95︒≈,cos720.31︒≈,tan 72 3.08)︒≈17.(10分)如图,在Rt ABC∆中,90ACB∠=︒,以BC为直径作Oe,交AB边于点D,在¶CD上取一点E,使¶¶BE CD=,连接DE,作射线CE交AB边于点F.(1)求证:A ACF∠=∠;(2)若8AC=,4cos5ACF∠=,求BF及DE的长.18.(10分)如图,在平面直角坐标系xOy中,一次函数26y x=−+的图象与反比例函数k yx =的图象相交于(,4)A a,B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)已知2272a a −=,则代数式2211()a a a a a−−−÷的值为 . 20.(4分)若一个直角三角形两条直角边的长分别是一元二次方程2640x x −+=的两个实数根,则这个直角三角形斜边的长是 .21.(4分)如图,已知O e 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .22.(4分)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =−++,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t 剟时,w 的取值范围是 ;当23t 剟时,w 的取值范围是 .23.(4分)如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '−的最大值为 .二、解答题(本大题共3个小题,共30分)24.(8分)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18/km h ,乙骑行的路程()s km 与骑行的时间()t h 之间的关系如图所示.(1)直接写出当00.2t 剟和0.2t >时,s 与t 之间的函数表达式; (2)何时乙骑行在甲的前面?25.(10分)如图,在平面直角坐标系xOy 中,直线3(0)y kx k =−≠与抛物线2y x =−相交于A ,B 两点(点A 在点B 的左侧),点B 关于y 轴的对称点为B '.(1)当2k =时,求A ,B 两点的坐标;(2)连接OA ,OB ,AB ',BB ',若△B AB '的面积与OAB ∆的面积相等,求k 的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(12分)如图,在矩形ABCD中,(1)=>,点E是AD边上一动点(点E不与AD nAB nA,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,ABE∆始终保持相似关系,请说明理由.∆与DEH【深入探究】(2)若2n=,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan ABE∠的值.【拓展延伸】(3)连接BH,FH,当BFH∆是以FH为腰的等腰三角形时,求tan ABE∠的值(用含n 的代数式表示).2022年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)37−的相反数是( ) A .37 B .37− C .73 D .73− 【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:37−的相反数是37. 故选:A .【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.(4分)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A .21.610⨯B .51.610⨯C .61.610⨯D .71.610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数. 【解答】解:160万61600000 1.610==⨯,故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)下列计算正确的是( )A .2m m m +=B .2()2m n m n −=−C .222(2)4m n m n +=+D .2(3)(3)9m m m +−=−【分析】选项A 根据合并同类项法则判断即可;选项B 根据去括号法则判断即可;选项C 根据完全平方公式判断即可;选项D 根据平方差公式判断即可.【解答】解:A .2m m m +=,故本选项不合题意;B .2()22m n m n −=−,故本选项不合题意;C .222(2)44m n m mn n +=++,故本选项不合题意;D .2(3)(3)9m m m +−=−,故本选项符合题意;故选:D .【点评】本题考查了合并同类项,去括号法则,完全平方公式以及平方差公式,掌握相关公式与运算法则是解答本题的关键.4.(4分)如图,在ABC ∆和DEF ∆中,点A ,E ,B ,D 在同一直线上,//AC DF ,AC DF =,只添加一个条件,能判定ABC DEF ∆≅∆的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠【分析】先根据平行线的性质得到A D ∠=∠,加上AC DF =,则可根据全等三角形的判定方法对各选项进行判断.【解答】解://AC DF Q ,A D ∴∠=∠,AC DF =Q ,∴当添加C F ∠=∠时,可根据“ASA ”判定ABC DEF ∆≅∆;当添加ABC DEF ∠=∠时,可根据“AAS ”判定ABC DEF ∆≅∆;当添加AB DE =时,即AE BD =,可根据“SAS ”判定ABC DEF ∆≅∆.故选:B .【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.5.(4分)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( )A .56B .60C .63D .72【分析】根据众数的定义求解即可.【解答】解:由题意知,这组数据中60出现3次,次数最多,∴这组数据的众数是60,故选:B .【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.6.(4分)如图,正六边形ABCDEF 内接于O e ,若O e 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .23【分析】连接OB 、OC ,根据O e 的周长等于6π,可得O e 的半径3OB OC ==,而六边形ABCDEF 是正六边形,即知360606BOC ︒∠==︒,BOC ∆是等边三角形,即可得正六边形的边长为3.【解答】解:连接OB 、OC ,如图:O Q e 的周长等于6π,O ∴e 的半径632OB OC ππ===, Q 六边形ABCDEF 是正六边形,360606BOC ︒∴∠==︒, BOC ∴∆是等边三角形,3BC OB OC ∴===,即正六边形的边长为3,故选:C .【点评】本题考查正多边形与圆的相关计算,解题的关键是掌握圆内接正六边形中心角等于60︒,从而得到BOC ∆是等边三角形.7.(4分)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A .1000,41199979x y x y +=⎧⎪⎨+=⎪⎩B .1000,79999411x y x y +=⎧⎪⎨+=⎪⎩ C .1000,79999x y x y +=⎧⎨+=⎩ D .1000,411999x y x y +=⎧⎨+=⎩【分析】利用总价=单价⨯数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:Q 共买了一千个苦果和甜果,1000x y ∴+=;Q 共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个, ∴41199979x y +=. ∴可列方程组为100041199979x y x y +=⎧⎪⎨+=⎪⎩. 故选:A .【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)如图,二次函数2y ax bx c =++的图象与x 轴相交于(1,0)A −,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >−时,y 的值随x 值的增大而增大C .点B 的坐标为(4,0)D .420a b c ++>【分析】由抛物线开口方向可判断A ,根据抛物线对称轴可判断B ,由抛物线的轴对称性可得点B 的坐标,从而判断C ,由(2,42)a b c ++所在象限可判断D .【解答】解:A 、由图可知:抛物线开口向下,0a <,故选项A 错误,不符合题意; B 、Q 抛物线对称轴是直线1x =,开口向下,∴当1x >时y 随x 的增大而减小,1x <时y 随x 的增大而增大,故选项B 错误,不符合题意; C 、由(1,0)A −,抛物线对称轴是直线1x =可知,B 坐标为(3,0),故选项C 错误,不符合题意;D 、抛物线2y ax bx c =++过点(2,42)a b c ++,由(3,0)B 可知:抛物线上横坐标为2的点在第一象限,420a b c ∴++>,故选项D 正确,符合题意;故选:D .【点评】本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象的性质,数形结合解决问题.二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)计算:32()a −= 6a .【分析】根据幂的乘方,底数不变指数相乘计算即可.【解答】解:326()a a −=.【点评】本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号.10.(4分)在平面直角坐标系xOy 中,若反比例函数2k y x −=的图象位于第二、四象限,则k 的取值范围是 2k < .【分析】根据反比例函数的性质列不等式即可解得答案.【解答】解:Q 反比例函数2k y x−=的图象位于第二、四象限, 20k ∴−<, 解得2k <,故答案为:2k <.【点评】本题考查反比例函数的性质,解题的关键是掌握当0k <时,k y x=的图象位于第二、四象限.11.(4分)如图,ABC ∆和DEF ∆是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC ∆与DEF ∆的周长比是 2:5 .【分析】先根据位似的性质得到ABC ∆和DEF ∆的位似比为:OA OD ,再利用比例性质得到:2:5OA OD =,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:ABC ∆Q 和DEF ∆是以点O 为位似中心的位似图形.ABC ∴∆和DEF ∆的位似比为:OA OD ,:2:3OA AD =Q ,:2:5OA OD ∴=,ABC ∴∆与DEF ∆的周长比是2:5.故答案为:2:5.【点评】本题考查了位似变换.位似变换的两个图形相似.相似比等于位似比.12.(4分)分式方程31144x x x−+=−−的解为 3x = . 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:314x x −−=−,解得:3x=,经检验3x=是分式方程的解,故答案为:3x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(4分)如图,在ABC∆中,按以下步骤作图:①分别以点B和C为圆心,以大于12 BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若5AC=,4BE=,45B∠=︒,则AB的长为7.【分析】设MN交BC于D,连接EC,由作图可知:MN是线段BC的垂直平分线,即得4BE CE==,有45ECB B∠=∠=︒,从而90AEC ECB B∠=∠+∠=︒,由勾股定理得3AE=,故7AB AE BE=+=.【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,4BE CE∴==,45ECB B∴∠=∠=︒,90AEC ECB B∴∠=∠+∠=︒,在Rt ACE ∆中, 2222543AE AC CE =−=−=,347AB AE BE ∴=+=+=,故答案为:7.【点评】本题考查尺规作图中的计算问题,解题的关键是掌握用尺规作线段垂直平分线的方法,得到MN 是线段BC 的垂直平分线.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:11()93tan 30|32|2−−+︒+−. (2)解不等式组:()3225,2123x x x x ⎧++⎪⎨−−<⋅⎪⎩①②… 【分析】(1)根据负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值以及实数混合运算的方法进行计算即可;(2)利用解一元一次不等式组的解法进行解答即可.【解答】解:(1)原式3233233=−+⨯+− 1323=−++− 1=;(2)解不等式①得,1x −…,解不等式②得,2x <,把两个不等式的解集在同一条数轴上表示如下:所以不等式组的解集为12x −<….【点评】本题考查负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算以及一元一次不等式组,掌握负整数指数幂的性质,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算的方法以及一元一次不等式组的解法是正确解答的前提.15.(8分)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表. 等级 时长t (单位:分钟) 人数 所占百分比A 02t < (4)x B 24t <… 20 C 46t <…36% D 6t …16% 根据图表信息,解答下列问题:(1)本次调查的学生总人数为 50 ,表中x 的值为 ;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【分析】(1)用D 等级人数除以它所占的百分比得到调查的总人数,然后用4除以总人数得到x 的值;(2)用500乘以B 等级人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为816%50÷=(人),所以48%50x ==; 故答案为:50;8%;(2)2050020050⨯=(人),所以估计等级为B 的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8, 所以恰好抽到一名男生和一名女生的概率82123==. 【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求出事件A 或B 的概率.也考查了统计图.16.(8分)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin 720.95︒≈,cos720.31︒≈,tan 72 3.08)︒≈【分析】利用平角定义先求出30AOC ∠=︒,然后在Rt ACO ∆中,利用锐角三角函数的定义求出AO 的长,从而求出A O '的长,再利用平角定义求出A OD ∠'的度数,最后在Rt △A DO '中,利用锐角三角函数的定义进行计算即可解答.【解答】解:150AOB ∠=︒Q ,18030AOC AOB ∴∠=︒−∠=︒,在Rt ACO ∆中,10AC cm =,220()AO AC cm ∴==,由题意得:20AO A O cm ='=,108A OB ∠'=︒Q ,18072A OD A OB ∴∠'=︒−∠'=︒,在Rt △A DO '中,sin 72200.9519()A D A O cm '='⋅︒≈⨯=,∴此时顶部边缘A '处离桌面的高度A D '的长约为19cm .【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.17.(10分)如图,在Rt ABC ∆中,90ACB ∠=︒,以BC 为直径作O e ,交AB 边于点D ,在¶CD上取一点E ,使¶¶BE CD =,连接DE ,作射线CE 交AB 边于点F . (1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长.【分析】(1)利用等角的余角相等证明即可;(2)连接CD .解直角三角形求出AB ,BC ,利用面积法求出CD ,再利用勾股定理求出DB ,证明DEF BCF ∆∆∽,利用相似三角形的性质求出DE 即可.【解答】(1)证明:Q ¶¶BECD =, BCF FBC ∴∠=∠,90ACB ∠=︒Q ,90A FBC ∴∠+∠=︒,90ACF BCF ∠+∠=︒,A ACF ∴∠=∠;(2)解:连接CD .A ACF ∠=∠Q ,FBC BCF ∠=∠,AF FC FB ∴==,4cos cos 5AC A ACF AB ∴∠=∠==, 8AC =Q ,10AB ∴=,6BC =,BC Q 是直径,90CDB ∴∠=︒,CD AB ∴⊥, 1122ABC S AC BC AB CD ∆=⋅⋅=⋅⋅Q , 6824105CD ⨯∴==, 222224186()55BD BC CD ∴=−=−=, 5BF AF ==Q ,187555DF BF BD ∴=−=−=, 180DEF DEC ∠+∠=︒Q ,180DEC B ∠+∠=︒,DEF B BCF ∴∠=∠=∠,//DE CB ∴,DEF BCF ∴∆∆∽,∴DE DF BC FB=, ∴7565DE =, 4225DE ∴=.【点评】本题属于圆综合题,考查了解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.18.(10分)如图,在平面直角坐标系xOy 中,一次函数26y x =−+的图象与反比例函数k y x =的图象相交于(,4)A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.【分析】(1)将点A 坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP ,AP ,BQ 的解析式,联立方程组可求解.【解答】解:(1)Q 一次函数26y x =−+的图象过点A ,426a ∴=−+,1a ∴=,∴点(1,4)A ,Q 反比例函数k y x=的图象过点(1,4)A , 144k ∴=⨯=; ∴反比例函数的解析式为:4y x=, 联立方程组可得:426y x y x ⎧=⎪⎨⎪=−+⎩,解得:1114x y =⎧⎨=⎩,2222x y =⎧⎨=⎩, ∴点(2,2)B ;(2)如图,过点A 作AE y ⊥轴于E ,过点C 作CF y ⊥轴于F ,//AE CF ∴,AEH CFH ∴∆∆∽, ∴AE AH EH CF CH FH==, 当12AH CH =时,则22CF AE ==, ∴点(2,2)C −−,22(22)(22)42BC ∴=+++= 当2AH CH =时,则1122CF AE ==, ∴点1(2C −,8)−, 221517(2)(28)22BC ∴=+++=, 综上所述:BC 的长为42517; (3)如图,当90AQP ABP ∠=∠=︒时,设直线AB 与y 轴交于点E ,过点B 作BF y ⊥轴于F ,设BP 与y 轴的交点为N ,连接BQ ,AP 交于点H ,Q 直线26y x =−+与y 轴交于点E ,∴点(0,6)E ,Q 点(2,2)B ,2BF OF ∴==,4EF ∴=,90ABP ∠=︒Q ,90ABF FBN ABF BEF ∴∠+∠=︒=∠+∠,BEF FBN ∴∠=∠,又90EFB ABN ∠=∠=︒Q ,EBF BNF ∴∆∆∽, ∴BF FN EF BF=, 2214FN ⨯∴==, ∴点(0,1)N ,∴直线BN 的解析式为:112y x =+, 联立方程组得:4112y x y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:1141x y =−⎧⎨=−⎩,2222x y =⎧⎨=⎩, ∴点(4,1)P −−,∴直线AP 的解析式为:3y x =+,AP Q 垂直平分BQ ,∴设BQ 的解析式为4y x =−+,34x x ∴+=−+,12x ∴=, ∴点1(2H ,7)2, Q 点H 是BQ 的中点,点(2,2)B ,∴点(1,5)Q −.【点评】本题是反比例函数综合题,考查了一次函数的应用,反比例函数的应用,相似三角形的判定和性质,待定系数法等知识,灵活运用这些性质解决问题是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)已知2272a a −=,则代数式2211()a a a a a−−−÷的值为 72 . 【分析】先将代数式化简为2a a −,再由2272a a −=可得272a a −=,即可求解. 【解答】解:原式2221()1a a a a a a −=−⨯− 22(1)1a a a a −=⨯− (1)a a =−2a a =−,2272a a −=Q ,2227a a ∴−=,272a a ∴−=, ∴代数式的值为72, 故答案为:72. 【点评】本题考查代数式求值,解题的关键是正确化简代数式,利用题干条件进行解答.20.(4分)若一个直角三角形两条直角边的长分别是一元二次方程2640x x −+=的两个实数根,则这个直角三角形斜边的长是【分析】设直角三角形两条直角边分别为a 、b ,斜边为c ,由一元二次方程根与系数的关系可得6a b +=,4ab =,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a 、b ,斜边为c ,Q 直角三角形两条直角边的长分别是一元二次方程2640x x −+=的两个实数根,6a b ∴+=,4ab =,∴斜边2222()262427c a b a b ab =+=+−=−⨯=,故答案为:27.【点评】本题考查一元二次方程根与系数的关系,涉及勾股定理、完全平方公式的应用,解题的关键是掌握一元二次方程根与系数的关系,得到6a b +=,4ab =.21.(4分)如图,已知O e 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 24π− .【分析】作OD CD ⊥,OB AB ⊥,设O e 的半径为r ,根据O e 是小正方形的外接圆,是大正方形的内切圆,可得OB OC r ==,AOB ∆、COD ∆是等腰直角三角形,即可得2AE r =,2CF r =,从而求出答案.【解答】解:作OD CD ⊥,OB AB ⊥,如图:设O e 的半径为r ,O Q e 是小正方形的外接圆,是大正方形的内切圆,OB OC r ∴==,AOB ∆、COD ∆是等腰直角三角形,AB OB r ∴==,22OD CD r ==, 2AE r ∴=,2CF r =,∴这个点取在阴影部分的概率是222(2)2(2)4r r r ππ−−=,故答案为:24π−.【点评】本题考查几何概率,涉及正方形的外切圆与内接圆,解题的关键是用含r 的代数式表示阴影部分的面积.22.(4分)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =−++,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t 剟时,w 的取值范围是 05w 剟 ;当23t 剟时,w 的取值范围是 .【分析】利用待定系数法求得抛物线的解析式,再利用配方法求得抛物线的顶点坐标,结合函数图象即可求解.【解答】解:Q 物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒, ∴抛物线25h t mt n =−++的顶点的纵坐标为20,且经过(3,0)点,∴224(5)204(5)5330n m m n ⎧⨯−−=⎪⨯−⎨⎪−⨯++=⎩, 解得:111015m n =⎧⎨=⎩,2250105m n =⎧⎨=−⎩(不合题意,舍去), ∴抛物线的解析式为251015h t t =−++,22510155(1)20h t t t =−++=−−+Q ,∴抛物线的最高点的坐标为(1,20).20155−=Q ,∴当01t 剟时,w 的取值范围是:05w 剟; 当2t =时,15h =,当3t =时,0h =,20155−=Q ,20020−=,∴当23t 剟时,w 的取值范围是:520w 剟. 故答案为:05w 剟;520w 剟. 【点评】本题主要考查了二次函数的应用,待定系数法确定函数的解析式,二次函数的性质,理解“极差”的意义是解题的关键.23.(4分)如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '−的最大值为 1623.【分析】如图,连接BD 交AC 于点O ,过点D 作DK BC ⊥于点K ,延长DE 交AB 于点R ,连接EP '交AB 于点J ,作EJ 关于AC 的对称线段EJ ',则DP '的对应点P ''在线段EJ '上.当点P 是定点时,DQ QP AD QP −'=−'',当D ,P '',Q 共线时,QD QP −'的值最大,最大值是线段DP ''的长,当点P 与B 重合时,点P ''与J '重合,此时DQ QP −'的值最大,最大值是线段DJ '的长,也就是线段BJ 的长.解直角三角形求出BJ ,可得结论.【解答】解:如图,连接BD 交AC 于点O ,过点D 作DK BC ⊥于点K ,延长DE 交AB 于点R ,连接EP '交AB 于点J ,作EJ 关于AC 的对称线段EJ ',则点P '的对应点P ''在线段EJ '上.当点P 是定点时,DQ QP AD QP −'=−'',当D ,P '',Q 共线时,QD QP −'的值最大,最大值是线段DP ''的长,当点P 与B 重合时,点P ''与J '重合,此时DQ QP −'的值最大,最大值是线段DJ '的长,也就是线段BJ 的长.Q 四边形ABCD 是菱形,AC BD ∴⊥,AO OC =,14AE =Q .18EC =,32AC ∴=,16AO OC ==,16142OE AO AE ∴=−=−=,DE CD ⊥Q ,90DOE EDC ∴∠=∠=︒,DEO DEC ∠=∠Q ,EDO ECD ∴∆∆∽,236DE EO EC ∴=⋅=,6DE EB EJ ∴===,CD ∴==,OD ∴===,BD ∴=1122DCB S OC BD BC DK ∆=⨯⨯=⋅Q , 111616323DK ⨯⨯⨯⨯∴==, BER DCK ∠=∠Q ,32sin sin9DK BER DCK CD ∴∠=∠===,RB BE ∴==, EJ EB =Q ,ER BJ ⊥,JR BR ∴==,3JB DJ ∴='=,DQ P Q '∴−的最大值为1623. 解法二:DQ P Q BQ P Q BP '''−=−…,显然P '的轨迹EJ ,故最大值为BJ .勾股得CD ,OD .BDJ BAD ∆∆∽,2*BD BJ BA =,可得1623BJ =. 故答案为:1623. 【点评】本题考查轴对称−最短问题,菱形的性质,解直角三角形等知识,解题的关键是学会利用轴对称解决最值问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.二、解答题(本大题共3个小题,共30分)24.(8分)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18/km h ,乙骑行的路程()s km 与骑行的时间()t h 之间的关系如图所示.(1)直接写出当00.2t 剟和0.2t >时,s 与t 之间的函数表达式; (2)何时乙骑行在甲的前面?【分析】(1)根据图象分段设出函数解析式,在用待定系数法求出函数解析式即可;(2)设t 小时后乙在甲前面,用乙的路程大于甲的路程列出不等式求解即可.【解答】解:(1)当00.2t 剟时,设s at =, 把(0.2,3)代入解析式得,0.23a =,解得:15a =,15s t ∴=;当0.2t >时,设s kt b =+,把(0.2,3)和(0.5,9)代入解析式,。
四川省成都市2023年中考数学真题和参考答案
四川省成都市2023年中考数学真题和参考答案- 说明:本文档包含了四川省成都市2023年中考数学科目的真题和参考答案,旨在帮助考生备考。
请注意,以下内容仅供参考。
选择题1. 若正整数 $a$ 和 $b$ 满足 $a + b = 9$,则 $a$ 和 $b$ 的乘积最大值是多少?A. 12B. 18C. 20D. 27答案:D2. 若 $\frac{x-1}{a} + \frac{x}{b} = 2$,其中 $a$、$b$ 为正整数,则 $x = \_\_\_$。
答案:$\frac{ab}{b-a}$3. 若一个分数的分子和分母都是3位数,且分母比分子小27,则该分数的值是多少?A. $\frac{11}{13}$B. $\frac{13}{14}$C. $\frac{16}{17}$D. $\frac{18}{19}$答案:D4. 已知 $\log_a b = 2$,则 $a^4 + b^2 = \_\_\_$。
答案:21解答题5. 求下列方程的解集:$2(x - 3) - 4x + 1 = x + 5$。
解答:将方程化简得:$-2x - 5 = x + 5$。
移项得:$-3x = 10$。
两边同时除以-3得:$x = \frac{-10}{3}$。
所以,方程的解集为:$\{ \frac{-10}{3} \}$。
6. 若 $\triangle ABC$ 的内角 $A$ 为 $55^\circ$,边 $AB$ 长为4,边 $AC$ 长为11,则 $\sin C$ 的值为多少?解答:根据正弦定理,我们有:$\frac{4}{\sin 55^\circ} = \frac{11}{\sin C}$。
即,$\sin C = \frac{11}{4} \cdot \sin 55^\circ$。
所以,$\sin C$ 的值为 $\frac{11}{4} \cdot \sin 55^\circ$。
以上为四川省成都市2023年中考数学科目的部分真题和参考答案。
2022年四川省成都市中考数学试卷含答案详解
2022年四川省成都市中考数学试卷及答案解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.37-的相反数是( )A .37B .37-C .73D .73-2.2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( ) A .21.610⨯ B .51.610⨯ C .61.610⨯ D .71.610⨯3.下列计算正确的是( ) A .2m m m +=B .2()2m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=-4.如图,在ABC ∆和DEF ∆中,点A ,E ,B ,D 在同一直线上,//AC DF ,AC DF =,只添加一个条件,能判定ABC DEF ∆≅∆的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠ 5.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( ) A .56 B .60 C .63 D .726.如图,正六边形ABCDEF 内接于O ,若O 的周长等于6π,则正六边形的边长为( )ABC .3 D.7.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( ) A .1000,41199979x y x y +=⎧⎪⎨+=⎪⎩ B .1000,79999411x y x y +=⎧⎪⎨+=⎪⎩ C .1000,79999x y x y +=⎧⎨+=⎩D .1000,411999x y x y +=⎧⎨+=⎩8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(1,0)A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为(4,0)D .420a b c ++>二、填空题(本大题共5个小题,每小题4分,共20分) 9.计算:32()a -= .10.在平面直角坐标系xOy 中,若反比例函数2k y x-=的图象位于第二、四象限,则k 的取值范围是 .11.如图,ABC ∆和DEF ∆是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC ∆与DEF ∆的周长比是 .12.分式方程31144x x x-+=--的解为 .13.如图,在ABC ∆中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为 .三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:11()3tan302|2-︒+.(2)解不等式组:()3225,2123x x x x ⎧++⎪⎨--<⋅⎪⎩①② 15.(8分)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一 位:分钟) 02t < 24t <46t <6t 根据图表信息,解答下列问题:(1)本次调查的学生总人数为 ,表中x 的值为 ; (2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.(8分)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08)︒≈17.(10分)如图,在Rt ABC ∆中,90ACB ∠=︒,以BC 为直径作O ,交AB 边于点D ,在CD 上取一点E ,使BE CD =,连接DE ,作射线CE 交AB 边于点F .(1)求证:A ACF ∠=∠; (2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长.18.(10分)如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(,4)A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19.已知2272a a -=,则代数式2211()a a a a a---÷的值为 .20.若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是 .21.如图,已知O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .22.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t 时,w 的取值范围是 ;当23t 时,w 的取值范围是 .23.如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '-的最大值为 .二、解答题(本大题共3个小题,共30分) 24.(8分)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18/km h ,乙骑行的路程()s km 与骑行的时间()t h 之间的关系如图所示.(1)直接写出当00.2t 和0.2t >时,s 与t 之间的函数表达式; (2)何时乙骑行在甲的前面?25.(10分)如图,在平面直角坐标系xOy 中,直线3(0)y kx k =-≠与抛物线2y x =-相交于A ,B 两点(点A 在点B 的左侧),点B 关于y 轴的对称点为B '. (1)当2k =时,求A ,B 两点的坐标;(2)连接OA ,OB ,AB ',BB ',若△B AB '的面积与OAB ∆的面积相等,求k 的值; (3)试探究直线AB '是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(12分)如图,在矩形ABCD中,(1)=>,点E是AD边上一动点(点E不与AD nAB nA,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,ABE∆始终保持相似关系,请说明理由.∆与DEH【深入探究】(2)若2n=,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan ABE∠的值.【拓展延伸】(3)连接BH,FH,当BFH∆是以FH为腰的等腰三角形时,求tan ABE∠的值(用含n 的代数式表示).2022年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.37-的相反数是( )A .37B .37-C .73D .73-【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:37-的相反数是37.故选:A .2.2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A .21.610⨯B .51.610⨯C .61.610⨯D .71.610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数. 【解答】解:160万61600000 1.610==⨯, 故选:C .3.下列计算正确的是( ) A .2m m m +=B .2()2m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=- 【分析】选项A 根据合并同类项法则判断即可;选项B 根据去括号法则判断即可;选项C 根据完全平方公式判断即可;选项D 根据平方差公式判断即可. 【解答】解:A .2m m m +=,故本选项不合题意; B .2()22m n m n -=-,故本选项不合题意; C .222(2)44m n m mn n +=++,故本选项不合题意;D .2(3)(3)9m m m +-=-,故本选项符合题意; 故选:D .4.如图,在ABC ∆和DEF ∆中,点A ,E ,B ,D 在同一直线上,//AC DF ,AC DF =,只添加一个条件,能判定ABC DEF ∆≅∆的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠ 【分析】先根据平行线的性质得到A D ∠=∠,加上AC DF =,则可根据全等三角形的判定方法对各选项进行判断. 【解答】解://AC DF , A D ∴∠=∠, AC DF =,∴当添加C F ∠=∠时,可根据“ASA ”判定ABC DEF ∆≅∆;当添加ABC DEF ∠=∠时,可根据“AAS ”判定ABC DEF ∆≅∆;当添加AB DE =时,即AE BD =,可根据“SAS ”判定ABC DEF ∆≅∆. 故选:B .5.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( ) A .56 B .60 C .63 D .72 【分析】根据众数的定义求解即可.【解答】解:由题意知,这组数据中60出现3次,次数最多, ∴这组数据的众数是60, 故选:B .6.如图,正六边形ABCDEF 内接于O ,若O 的周长等于6π,则正六边形的边长为( )ABC .3 D.【分析】连接OB 、OC ,根据O 的周长等于6π,可得O 的半径3OB OC ==,而六边形ABCDEF 是正六边形,即知360606BOC ︒∠==︒,BOC ∆是等边三角形,即可得正六边形的边长为3.【解答】解:连接OB 、OC ,如图:O 的周长等于6π, O ∴的半径632OB OC ππ===, 六边形ABCDEF 是正六边形,360606BOC ︒∴∠==︒,BOC ∴∆是等边三角形, 3BC OB OC ∴===, 即正六边形的边长为3, 故选:C .7.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A .1000,41199979x y x y +=⎧⎪⎨+=⎪⎩ B .1000,79999411x y x y +=⎧⎪⎨+=⎪⎩C .1000,79999x y x y +=⎧⎨+=⎩D .1000,411999x y x y +=⎧⎨+=⎩【分析】利用总价=单价⨯数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x ,y 的二元一次方程组,此题得解. 【解答】解:共买了一千个苦果和甜果, 1000x y ∴+=;共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个, ∴41199979x y +=. ∴可列方程组为100041199979x y x y +=⎧⎪⎨+=⎪⎩. 故选:A .8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(1,0)A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为(4,0)D .420a b c ++>【分析】由抛物线开口方向可判断A ,根据抛物线对称轴可判断B ,由抛物线的轴对称性可得点B 的坐标,从而判断C ,由(2,42)a b c ++所在象限可判断D .【解答】解:A 、由图可知:抛物线开口向下,0a <,故选项A 错误,不符合题意; B 、抛物线对称轴是直线1x =,开口向下, ∴当1x >时y 随x 的增大而减小,1x <时y 随x 的增大而增大,故选项B 错误,不符合题意; C 、由(1,0)A -,抛物线对称轴是直线1x =可知,B 坐标为(3,0),故选项C 错误,不符合题意;D 、抛物线2y ax bx c =++过点(2,42)a b c ++,由(3,0)B 可知:抛物线上横坐标为2的点在第一象限,420a b c ∴++>,故选项D 正确,符合题意; 故选:D .二、填空题(本大题共5个小题,每小题4分,共20分) 9.计算:32()a -= 6a .【分析】根据幂的乘方,底数不变指数相乘计算即可. 【解答】解:326()a a -=.10.在平面直角坐标系xOy 中,若反比例函数2k y x-=的图象位于第二、四象限,则k 的取值范围是 2k < .【分析】根据反比例函数的性质列不等式即可解得答案.【解答】解:反比例函数2k y x-=的图象位于第二、四象限, 20k ∴-<, 解得2k <,故答案为:2k <.11.如图,ABC ∆和DEF ∆是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC ∆与DEF ∆的周长比是 2:5 .【分析】先根据位似的性质得到ABC ∆和DEF ∆的位似比为:OA OD ,再利用比例性质得到:2:5OA OD =,然后利用相似比等于位似比和相似三角形的性质求解. 【解答】解:ABC ∆和DEF ∆是以点O 为位似中心的位似图形. ABC ∴∆和DEF ∆的位似比为:OA OD , :2:3OA AD =, :2:5OA OD ∴=,ABC ∴∆与DEF ∆的周长比是2:5. 故答案为:2:5.12.分式方程31144x x x-+=--的解为 3x = .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:314x x --=-, 解得:3x =,经检验3x =是分式方程的解, 故答案为:3x =13.如图,在ABC ∆中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为 7 .【分析】设MN 交BC 于D ,连接EC ,由作图可知:MN 是线段BC 的垂直平分线,即得4BE CE ==,有45ECB B ∠=∠=︒,从而90AEC ECB B ∠=∠+∠=︒,由勾股定理得3AE =,故7AB AE BE =+=.【解答】解:设MN 交BC 于D ,连接EC ,如图:由作图可知:MN 是线段BC 的垂直平分线,4BE CE ∴==,45ECB B ∴∠=∠=︒,90AEC ECB B ∴∠=∠+∠=︒,在Rt ACE ∆中,3AE ===,347AB AE BE ∴=+=+=,故答案为:7.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:11()3tan302|2-︒+. (2)解不等式组:()3225,2123x x x x ⎧++⎪⎨--<⋅⎪⎩①② 【分析】(1)根据负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值以及实数混合运算的方法进行计算即可;(2)利用解一元一次不等式组的解法进行解答即可.【解答】解:(1)原式2332=-++-12=--1=;(2)解不等式①得,1x -,解不等式②得,2x <,把两个不等式的解集在同一条数轴上表示如下:所以不等式组的解集为12x -<.15.(8分)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一位:分钟) 02t < 24t <6t < 6t (1)本次调查的学生总人数为 50 ,表中x 的值为 ;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【分析】(1)用D 等级人数除以它所占的百分比得到调查的总人数,然后用4除以总人数得到x 的值;(2)用500乘以B 等级人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为816%50÷=(人),所以48%50x ==; 故答案为:50;8%;(2)2050020050⨯=(人), 所以估计等级为B 的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率82123==. 16.(8分)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08)︒≈【分析】利用平角定义先求出30AOC ∠=︒,然后在Rt ACO ∆中,利用锐角三角函数的定义求出AO 的长,从而求出A O '的长,再利用平角定义求出A OD ∠'的度数,最后在Rt △A DO '中,利用锐角三角函数的定义进行计算即可解答.【解答】解:150AOB ∠=︒,18030AOC AOB ∴∠=︒-∠=︒,在Rt ACO ∆中,10AC cm =,220()AO AC cm ∴==,由题意得:20AO AO cm ='=,108AOB ∠'=︒,18072AOD AOB ∴∠'=︒-∠'=︒,在Rt △A DO '中,sin72200.9519()A D A O cm '='⋅︒≈⨯=,∴此时顶部边缘A '处离桌面的高度A D '的长约为19cm .17.(10分)如图,在Rt ABC ∆中,90ACB ∠=︒,以BC 为直径作O ,交AB 边于点D ,在CD 上取一点E ,使BE CD =,连接DE ,作射线CE 交AB 边于点F .(1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长.【分析】(1)利用等角的余角相等证明即可;(2)连接CD .解直角三角形求出AB ,BC ,利用面积法求出CD ,再利用勾股定理求出DB ,证明DEF BCF ∆∆∽,利用相似三角形的性质求出DE 即可.【解答】(1)证明:BE CD =,BCF FBC ∴∠=∠,90ACB ∠=︒,90A FBC ∴∠+∠=︒,90ACF BCF ∠+∠=︒,A ACF ∴∠=∠;(2)解:连接CD .A ACF ∠=∠,FBC BCF ∠=∠,AF FC FB ∴==,4cos cos 5AC A ACF AB∴∠=∠==, 8AC =,10AB ∴=,6BC =,BC 是直径,90CDB ∴∠=︒,CD AB ∴⊥,1122ABC S AC BC AB CD ∆=⋅⋅=⋅⋅, 6824105CD ⨯∴==,185BD ∴==, 5BF AF ==,187555DF BF BD ∴=-=-=, 180DEF DEC ∠+∠=︒,180DEC B ∠+∠=︒,DEF B BCF ∴∠=∠=∠,//DE CB ∴,DEF BCF ∴∆∆∽, ∴DE DF BC FB=, ∴7565DE =, 4225DE ∴=.18.(10分)如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(,4)A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.【分析】(1)将点A 坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP ,AP ,BQ 的解析式,联立方程组可求解.【解答】解:(1)一次函数26y x =-+的图象过点A ,426a ∴=-+,1a ∴=,∴点(1,4)A , 反比例函数k y x=的图象过点(1,4)A , 144k ∴=⨯=;∴反比例函数的解析式为:4y x=, 联立方程组可得:426y x y x ⎧=⎪⎨⎪=-+⎩, 解得:1114x y =⎧⎨=⎩,2222x y =⎧⎨=⎩, ∴点(2,2)B ;(2)如图,过点A 作AE y ⊥轴于E ,过点C 作CF y ⊥轴于F ,//AE CF ∴,AEH CFH ∴∆∆∽,∴AE AH EH CF CH FH==, 当12AH CH =时,则22CF AE ==, ∴点(2,2)C --,BC ∴= 当2AH CH =时,则1122CF AE ==, ∴点1(C -,8)-,BC ∴=综上所述:BC 的长为; (3)如图,当90AQP ABP ∠=∠=︒时,设直线AB 与y 轴交于点E ,过点B 作BF y ⊥轴于F ,设BP 与y 轴的交点为N ,连接BQ ,AP 交于点H ,直线26y x =-+与y 轴交于点E ,∴点(0,6)E ,点(2,2)B ,2BF OF ∴==,4EF ∴=,90ABP ∠=︒,90ABF FBN ABF BEF ∴∠+∠=︒=∠+∠,BEF FBN ∴∠=∠,又90EFB ABN ∠=∠=︒,EBF BNF ∴∆∆∽,∴BF FN EF BF=, 2214FN ⨯∴==, ∴点(0,1)N ,∴直线BN 的解析式为:112y x =+,联立方程组得:4112y x y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:1141x y =-⎧⎨=-⎩,2222x y =⎧⎨=⎩, ∴点(4,1)P --,∴直线AP 的解析式为:3y x =+, AP 垂直平分BQ ,∴设BQ 的解析式为4y x =-+,34x x ∴+=-+,12x ∴=, ∴点1(2H ,7)2, 点H 是BQ 的中点,点(2,2)B ,∴点(1,5)Q -.一、填空题(本大题共5个小题,每小题4分,共20分)19.已知2272a a -=,则代数式2211()a a a a a ---÷的值为 72. 【分析】先将代数式化简为2a a -,再由2272a a -=可得272a a -=,即可求解. 【解答】解:原式2221()1a a a a a a -=-⨯- 22(1)1a a a a -=⨯- (1)a a =-2a a =-,2272a a -=,2227a a ∴-=,272a a ∴-=, ∴代数式的值为72, 故答案为:72. 20.若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是【分析】设直角三角形两条直角边分别为a 、b ,斜边为c ,由一元二次方程根与系数的关系可得6a b +=,4ab =,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a 、b ,斜边为c ,直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,6a b ∴+=,4ab =,∴斜边c ==故答案为:21.如图,已知O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 24π- .【分析】作OD CD ⊥,OB AB ⊥,设O 的半径为r ,根据O 是小正方形的外接圆,是大正方形的内切圆,可得OB OC r ==,AOB ∆、COD ∆是等腰直角三角形,即可得2AE r =,CF =,从而求出答案.【解答】解:作OD CD ⊥,OB AB ⊥,如图:设O 的半径为r , O 是小正方形的外接圆,是大正方形的内切圆,OB OC r ∴==,AOB ∆、是等腰直角三角形,AB OB r ∴==,OD CD ==,2AE r ∴=,CF ,∴24π-=, 故答案为:24π-. 22.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t 时,w 的取值范围是 05w ;当23t 时,w 的取值范围是 .【分析】利用待定系数法求得抛物线的解析式,再利用配方法求得抛物线的顶点坐标,结合函数图象即可求解.【解答】解:物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒, ∴抛物线25h t mt n =-++的顶点的纵坐标为20,且经过(3,0)点, ∴224(5)204(5)5330n m m n ⎧⨯--=⎪⨯-⎨⎪-⨯++=⎩, 解得:111015m n =⎧⎨=⎩,2250105m n =⎧⎨=-⎩(不合题意,舍去), ∴抛物线的解析式为251015h t t =-++,22510155(1)20h t t t =-++=--+,∴抛物线的最高点的坐标为(1,20).20155-=,∴当01t 时,w 的取值范围是:05w ;当2t =时,15h =,当3t =时,0h =,20155-=,20020-=,∴当23t 时,w 的取值范围是:520w .故答案为:05w ;520w .23.如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '-的最大值为. 【分析】如图,连接BD 交AC 于点O ,过点D 作DK BC ⊥于点K ,延长DE 交AB 于点R ,连接EP '交AB 于点J ,作EJ 关于AC 的对称线段EJ ',则DP '的对应点P ''在线段EJ '上.当点P 是定点时,DQ QP AD QP -'=-'',当D ,P '',Q 共线时,QD QP -'的值最大,最大值是线段DP ''的长,当点P 与B 重合时,点P ''与J '重合,此时DQ QP -'的值最大,最大值是线段DJ '的长,也就是线段BJ 的长.解直角三角形求出BJ ,可得结论.【解答】解:如图,连接BD 交AC 于点O ,过点D 作DK BC ⊥于点K ,延长DE 交AB 于点R ,连接EP '交AB 于点J ,作EJ 关于AC 的对称线段EJ ',则点P '的对应点P ''在线段EJ '上.当点P 是定点时,DQ QP AD QP -'=-'',当D ,P '',Q 共线时,QD QP -'的值最大,最大值是线段DP ''的长,当点P 与B 重合时,点P ''与J '重合,此时DQ QP -'的值最大,最大值是线段DJ '的长,也就是线段BJ 的长.四边形ABCD 是菱形,AC BD ∴⊥,AO OC =,14AE =.18EC =,32AC ∴=,16AO OC ==,16142OE AO AE ∴=-=-=,DE CD ⊥,90DOE EDC ∴∠=∠=︒,DEO DEC ∠=∠,EDO ECD ∴∆∆∽,236DE EO EC ∴=⋅=,6DE EB EJ ∴===,CD ∴=OD ∴===BD ∴=1122DCB S OC BD BC DK ∆=⨯⨯=⋅, 11616323DK ⨯⨯⨯∴==, BER DCK ∠=∠,32sin sinDK BER DCK CD ∴∠=∠===RB BE ∴==, EJ EB =,ER BJ ⊥,JR BR ∴==,JB DJ ∴='=,DQ P Q '∴- 解法二:DQ P Q BQ P Q BP '''-=-,显然P '的轨迹EJ ,故最大值为BJ .勾股得CD ,OD .BDJ BAD ∆∆∽,2*BD BJ BA =,可得BJ =二、解答题(本大题共3个小题,共30分)24.(8分)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18/km h ,乙骑行的路程()s km 与骑行的时间()t h 之间的关系如图所示.(1)直接写出当00.2t 和0.2t >时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?【分析】(1)根据图象分段设出函数解析式,在用待定系数法求出函数解析式即可;(2)设t 小时后乙在甲前面,用乙的路程大于甲的路程列出不等式求解即可.【解答】解:(1)当00.2t 时,设s at =,把(0.2,3)代入解析式得,0.23a =,解得:15a =,15s t ∴=;当0.2t >时,设s kt b =+,把(0.2,3)和(0.5,9)代入解析式,得0.590.23k b k b +=⎧⎨+=⎩, 解得201k b =⎧⎨=-⎩, 201s t ∴=-,s ∴与t 之间的函数表达式为15(00.2)201(0.2)t t s t t ⎧=⎨->⎩; (2)设t 小时后乙在甲前面,根据题意得:20118t t -,解得:0.5t ,答:0.5小时后乙骑行在甲的前面.25.(10分)如图,在平面直角坐标系xOy 中,直线3(0)y kx k =-≠与抛物线2y x =-相交于A ,B 两点(点A 在点B 的左侧),点B 关于y 轴的对称点为B '.(1)当2k =时,求A ,B 两点的坐标;(2)连接OA ,OB ,AB ',BB ',若△B AB '的面积与OAB ∆的面积相等,求k 的值;(3)试探究直线AB '是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【分析】(1)当2k =时,直线为23y x =-,联立解析式解方程组即得(3,9)A --,(1,1)B -;(2)分两种情况:当0k >时,根据△B AB '的面积与OAB ∆的面积相等,知//OB AB ',可证明()BOD BCD ASA ∆≅∆,得1322OD OC ==,3(0,)2D -,可求B 3)2-,即可得k =; 当0k <时,过B '作//B F AB '交y 轴于F ,由△B AB '的面积与OAB ∆的面积相等,可得3OE EF ==,证明()BGF BGE ASA ∆≅∆,可得92OG OE GE =+=,9(0,)2G -,从而B ,9)2-,即可得k =; (3)设230x kx +-=二根为a ,b ,可得a b k +=-,3ab =-,2(,)A a a -,2(,)B b b -,2(,)B b b '--,设直线AB '解析式为y mx n =+,可得()m a b n ab =--⎧⎨=-⎩,即可得()m a b b a =--=-,(3)3n ab =-=--=,从而直线AB '解析式为3y x =+,故直线AB '经过定点(0,3).【解答】解:(1)当2k =时,直线为23y x =-,由223y x y x =-⎧⎨=-⎩得:39x y =-⎧⎨=-⎩或11x y =⎧⎨=-⎩, (3,9)A ∴--,(1,1)B -;(2)当0k >时,如图:△B AB '的面积与OAB ∆的面积相等,//OB AB '∴,OB B B BC ''∴∠=∠, B 、B '关于y 轴对称,OB OB '∴=,90ODB ODB '∠=∠=︒,OB B OBB ''∴∠=∠,OBB B BC ''∴∠=∠,90ODB CDB ∠=︒=∠,BD BD =,()BOD BCD ASA ∴∆≅∆,OD CD ∴=,在3y kx =-中,令0x =得3y =-,(0,3)C ∴-,3OC =,1322OD OC ∴==,3(0,)2D -, 在2y x =-中,令3y =-得232x -=-,解得x =或x =,B ∴,3)2-,把B 3)2-代入3y kx =-得:332-=-,解得k ; 当0k <时,过B '作//B F AB '交y 轴于F ,如图:在3y kx =-中,令0x =得3y =-,(0,3)E ∴-,3OE =,△B AB '的面积与OAB ∆的面积相等,3OE EF ∴==, B 、B '关于y 轴对称,FB FB '∴=,90FGB FGB '∠=∠=︒,FB B FBB ''∴∠=∠,//B F AB ',EBB FB B ''∴∠=∠,EBB FBB ''∴∠=∠,90BGE BGF ∠=︒=∠,BG BG =,()BGF BGE ASA ∴∆≅∆,1322GE GF EF ∴===, 92OG OE GE ∴=+=,9(0,)2G -, 在2y x =-中,令9y =-得292x -=-,解得2x =或2x =-(2B ∴,9)2-,把(2B ,9)2-代入3y kx =-得:9322-=-,解得2k =,综上所述,k 2; (3)直线AB '经过定点(0,3),理由如下:由23y x y kx ⎧=-⎨=-⎩得:230x kx +-=, 设230x kx +-=二根为a ,b ,a b k ∴+=-,3ab =-,2(,)A a a -,2(,)B b b -, B 、B '关于y 轴对称,2(,)B b b '∴--,设直线AB '解析式为y mx n =+,将2(,)A a a -,2(,)B b b '--代入得: 22am n a bm n b ⎧+=-⎨-+=-⎩, 解得:()m a b n ab=--⎧⎨=-⎩, a b k +=-,3ab =-,()m a b b a ∴=--=-(3)3n ab =-=--=,∴直线AB '解析式为3y x =+,令0x =得3y =,∴直线AB '经过定点(0,3).26.(12分)如图,在矩形ABCD 中,(1)AD nAB n =>,点E 是AD 边上一动点(点E 不与A ,D 重合),连接BE ,以BE 为边在直线BE 的右侧作矩形EBFG ,使得矩形EBFG ∽矩形ABCD ,EG 交直线CD 于点H .【尝试初探】(1)在点E 的运动过程中,ABE ∆与DEH ∆始终保持相似关系,请说明理由.【深入探究】(2)若2n =,随着E 点位置的变化,H 点的位置随之发生变化,当H 是线段CD 中点时,求tan ABE ∠的值.【拓展延伸】(3)连接BH ,FH ,当BFH ∆是以FH 为腰的等腰三角形时,求tan ABE ∠的值(用含n 的代数式表示).【分析】(1)根据两角对应相等可证明ABE DEH ∆∆∽;(2)设DH x =,AE a =,则2AB x =,4AD x =,4DE x a =-,由ABE DEH ∆∆∽,列比例式可得x = (3)分两种情况:FH BH =和FH BF =,先根据三角形相似证明F 在射线DC 上,再根据三角形相似的性质和勾股定理列等式可得结论.【解答】解:(1)四边形EBFG 和四边形ABCD 是矩形,90A BEG D ∴∠=∠=∠=︒,90ABE AEB AEB DEH ∴∠+∠=∠+∠=︒,DEH ABE ∴∠=∠,ABE DEH ∴∆∆∽,∴在点E 的运动过程中,ABE ∆与DEH ∆始终保持相似关系;(2)如图1,H 是线段CD 中点,DH CH ∴=,设DH x =,AE a =,则2AB x =,4AD x =,4DE x a =-, 由(1)知:ABE DEH ∆∆∽, ∴AE AB DH DE =,即24a x x x a=-, 2224x ax a ∴=-,22240x ax a ∴-+=,22a x ±∴==, tan 2AE a ABEx∠==, 当xtan ABE∠==, 当xtan ABE ∠=; 综上,tan ABE ∠. (3)分两种情况:①如图2,BH FH =,设ABx =,AE a =,四边形BEGF 是矩形,90AEG G ∴∠=∠=︒,BE FG =, Rt BEH Rt FGH(HL)∴∆≅∆, EH GH ∴=,矩形EBFG ∽矩形ABCD , ∴AD EG n AB BE==, ∴2EH n BE=, ∴2EH n BE =, 由(1)知:ABE DEH ∆∆∽, ∴2DE EH n AB BE ==, ∴2nx a n x -=, 2nx a ∴=, ∴2a n x =, tan 2AE a n ABE AB x ∴∠===; ②如图3,BF FH =,矩形EBFG ∽矩形ABCD ,90ABC EBF ∴∠=∠=︒,AB BE BC BF=, ABE CBF ∴∠=∠,ABE CBF ∴∆∆∽,90BCF A ∴∠=∠=︒,D ∴,C ,F 共线,BF FH =,FBH FHB ∴∠=∠,//EG BF ,FBH EHB ∴∠=∠,EHB CHB ∴∠=∠,BE EH ⊥,BC CH ⊥, BE BC ∴=,由①可知:AB x =,AE a =,BE BC nx ==, 由勾股定理得:222AB AE BE +=, 222()x a nx ∴+=,x ∴=(负值舍),tan AE a ABE AB x∴∠==综上,tan ABE ∠的值是2n。
数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案
2024~2025 学年度上期高 2025届半期考试高三数学试卷考试时间:120 分钟总分:150 分注意事项:1.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.2.回答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,请考生个人留存试卷并将答题卡交回给监考教师.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数i i 4321-+的虚部是( )A.51-B .5 1 C .5 2 - D .52 2.式子15tan 115tan 1-+的 值为() A.3 B .2 C .5 D .63.由正数组成的等比数列{}n a ,n S 为其前n 项和,若241a a =,37S =,则5S 等于() A.152 B.314 C.3 34 D .1 72 4.在24 3)1()1()1(+++++++n x x x 的展开式中,含2x 项的系数是() A.33+n C B .123- +n C C.133- +n C D .331+-n C 5.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时(2)()0x f x '->,则当24a <<时,有()A.2(2)(2)(log )a f f f a << B.2(log )(2)(2)a f a f f <<C.2(log )(2)(2)a f a f f << D.2(2)(log )(2)a f f a f <<6.若向量,,abc 满足,22a b c == = ,则()()a b c b-⋅- 的最大值为()A.10B .12C . D . 7.若对R x ∈∀,函数a x x f +=2)(的函数值都不超过函数⎪⎩⎪⎨⎧≥+<+=1,21,2)(x x x x x x g 的函数值,则实数a 的取值范围是()A.2-≥a B .2≤a C.22≤≤-a D.2<a 8.在三棱柱1 1 1C B A ABC -中, 1CC CB CA ==,3 =AB ,1C 在面ABC 的投影为ABC ∆的外心,二面角1 1B CC A --为3π,该三棱柱的侧面积为() A.33 4 +B .3 7 C .3 6 D .35在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到m 50.9以上(含m 50.9)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;(II)设X 是甲、乙、丙在校运动会铅球比赛中获优秀奖的总人数,估计X 的数学期望)(X E .17.(本小题满分15分)如图,在三棱柱11 1 ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,1 3CC =, 点,D E 分别在棱1AA 和棱1CC 上,且12,AD C E M ==为棱11A B 的中点.(I )求证:11C M B D ⊥;(II )求二面角1B B E D --的正弦值;(III )求直线AB 与平面1DB E 所成角的正弦值.椭圆)0(1:2 2 2 2>>=+b a by a x E 左焦点F 和),0(),0,(b B a A 构成一个面积为)12 (2+的F AB ∆,且22cos =∠AFB .(I )求椭圆E 的标准方程;(II )点P 是E 在三象限的点,P A 与y 轴交于M ,PB 与x 轴交于N ①求四边形ABNM 的面积;② 求PMN ∆面积最大值及相应P 点的坐标.19.(本小题满分17分)已知函数1)(2---=x ax e x f x .( 其中71828.2≈e )(I )当0=a 时,证明:0)(≥x f (II )若0>x 时,0)(>x f ,求实数a 的取值范围;(Ⅲ)记函数x xe x g x ln 21)(--=的最小值为m ,求证:)1,2023(-∈e m2024~2025 学年度上期高 2025届半期考试高三数学试卷参考答案一、单选题DABC D BCC二、多选题9.ABD 1 0.AC 1 1.BCD三、填空题12.2 00 ,1x N x ∃ ∈≤13.25)2()3( 2 2=-+-y x 14.22四、解答题15.【解】(I )21cos cos sin 32=-C C C ,12cos 212sin 23=-∴C C ,即sin(216C π-=,π<<C 0 ,262 C ππ ∴-=, 解得3π=C 。
成都中考真题精选数学答案及解析
成都中考真题精选数学答案及解析近年来,中考成绩对每个学生来说都是至关重要的,而数学是中考必考科目之一。
成都作为人口众多的城市,中考竞争异常激烈。
为了帮助学生提高数学成绩,以下是几道成都中考真题的答案及解析,希望对大家有所帮助。
题目一:已知a、b、c是正数,且满足a+b+c=1,那么(1-a)²+(2-b)²+(3-c)²的最小值为多少?解析:首先我们可以将(1-a)²+(2-b)²+(3-c)²展开,得到1-2a+a²+4-4b+b²+9-6c+c²=14-2a-4b-6c+a²+b²+c²。
因为a、b、c是非负数,所以a²、b²、c²都不为负数。
为了使得14-2a-4b-6c尽量小,即找到最小值,我们需要让a、b、c的系数尽量大。
由于a+b+c=1,我们可以将14-2a-4b-6c转化为2(a+b+c)+12-2a-4b-6c=12,所以(1-a)²+(2-b)²+(3-c)²的最小值为12。
题目二:方程x²-(a-2)x+a²=0的两个相异实数解之和小于0,求实数a的取值范围。
解析:根据韦达定理,方程的两个根之和等于-x₁+x₂=(a-2)/1=a-2。
根据题目要求,a-2小于0,即a<2。
题目三:甲、乙、丙三个人合作修筑一条长30米的砖墙,甲每天搬砖数是乙每天搬砖数的2/3,甲搬砖的速度是丙的1.5倍。
如果甲、乙、丙三人搬完砖墙需要一周,请问甲每天搬多少砖?解析:我们设乙每天搬砖x块,那么甲每天搬砖的块数就是2x/3。
丙搬砖的速度是甲的1.5倍,即每天搬砖的块数为2.5 * 2x/3 = 5x/3。
一周共有7天,根据题目条件,甲、乙、丙三人搬完砖墙需要一周,所以30 = 7 * (2x/3 + x + 5x/3)。
2024年四川省成都市中考数学真题(解析版)
2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣5的绝对值是()A.5 B.﹣5C.15-D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A.()2233x x = B.336x y xy +=C.()222x y x y +=+ D.()()2224x x x +-=-【答案】D 【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A.()1,4-- B.()1,4- C.()1,4 D.()1,4-【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB AD= B.AC BD ⊥ C.AC BD = D.ACB ACD∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A.142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B.142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C.142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A.ABE CBE ∠=∠B.5BC =C.DE DF= D.53BE EF =【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC ∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m +=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10.分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14.(1)计算:()02sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π+︒--+42122=+⨯-+-5=+5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即82.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan AB ADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan 5BFC ∠=,45AF =CF 的长和O 的直径.【答案】(1)见详解;(2536.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠,即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠= EBC DBF∴ ∽EC CB DF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB ACCF BC∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=,5CB ===不妨设EF y =,那么AE AF EF y BE=-=-=在Rt CEB △中,CE EF CF y =+=,5CB =,BE y=-222(5)y y ∴++=y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF ∴=DF=DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是.【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5b m n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5b m n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】①.9②.144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【答案】1712+【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BC BF EF =∴221m x x m +=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得1712x +=(负值已舍去),故答案为:1712.【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】①.>②.112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线的对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a --=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,∴222461n n n -++=-,解得1271,3n n =-=,∴点720,39D ⎛⎫- ⎪⎝⎭,过点D 作DH AB ⊥于点H ,则72203,339BH DH =-==,则10tan 3DH ABD BH ∠==;【小问3详解】设()2,23,D n an an a --直线AD 解析式为()11y k x =+,则()21231an an a k n --=+,解得13k an a =-,那么直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,如图,则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an a B n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a =+--++∵()22232463ax ax a ax an a x an a --=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.【答案】(1)BD CE 的值为35;(2)7039CF =;(3)直角三角形CDE 的面积分别为4,16,12,4813【解析】【分析】(1)根据3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.证明ADE ABC ≌,5AC AE ====,继而得到DAE BAC ∠=∠,DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,再证明CAE BAD ∽,得到35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,得到ABD ACE ∠=∠,根据中线BM 得到1522BM AM CM AC ====,继而得到MBC MCB ∠=∠,结合90ABD MBC ∠+∠=︒,得到90ACE MCB ∠+∠=︒即90BCE ∠=︒,得到AB CQ ,再证明ABM CQM ≌,得证矩形ABCQ ,再利用勾股定理,三角形相似的判定和性质计算即可.(3)运用分类思想解答即可.【详解】(1)∵3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.∴()SAS ADE ABC ≌,∴5AC AE ====,DAE BAC ∠=∠,∴DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,∵1AB AC AD AE==∴CAE BAD ∽,∴35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,∴ABD ACE ∠=∠,∵BM 是中线∴1522BM AM CM AC ====,∴MBC MCB ∠=∠,∵90ABD MBC ∠+∠=︒,∴90ACE MCB ∠+∠=︒即90BCE ∠=︒,∴AB CQ ,∴,BAM QCM ABM CQM ∠=∠∠=∠,∵BAM QCM ABM CQM AM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS BAM QCM ≌,∴BM QM =,∴四边形ABCQ 是平行四边形,∵90ABC ∠=︒∴四边形ABCQ 矩形,∴3,4,90AB CQ BC AQ AQC ====∠=︒,∴,3PQ CN EQ == ,∴313EP EQ PN QC ===,∴12PQ CN =,设,2PQ x CN x ==,则4AP x =-,∵903EPQ APD EQP ADP EQ AD ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴()AAS EQP ADP ≌,∴4AP EP x ==-,∵222EP PQ EQ =+,∴()22243x x -=+,解得78x =;∴2548AP x =-=,724CN x ==,∵,5PQ CN AC = ,∴APF CNF ∽,∴AP AF CN CF=,∴AP CN AF CF CN CF ++=,∴25758474CF +=,解得7039CF =.(3)如图,当AD 与AC 重合时,此时DEAC ⊥,此时CDE 是直角三角形,故()111·244222CDE S CD DE AC AD DE ==⨯-⨯=⨯⨯=;如图,当AD 在CA 的延长线上时,此时DEAC ⊥,此时CDE 是直角三角形,故()111·8416222CDE S CD DE AC AD DE ==⨯+⨯=⨯⨯= ;如图,当DE EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,∵5AE AC ==,∴12EQ QC EC ==,∵AQ EC ⊥,DE EC ⊥,DE AD ⊥,∴四边形ADEQ 是矩形,∴132AD EQ QC EC ====,∴6EC =,故11641222CDE S EC DE ==⨯⨯= ;如图,当DC EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,交DE 于点N ,∴12EQ QC EC x ===,NQ CD ∥,∴1EN EQ DN QC==,∴122DN EN DE ===,12QN DC =,∵,90AND ENQ ADN EQN ∠=∠∠=∠=︒,∴DAN QEN ∠=∠,∴tan tan DAN QEN ∠=∠,∴23QN DN EQ AD ==,∴23QN x =,∴4,23DC x CE x ==,∵222ED DC EC =+,∴()2224423x x ⎛⎫=+ ⎪⎝⎭,∴23613x =,解得13x =;故21144436482223331313CDE S EC DC x x x ==⨯⨯==⨯= .【点睛】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。
成都市中考数学真题及答案
秘密姓名:准考证号:成都市二〇一五年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.3-的倒数是(A)31-(B)31(C)3-(D)3【答案】:A【解析】:根据倒数的定义,很容易得到3-的倒数是13-,选A。
2.如图所示的三棱柱的主视图是(A)(B)(C)(D)【答案】:B解密时间:20XX年6月14日上午9:00【解析】:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中。
从正面看易得三棱柱的一条棱位于三棱柱的主视图内,选B 。
3.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相。
新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4个航站楼的总面积约为126万平方米,用科学计数法表示126万为(A )410126⨯ (B )51026.1⨯ (C )61026.1⨯ (D )71026.1⨯【答案】:C【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。
确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。
将126万用科学记数法表示1.26×106元,选B 。
4.下列计算正确的是(A )4222a a a =+ (B )632a a a =⋅ (C )422)(a a =- (D )1)1(22+=+a a 【答案】:C【解析】: A 、2a 与 2a 是同类项,能合并,2222a a a +=。
故本选项错误。
B 、2a 与 3a 是同底数幂,根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加。
2022年四川省成都市中考数学真题(解析版)
2022年四川省成都市中考数学试题及答案数学A 卷第Ⅰ卷(选择题)一、选择题(本大题共8个小题,每小题均有四个选项,其中只有一项符合题目要求)1.37-的相反数是()A.37 B.37-C.73-D.73【答案】A 【解析】【分析】直接根据相反数的求法求解即可.【详解】解:任意一个实数a 的相反数为-a 由−37的相反数是37;故选A .【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2.2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为()A.21.610⨯ B.51.610⨯ C.61.610⨯ D.71.610⨯【答案】C 【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解答:解:160万=1600000=61.610⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.下列计算正确的是()A.2m m m += B.()22m n m n-=-C.222(2)4m n m n +=+D.2(3)(3)9m m m +-=-【答案】D 【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.4.如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF △≌△的是()A.BC DE =B.AE DB =C.A DEF ∠=∠D.ABC D∠=∠【答案】B 【解析】【分析】根据三角形全等的判定做出选择即可.【详解】A 、BC DE =,不能判断ABC DEF △≌△,选项不符合题意;B 、AE DB =,利用SAS 定理可以判断ABC DEF △≌△,选项符合题意;C 、A DEF ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;D 、ABC D ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.5.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数A.56B.60C.63D.72【答案】B 【解析】【分析】结合题意,根据众数的性质分析即可得到答案.【详解】根据题意,56,60,63,60,60,72这组数据的众数是:60故选:B .【点睛】本题考查了众数的知识;解题的关键是熟练掌握众数的定义:众数是指在统计分布上具有明显集中趋势点的数值,也就是一组数据中出现次数最多的数值.6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为()A.B.C.3D.【答案】C 【解析】【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.7.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为()A.100041199979x y x y +=⎧⎪⎨+=⎪⎩ B.100079909411x y x y +=⎧⎪⎨+=⎪⎩C.100079999x y x y +=⎧⎨+=⎩ D.1000411999x y x y +=⎧⎨+=⎩【答案】A 【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题.【详解】解:设苦果有x 个,甜果有y 个,由题意可得,100041199979x y x y +=⎧⎪⎨+=⎪⎩故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组的有关知识,正确找到相等关系是解决本题的关键.8.如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A.0a >B.当1x >-时,y 的值随x 值的增大而增大C.点B 的坐标为()4,0D.420a b c ++>【答案】D 【解析】【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即0a <,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对称轴()112B x x +-==,解得3B x =,即()3,0B ,故该选项不符合题意;D 、根据()3,0B 可知,当2x =时,420y a b c =++>,故该选项符合题意;故选:D .【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与x 轴交点()1,0A -得到()3,0B 是解决问题的关键.第Ⅱ卷(非选择题)二、填空题(本大题共5个小题)9.计算:()23a -=______.【答案】6a 【解析】【分析】根据幂的乘方可直接进行求解.【详解】解:()236a a -=;故答案为6a .【点睛】本题主要考查幂的乘方,熟练掌握幂的乘方是解题的关键.10.关于x 的反比例函数2m y x-=的图像位于第二、四象限,则m 的取值范围是________.【答案】2m <【解析】【分析】根据反比例函数的性质即可确定m-2的符号,从而求解.【详解】根据题意得:m-2<0,解得:m <2.故答案为:m <2.【点睛】本题考查了反比例函数的性质,对于反比例函数y =kx(k≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.11.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF的周长比是_________.【答案】2:5【解析】【分析】根据位似图形的性质,得到OCA OFD ∆∆ ,根据:2:3OA AD =得到相似比为25CA OA OA FD OD OA AD ===+,再结合三角形的周长比等于相似比即可得到结论.【详解】解: ABC 和DEF 是以点O 为位似中心的位似图形,∴OCA OFD ∆∆ ,∴CA OAFD OD=, :2:3OA AD =,∴25CA OA OA FD OD OA AD ===+,∴根据ABC 与DEF 的周长比等于相似比可得25ABC DEF C CA C FD ∆∆==,故答案为:2:5.【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键.12.分式方程31144x x x-+=--的解是_________.【答案】3x =【解析】【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解.【详解】解:31144x x x-+=--解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解,故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.13.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.【答案】7【解析】【分析】连接EC ,依据垂直平分线的性质得EB EC =.由已知易得90BEC CEA ∠∠=︒=,在Rt △AEC 中运用勾股定理求得AE ,即可求得答案.【详解】解:由已知作图方法可得,MN 是线段BC 的垂直平分线,连接EC ,如图,所以BE CE =,所以45ECB B ∠=∠=︒,所以∠BEC =∠CEA =90°,因为5AC =,4BE =,所以4CE =,在AEC △中,3AE ==,所以347AB AE BE =+=+=,因此AB 的长为7.故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得AE 即可.三、解答题(本大题共5个小题)14.计算:113tan 3022-⎛⎫+︒+ ⎪⎝⎭.(2)解不等式组:3(2)252123x x x x +≥+⎧⎪⎨--<⎪⎩①②.【答案】(1)1;(2)12x -≤<【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(1)113tan 3022-⎛⎫-︒- ⎪⎝⎭=-+⨯+23323=-+-12=1.(2)3(2)252123x x x x +≥+⎧⎪⎨--<⎪⎩①②不等式①的解集是x ≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长:(单位:分钟)人数所占百分比A02t≤<4xB24t≤<20C46t≤<36%D6t≥16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x的值为_________;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【答案】(1)50,8%(2)200(3)2 3【解析】【分析】(1)利用概率计算公式先求出总人数,再求出等级为A 的学生人数;(2)利用概率计算公式先求出等级为B 的学生所占的百分比,再求出等级为B 的学生人数;(3)记两名男生为a ,b ,记两名女生为c ,d ,通过列出表格列出所有可能的结果,用恰有一男一女的结果数除以总的结果数,即可得到恰好抽到一名男生和一名女生的概率.【小问1详解】解:∵D 组人数为8人,所占百分比为16%,∴总人数为816%50÷=人,∴4508%x =÷=.【小问2详解】解:等级为B 的学生所占的百分比为205040%÷=,∴等级为B 的学生人数为50040%200⨯=人.【小问3详解】解:记两名男生为a ,b ,记两名女生为c ,d ,列出表格如下:∴一共有12种情况,其中恰有一男一女的有8种,82123P ==.【点睛】本题考查了列表法与树状图法,概率计算公式的熟练应用是解答本题的关键.16.2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin 720.95︒≈,cos720.31︒≈,tan 72 3.08︒≈)【答案】约为19cm【解析】【分析】在Rt△ACO中,根据正弦函数可求OA=20cm,在Rt△A DO'中,根据正弦函数求得A D'的值.【详解】解:在Rt△ACO中,∠AOC=180°-∠AOB=30°,AC=10cm,∴OA=10201sin302OC==°,在Rt△A DO'中,18072A OC A OBⅱÐ=°-Ð=°,20OA OA'==cm,∴sin72200.9519A D OAⅱ=盎�cm.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.17.如图,在Rt ABC△中,90ACB∠=︒,以BC为直径作⊙O,交AB边于点D,在 CD 上取一点E,使BE CD=,连接DE,作射线CE交AB边于点F.(1)求证:A ACF∠=∠;(2)若8AC=,4cos5ACF∠=,求BF及DE的长.【答案】(1)见解析(2)BF=5,4225DE=【解析】【分析】(1)根据Rt ABC△中,90ACB∠=︒,得到∠A+∠B=∠ACF+∠BCF=90°,根据BE CD=,得到∠B=∠BCF,推出∠A=∠ACF;(2)根据∠B =∠BCF ,∠A =∠ACF ,得到AF =CF ,BF =CF ,推出AF =BF =12AB ,根据4cos cos 5AC ACF A AB ∠===,AC =8,得到AB =10,得到BF =5,根据6BC ==,得到3sin 5BC A AB ==,连接CD ,根据BC 是⊙O 的直径,得到∠BDC =90°,推出∠B +∠BCD =90°,推出∠A =∠BCD ,得到3sin 5BD BCD BC ∠==,推出185BD =,得到75DF BF BD =-=,根据∠FDE =∠BCE ,∠B =∠BCE ,得到∠FDE =∠B ,推出DE ∥BC ,得到△FDE ∽△FBC ,推出DE DF BC BF =,得到4225DE =.【小问1详解】解:∵Rt ABC △中,90ACB ∠=︒,∴∠A +∠B =∠ACF +∠BCF =90°,∵ BECD =,∴∠B =∠BCF ,∴∠A =∠ACF ;【小问2详解】∵∠B =∠BCF ,∠A =∠ACF ∴AF =CF ,BF =CF ,∴AF =BF =12AB ,∵4cos cos 5AC ACF A AB ∠===,AC =8,∴AB =10,∴BF =5,∵6BC ==,∴3sin 5BC A AB ==,连接CD ,∵BC 是⊙O 的直径,∴∠BDC =90°,∴∠B +∠BCD =90°,∴∠A =∠BCD ,∴3sin 5BD BCD BC ∠==,∴185BD =,∴75DF BF BD =-=,∵∠FDE =∠BCE ,∠B =∠BCE ,∴∠FDE =∠B ,∴DE ∥BC ,∴△FDE ∽△FBC ,∴DE DFBC BF=,∴4225DE =.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.18.如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(),4A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.【答案】(1)反比例函数的表达式为4y x=,点B 的坐标为()2,2(2)或5172(3)()4,1--,()1,5-【解析】【分析】(1)首先把点A 的坐标代入26y x =-+,即可求得点A 的坐标,再把点A 的坐标代入ky x=,即可求得反比例函数的解析式,再利用方程组,即可求得点B 的坐标;(2)设直线AC 的解析式为y =kx +b ,点C 的坐标为4,m m ⎛⎫⎪⎝⎭,直线AC 与y 轴的交点为点D ,把点A 、C 的坐标分别代入y =kx +b ,可求得点D 的坐标为40,4m ⎛⎫+ ⎪⎝⎭,可求得AD 、CD 的长,再分两种情况分别计算,即可分别求得;(3)方法一:如图,过点B 作PB AB ⊥,交4y x=的另一支于点P ,过点P 作x 轴的平行线,过点B 作x 轴的垂线,交于点C ,作AD BC ⊥交于点D ,设,BQ AP 交于点M ,根据ADB BCP ∽,求得点P 的坐标,进而求得AP 的解析式,设点D 的坐标为(a ,b ),根据定义AQ AB =以及M 在直线AP 上,建立方程组,即可求得点Q 的坐标.【小问1详解】解:把点A 的坐标代入26y x =-+,得426a =-+,解得a =1,故点A 的坐标为(1,4),把点A 的坐标代入k y x=,得k =4,故反比例函数的表达式为4y x=,264y x y x =-+⎧⎪⎨=⎪⎩,得232=0x x -+,解得11x =,22x =,故点A 的坐标为(1,4),点B 的坐标为()2,2;【小问2详解】解:设直线AC 的解析式为y =kx +b ,点C 的坐标为4,m m ⎛⎫⎪⎝⎭,直线AC 与y 轴的交点为点D ,把点A 、C 的坐标分别代入y =kx +b ,得44k b mk b m +=⎧⎪⎨+=⎪⎩,解得444k m b m ⎧=-⎪⎪⎨⎪=+⎪⎩,故点D 的坐标为40,4m ⎛⎫+⎪⎝⎭,AD ∴==,CD ==,如图:当AD :CD =1:2时,连接BC ,12=,得2264120m m-+=,得4212640m m +-=,解得24m =或216m =-(舍去),故2m =-或2m =(舍去),故此时点C 的坐标为(-2,-2),BC ∴==如图:当CD :AD =1:2时,连接BC ,12=,得22164630m m-+=,得4263160m m +-=,解得214m =或216m =-(舍去),故12m =-或12m =(舍去),故此时点C 的坐标为1,82⎛⎫-- ⎪⎝⎭,5172BC ∴==,综上,BC 的长为或5172;【小问3详解】解:如图,过点B 作PB AB ⊥,交4y x=的另一支于点P ,过点P 作x 轴的平行线,过点B 作x 轴的垂线,交于点C ,作AD BC ⊥交于点D ,设,BQ AP 交于点M ,如图∵()()1,4,2,2A B ∴()2,4D设4,P m m ⎛⎫ ⎪⎝⎭,0m <,则42,2,2,1PC m BC DB AD m=-=-==90︒∠= ABP 90ABD PBC BPC∴∠=︒-∠=∠又D C∠=∠∴ADB BCP∽AD DB BC PC ∴=即12=422mm --解得4m =-或2m =(舍去)则点()4,1P --设直线PA 的解析式为y sx t =+,将点()1,4A ,()4,1P --414s t s t -+=-⎧⎨+=⎩解得13s t =⎧⎨=⎩∴直线PA 的解析式为3y x =+设(),Q a b ,根据题意,BQ 的中点M 在直线PB 上,则M 2222a b ++⎛⎫⎪⎝⎭,∵QA AB ====则()()22223=22145a b a b ++⎧+⎪⎨⎪-+-=⎩解得15a b =-⎧⎨=⎩或06a b =⎧⎨=⎩(在直线AB 上,舍去)()1,5Q ∴-.综上所述,()()4,1,1,5P Q ---.【点睛】本题考查一次函数与反比例函数的综合,利用待定系数法求一次函数及反比例函数的解析式,平面直角坐标系中两点间距离公式,相似三角形的判定与性质等知识,采用分类讨论的思想和待定系数法求解析式是解决本题的关键.B 卷一、填空题(本大题共5个小题)19.已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________.【答案】72##3.5##312【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a--⎛⎫-÷ ⎪⎝⎭=22211a a a aa a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷=22(1)1a a a a -⨯-=(1)a a -=2-a a .2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=,两边同除以2得272a a -=,∴原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =-,再根据勾股定理得到直角三角形斜边的长是【详解】解: 一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得63616625322x ±===,∴根据勾股定理可得直角三角形斜边的长是,故答案为:.【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.21.如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.【答案】24π-【解析】【分析】如图,设OA =a ,则OB =OC =a ,根据正方形内接圆和外接圆的关系,求出大正方形、小正方形和圆的面积,再根据概率公式计算即可.【详解】解:如图,设OA =a ,则OB =OC =a ,由正方形的性质可知∠AOB =90°,AB ==,由正方形的性质可得CD =CE =OC =a ,∴DE =2a ,S 阴影=S 圆-S 小正方形=)()2222222a a a a πππ-=-=-,S 大正方形=()2224a a =,∴这个点取在阴影部分的概率是()222244a a ππ--=,故答案为:24π-【点睛】本题考查了概率公式、正方形的性质、正方形外接圆和内切圆的特点、圆的面积计算,根据题意弄清楚图形之间的关系是解题的关键.22.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t ≤≤时,w 的取值范围是_________;当23t ≤≤时,w 的取值范围是_________.【答案】①.05w ≤≤②.520w ≤≤【解析】【分析】根据题意,得-45+3m +n =0,24(5)204(5)n m ⨯-⨯-=⨯-,确定m ,n 的值,从而确定函数的解析式,根据定义计算确定即可.【详解】根据题意,得-45+3m +n =0,24(5)204(5)n m ⨯-⨯-=⨯-,∴2204000m n +-=,∴2605000m m -+=,解得m =50,m =10,当m =50时,n =-105;当m =10时,n =15;∵抛物线与y 轴交于正半轴,∴n >0,∴251015h t t =-++,∵对称轴为t =102(5)-⨯-=1,a =-5<0,∴01t ≤≤时,h 随t 的增大而增大,当t =1时,h 最大,且max 20h =(米);当t =0时,h 最最小,且min 15h =(米);∴w =max min 20155h h -=-=,∴w 的取值范围是05w ≤≤,故答案为:05w ≤≤.当23t ≤≤时,w 的取值范围是∵对称轴为t =102(5)-⨯-=1,a =-5<0,∴123t ≤≤<时,h 随t 的增大而减小,当t =2时,h =15米,且max 20h =(米);当t =3时,h 最最小,且min 0h =(米);∴w =max min 20155h h -=-=,w =max min 20020h h -=-=,∴w 的取值范围是520w ≤≤,故答案为:520w ≤≤.【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.23.如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '-的最大值为_________.【答案】1623【解析】【分析】延长DE ,交AB 于点H ,确定点B 关于直线DE 的对称点F ,由点B ,D 关于直线AC 对称可知QD=QB ,求QD QP '-最大,即求QB QP '-最大,点Q ,B ,P '共线时,QD QP QB QP BP '''-=-=,根据“三角形两边之差小于第三边”可得BP '最大,当点P '与点F 重合时,得到最大值.连接BD ,即可求出CO ,EO ,再说明EOD DOC V :V ,可得DO ,根据勾股定理求出DE ,然后证明EOD BHD V :V ,可求BH ,即可得出答案.【详解】延长DE ,交AB 于点H ,∵AB CD ,ED ⊥CD ,∴DH ⊥AB .取FH=BH ,∴点P 的对称点在EF 上.由点B ,D 关于直线AC 对称,∴QD=QB .要求QD QP '-最大,即求QB QP '-最大,点Q ,B ,P '共线时,QD QP QB QP BP '''-=-=,根据“三角形两边之差小于第三边”可得BP '最大,当点P '与点F 重合时,得到最大值BF .连接BD ,与AC 交于点O .∵AE=14,CE=18,∴AC=32,∴CO=16,EO=2.∵∠EDO +∠DEO =90°,∠EDO +∠CDO =90°,∴∠DEO=∠CDO .∵∠EOD=∠DOC ,∴EOD DOC V :V ,∴EO DO DO CO=,即221632DO =⨯=,解得DO =,∴2BD DO ==.在Rt △DEO 中,6DE ==.∵∠EDO=∠BDH ,∠DOE=∠DHB ,∴EOD BHD V :V ,∴EO DE BH BD=,即2BH =解得3BH =,∴23BF BH ==.故答案为:1623.【点睛】这是一道根据轴对称求线段差最大的问题,考查了菱形的性质,勾股定理,轴对称的性质,相似三角形的性质和判定等,确定最大值是解题的关键.二、解答题24.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h ,乙骑行的路程()km s 与骑行的时间()h t 之间的关系如图所示.(1)直接写出当00.2t ≤≤和0.2t >时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?【答案】(1)当00.2t ≤≤时,15s t =;当0.2t >时,201s t =-(2)0.5小时后【解析】【分析】(1)根据函数图象,待定系数法求解析式即可求解;(2)根据乙的路程大于甲的路程即可求解.【小问1详解】由函数图像可知,设00.2t ≤≤时,s kt =,将()0.2,3代入,得3150.2s k t ===,则15s t =,当0.2t >时,设s at b =+,将()0.2,3,()0.5,9代入得0.230.59t b t b +=⎧⎨+=⎩解得201t b =⎧⎨=-⎩∴201s t =-【小问2详解】由(1)可知00.2t ≤≤时,乙骑行的速度为15km /h ,而甲的速度为18km/h ,则甲在乙前面,当0.2t >时,乙骑行的速度为20km /h ,甲的速度为18km/h ,设x 小时后,乙骑行在甲的前面则18201x x <-解得0.5x >答:0.5小时后乙骑行在甲的前面【点睛】本题考查了一次函数的应用,一元一次不等式的应用,立即题意是解题的关键.25.如图,在平面直角坐标系xOy 中,直线()30y kx k =-≠与抛物线2y x =-相交于A ,B 两点(点A 在点B 的左侧),点B 关于y 轴的对称点为B '.(1)当2k =时,求A ,B 两点的坐标;(2)连接OA ,OB ,AB ',BB ',若B AB 'V 的面积与OAB 的面积相等,求k 的值;(3)试探究直线'AB 是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【答案】(1)点A 的坐标为()3,9--,点B 的坐标为()1,1-(2)2或2-(3)是,()0,3【解析】【分析】(1)解方程组223y x y x=-⎧⎨=-⎩,整理得到2230x x +-=,解方程即可得到答案.(2)分k <0和k >0,两种情形求解.(3)设直线A B '的解析式为y =px +q ,根据题意求得p ,q 的值,结合方程组的意义,确定与y 轴的交点即可.【小问1详解】根据题意,得223y x y x =-⎧⎨=-⎩,整理得到2230x x +-=,解方程,得123,1x x =-=,当x =-3时,y =-9;当x =1时,y =-1;∵点A 在点B 的左侧,∴点A 的坐标为(-3,-9),点B 的坐标为(1,-1).【小问2详解】∵A ,B 是抛物线2y x =-图像上的点,设A (m ,2m -),B (n ,2n -),则B '(-n ,2n -),当k >0时,根据题意,得23y kx y x =-⎧⎨=-⎩,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线y =kx -3与y 轴的交点为D ,则点D (0,-3)∴13()()22OAB S OD n m n m =-=⨯- △,2211()2()22B AB B A S BB y y n n m '''=-=⨯⨯-+ △,∴3()2n m ⨯-=2212()2n n m ⨯⨯-+=12()()2n m n m n ⨯⨯+-,∴3=2()n m n -⨯+=2nk ,∴2nk mn =-,∵n ≠0,∴2m k =-,n k =,∴23k k -⨯=-,解得k =2或k =-2(舍去),故k =2;当k <0时,根据题意,得23y kx y x=-⎧⎨=-⎩,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线y =kx -3与y 轴的交点为D ,则点D (0,-3)∴13()()22OAB S OD n m n m =-=⨯- △,2211()2()22B AB A B S BB y y n n m '''=-=⨯⨯- △,∴3()2n m ⨯-=2212()2n n m ⨯⨯-=12()()2n m n n m ⨯⨯+-,∴3=2()n m n ⨯+=-2nk ,∴-2nk mn =-,∵n ≠0,∴2m k =,3n k =-,∴2(3)3k k ⨯-=-,解得k =-2或k =2(舍去),故k =-22;综上所述,k 的值为2或22-.【小问3详解】直线A B '一定过定点(0,3).理由如下:∵A ,B 是抛物线2y x =-图像上的点,∴设A (m ,2m -),B (n ,2n -),则B '(-n ,2n -),根据题意,得23y kx y x =-⎧⎨=-⎩,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线A B '的解析式为y =px +q ,根据题意,得22m mp q n np q⎧-=+⎨-=-+⎩,解得p n m q mn =-⎧⎨=-⎩,∴直线A B '的解析式为y =(n -m )x -mn ,∵mn =-3,∴-mn =3,∴直线A B '的解析式为y =(n -m )x ,故直线A B '一定过定点(0,3).【点睛】本题考查了抛物线与一次函数的交点问题,待定系数法,一元二次方程根与系数关系定理,对称性,熟练掌握抛物线与一次函数的交点,及其根与系数关系定理是解题的关键.26.如图,在矩形ABCD 中,()1AD nAB n =>,点E 是AD 边上一动点(点E 不与A ,D 重合),连接BE ,以BE 为边在直线BE 的右侧作矩形EBFG ,使得矩形EBFG ∽矩形ABCD ,EG 交直线CD 于点H .(1)【尝试初探】在点E 的运动过程中,ABE △与DEH △始终保持相似关系,请说明理由.(2)【深入探究】若2n =,随着E 点位置的变化,H 点的位置随之发生变化,当H 是线段CD 中点时,求tan ABE ∠的值.(3)【拓展延伸】连接BH ,FH ,当BFH △是以FH 为腰的等腰三角形时,求tan ABE ∠的值(用含n 的代数式表示).【答案】(1)见解析(2)222-或222+(3)2n【解析】【分析】(1)根据题意可得∠A =∠D =∠BEG =90°,可得∠DEH =∠ABE ,即可求证;(2)根据题意可得AB =2DH ,AD =2AB ,AD =4DH ,设DH =x ,AE =a ,则AB =2x ,AD =4x ,可得DE =4x -a ,再根据△ABE ∽△DEH,可得(22a x =或(22a ,即可求解;(3)根据题意可得EG =nBE ,然后分两种情况:当FH =BH 时,当FH =BF =nBE 时,即可求解.【小问1详解】解:根据题意得:∠A =∠D =∠BEG =90°,∴∠AEB +∠DEH =90°,∠AEB +∠ABE =90°,∴∠DEH =∠ABE ,∴△ABE ∽△DEH ;【小问2详解】解:根据题意得:AB =2DH ,AD =2AB ,∴AD =4DH ,设DH =x ,AE =a ,则AB =2x ,AD =4x ,∴DE =4x -a ,∵△ABE ∽△DEH ,∴AB AE DE DH=,∴24x a x a x =-,解得:(22a x =或(22a -,∴(2AB a =或(2a ,∴22tan 2AE ABE AB -∠==或22+;【小问3详解】解:∵矩形EBFG ∽矩形ABCD ,()1AD nAB n =>,∴EG =nBE ,如图,当FH =BH 时,∵∠BEH =∠FGH =90°,BE =FG ,∴Rt △BEH ≌Rt △FGH ,∴EH =GH=12EG ,∴2n EH BE =,∵△ABE ∽△DEH ,∴2DE EH n AB BE ==,即2n DE AB =,∴2n AE AD DE AB =-=,∴tan 2AE n ABE AB ∠==;如图,当FH =BF =nBE 时,HG ==,∴(EH EG HG n BE =-=-,∵△ABE ∽△DEH ,∴DE EH n AB BE ==-(DE n AB =-,∴AE AD DE =-=,∴tan AE ABE AB==∠;综上所述,tan ABE ∠的值为2n 【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识是解题的关键.。
2023年成都市中考数学试卷及答案
2023年成都市中考数学试题A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共有8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. 在3,7-,0,19四个数中,最大的数是( ) A. 3B. 7-C. 0D.192. 将数据3000亿用科学记数法表示为( ) A. 8310⨯B. 9310⨯C. 10310⨯D. 11310⨯3. 下列计算正确的是( ) A. 22(3)9x x -=- B. 27512x x x +=C. 22(3)69x x x -=-+D. 22(2)(2)4x y x y x y -+=+4. 近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI ):33,27,34,40,26,则这组数据的中位数是( ) A. 26B. 27C. 33D. 345. 如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AC BD =B. OA OC =C. AC BD ⊥D. ADC BCD ∠=∠ 6. 学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是( )A.12B.13C.14D.167. 《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( )A. 1( 4.5)12x x +=- B.1( 4.5)12x x +=+ C. 1(1) 4.52x x +=-D. 1(1) 4.52x x -=+8. 如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A -,B 两点,下列说法正确的是( )A. 抛物线的对称轴为直线1x =B. 抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C. A ,B 两点之间的距离为5D. 当1x <-时,y 的值随x 值的增大而增大第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 因式分解:m 2﹣3m =__________.10. 若点()()123,y ,1,A B y --都在反比例函数6y x=的图象上,则1y _______2y (填“>”或“<”).11. 如图,已知ABC DEF ≌△△,点B ,E ,C ,F 依次在同一条直线上.若85BC CE ==,,则CF 的长为___________.12. 在平面直角坐标系xOy 中,点()5,1P -关于y 轴对称的点的坐标是___________. 13. 如图,在ABC ∆中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;①以点D 为圆心,以AM 长为半径作弧,交DB 于点M ';①以点M '为圆心,以MN 长为半径作弧,在BAC ∠内部交前面的弧于点N ':①过点N '作射线DN '交BC 于点E .若BDE ∆与四边形ACED 的面积比为4:21,则BECE的值为___________.三、解答题(本大题共5个小题,共48分)14. (12sin 45(π3)2|︒--︒+.(2)解不等式组:()2254113x x x x ⎧+-≤⎪⎨+>-⎪⎩①② 15. 文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有___________人,请补全条形统计图; (2)在扇形统计图中,求“敬老服务”对应的圆心角度数:(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.16. 为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为16︒,且靠墙端离地高BC 为4米,当太阳光线AD 与地面CE 的夹角为45︒时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin160.28,cos160.96,tan160.29︒≈︒≈︒≈)17. 如图,以ABC ∆的边AC 为直径作O ,交BC 边于点D ,过点C 作CE AB ∥交O 于点E ,连接AD DE ,,B ADE ∠=∠.(1)求证:AC BC =;(2)若tan 23B CD ==,,求AB 和DE 的长.18. 如图,在平面直角坐标系xOy 中,直线5y x =-+与y 轴交于点A ,与反比例函数k y x=的图象的一个交点为(,4)B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC ∆的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接P A ,以P 为位似中心画PDE ∆,使它与PAB ∆位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 若23320ab b --=,则代数式22221ab b a b a a b⎛⎫---÷ ⎪⎝⎭的值为___________. 20. 一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有___________个.21. 为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳___________名观众同时观看演出.(π取 1.73)22. 如图,在Rt ABC △中,90ABC ∠=︒,CD 平分ACB ∠交AB 于点D ,过D 作DE BC ∥交AC 于点E ,将DEC ∆沿DE 折叠得到DEF ∆,DF 交AC 于点G .若73AG GE =,则tan A =__________.23. 定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是________;第23个智慧优数是________.二、解答题(本大题共3个小题,共30分)24. 2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元. (1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用. 25. 如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP ∆是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由. 26. 探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究. 在Rt ABC △中,90,C AC BC ∠=︒=,D 是AB 边上一点,且1AD BD n=(n 为正整数).E 是AC 边上的动点,过点D 作DE 的垂线交直线BC 于点F .【初步感知】(1)如图1,当1n =时,兴趣小组探究得出结论:2AE BF AB +=,请写出证明过程. 【深入探究】(2)①如图2,当2n =,且点F 在线段BC 上时,试探究线段AE BF AB ,,之间的数量关系,请写出结论并证明;①请通过类比、归纳、猜想,探究出线段AE BF AB ,,之间数量关系的一般结论(直接写出结论,不必证明) 【拓展运用】(3)如图3,连接EF ,设EF 的中点为M .若AB =求点E 从点A 运动到点C 的过程中,点M 运动的路径长(用含n 的代数式表示).2023年成都市中考数学试题答案A 卷(共100分)一、选择题.1. A2. D3. C4. C5. B6. B7. A8. C二、填空题.9. ()3m m - 10. > 11. 3 12. ()5,1-- 13.23解:根据作图可得BDE A ∠=∠ ①DE AC ∥ ①BDE BAC ∽△△①BDE 与四边形ACED 的面积比为4:21①24214BDC BACS BE SBC ⎛⎫== ⎪+⎝⎭①25BE BC = ①BE CE 23= 故答案为:23.三、解答题.14. (1)3 (2)41x -<≤15. (1)300,图见解析 (2)144︒ (3)360人 【小问1详解】解:依题意,本次调查的师生共有6020%300÷=人 ①“文明宣传”的人数为300601203090---=(人) 补全统计图,如图所示故答案为:300. 【小问2详解】在扇形统计图中,求“敬老服务”对应的圆心角度数为360120430014⨯︒=︒ 【小问3详解】估计参加“文明宣传”项目的师生人数为90150080%360300⨯⨯=(人). 16. 2.2米解:如图所示,过点A 作AG BC ⊥于点G ,AF CE ⊥于点F ,则四边形AFCG 是矩形依题意, 16BAG ∠=︒,5AB =(米)在Rt ABG △中,sin 5sin1650.28 1.4GB AB BAG =⨯∠=⨯︒≈⨯=(米)cos1650.96 4.8AG AB =⨯︒≈⨯=(米),则 4.8CF AG ==(米)①4BC =(米)①4 1.4 2.6AF CG BC BG ==-=-=(米) ①45ADF ∠=︒① 2.6DF AF ==(米)① 4.8 2.6 2.2CD CF DF =-=-=(米). 17. (1)略(2)AB =DE =【小问2详解】 解:设BD x =AC 是O 的直径90ADC ADB ∴∠=∠=︒tan 2B =2ADBD∴=,即2AD x = 根据(1)中的结论,可得3AC BC BD DC x ==+=+ 根据勾股定理,可得222AD DC AC +=,即()()222233x x +=+ 解得12x =,20x =(舍去)2BD ∴=,4=AD根据勾股定理,可得AB =; 如图,过点E 作DC 的垂线段,交DC 的延长线于点FCB CA =1802ACB B ∴∠=︒-∠(1)中已证明B ACE ∠=∠180ECF ACB ACE B ∴∠=︒-∠-∠=∠EF CF ⊥tan tan 2ECF B ∴∠=∠=,即2EF CF= 90B BAD ∠+∠=︒,90ADE EDF ∠+∠=︒,B ADE ∠=∠BAD EDF ∴∠=∠9090DEF EDF BAD B ∴∠=︒-∠=︒-∠=∠2DF EF∴= 设CF a =,则3DF DC CF a =+=+2EF a ∴= 可得方程322a a+=,解得1a = 2EF ∴=,4DF =根据勾股定理,可得DE =18. (1)点A 的坐标为(0,5),反比例函数的表达式为4y x =(2)点C 的坐标为(6,9)或(4,1)--(3)点P 的坐标为111,44⎛⎫- ⎪⎝⎭;m 的值为3 【小问1详解】解:令0x =,则55y x =-+=①点A 的坐标为(0,5)将点(,4)B a 代入5y x =-+得:45a =-+解得:1a =①(1,4)B将点(1,4)B 代入k y x =得:41k = 解得:4k =①反比例函数的表达式为4y x=; 【小问2详解】解:设直线l 于y 轴交于点M ,直线5y x =-+与x 轴得交点为N令50y x =-+=解得:5x =①(5,0)N①5OA ON ==又①90AON ∠=︒①45OAN ∠=︒①(0,5)A ,(1,4)B①AB ==又①直线l 是AB 的垂线即90ABM ∠=︒,45OAN ∠=︒①AB BM ==2AM ==①()0,3M设直线l 得解析式是:11y k x b =+将点()0,3M ,点(1,4)B 代入11y k x b =+得:11143k b b +=⎧⎨=⎩ 解得:1143k b =⎧⎨=⎩ ①直线l 的解析式是:3y x ,设点C 的坐标是()3t t +, ①1121522ABC B C S AM x x t △,(,B C x x 分别代表点B 与点C 的横坐标) 解得: 4t =-或6当4t =-时,31t +=-;当6t =时,39t +=①点C 的坐标为(6,9)或(4,1)--.【小问3详解】①位似图形的对应点与位似中心三点共线①点B 的对应点也在直线l 上,不妨设为点E ,则点A 的对应点是点D①点E 是直线l 与双曲线4y x=的另一个交点 将直线l 与双曲线的解析式联立得:43y x y x ⎧=⎪⎨⎪=+⎩解得:14x y =⎧⎨=⎩或41x y =-⎧⎨=-⎩ ①()4,1E --画出图形如下:又①D PAB P E △∽△①D PAB P E ∠=∠①AB DE ∥①直线AB 与直线DE 的解析式中的一次项系数相等设直线DE 的解析式是:2y x b =-+将点()4,1E --代入2y x b =-+得:()214b -=--+解得:25b =-①直线DE 的解析式是:=5y x --①点D 也在双曲线4y x=上 ①点D 是直线DE 与双曲线4y x =的另一个交点 将直线DE 与双曲线的解析式联立得:45y x y x ⎧=⎪⎨⎪=--⎩ 解得:14x y =-⎧⎨=-⎩或41x y =-⎧⎨=-⎩ ①()1,4D --设直线AD 的解析式是:33y k x b =+将点(0,5)A ,()1,4D --代入33y k x b =+得:33345k b b -+=-⎧⎨=⎩解得:1195k b =⎧⎨=⎩ ①直线AD 的解析式是:95y x =+又将直线AD 的解析式与直线l 的解析式联立得:953y x y x =+⎧⎨=+⎩解得:14114x y ⎧=-⎪⎪⎨⎪=⎪⎩①点P 的坐标为111,44⎛⎫- ⎪⎝⎭①BP ==EP ==①3EP m BP==. B 卷(共50分)一、填空题. 19. 23解:22221ab b a b a a b⎛⎫---÷ ⎪⎝⎭ 22222a b a ab b a a b ⎛⎫-+=⨯ ⎪-⎝⎭()222a b a b a a b⨯--= 2ab b =-23320ab b --=2332ab b ∴-=223ab b ∴-= 故原式的值为23 故答案为:23. 20. 6 解:根据主视图和俯视图可得第一列最多2个,第二列最多1个小正方形,如图所示①搭成这个几何体的小立方块最多有22116+++=故答案为:6.21. 184解:如图,过点O 作AB 的垂线段,交AB 于点C圆心O 到栏杆AB 的距离是5米5OC ∴=米OC AB ⊥1sin2OC OBC OB ∴∠==,22AB BC AC ====米 30OBC ∴∠=︒OA OB =1802120AOB OAB ∴∠=︒-∠=︒∴可容纳的观众=阴影部分面积()21201333105184.253602AOB AOB S S π︒⎛⎫⨯=⨯-=⨯⨯⨯-⨯≈ ⎪︒⎝⎭△扇形(人) ∴最多可容纳184名观众同时观看演出故答案为:184.22.解:如图所示,过点G 作GM DE ⊥于M①CD 平分ACB ∠交AB 于点D ,DE BC ∥①12∠=∠,23∠∠=①13∠=∠①ED EC =①折叠①3=4∠∠①14∠=∠又①DGE CGD ∠=∠①DGE CGD ∽ ①DG GE CG DG= ①2DG GE GC =⨯①90ABC ∠=︒,DE BC ∥,则AD DE ⊥①AD GM ∥ ①AG DM GE ME=,MGE A ∠=∠ ①73DM ME AG GE == 设3,7GE AG ==,3EM n =,则7DM n =,则10EC DE n ==①2DG GE GC =⨯①()23310930DG n n =⨯+=+ 在Rt DGM △中,222GM DG DM =-在Rt GME △中,222GM GE EM =-①2222DG DM GE EM -=-即()()222930733n n n +-=- 解得:34n =①94EM =,3GE =则4GM ===①9tan tan ME A EGM MG =∠===故答案为:7. 23. ①. 15 ①. 57解:依题意, 当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=第23个智慧优数为9,6m n ==时,2296813657-=-=故答案为:15,57.二、解答题.24. (1)A 种食材单价是每千克38元,B 种食材单价是每千克30元(2)A 种食材购买24千克,B 种食材购买12千克时,总费用最少,为1272元【小问1详解】解:设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意得6853280a b a b +=⎧⎨+=⎩ 解得:3830a b =⎧⎨=⎩答:A 种食材的单价为38元,B 种食材的单价为30元;【小问2详解】解:设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意()236x x ≤-解得:24x ≤设总费用为y 元,根据题意,()38303681080y x x x =+-=+①80>,y 随x 的增大而增大①当24x =时,y 最小①最少总费用为82410801272⨯+=(元).25. (1)2114y x =-+ (2)点B 的坐标为(4,3)--或(25----或(25-+-+ (3)存在,m 的值为2或23【小问1详解】解:①抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ①1631a c c +=-⎧⎨=⎩,解得141a c ⎧=-⎪⎨⎪=⎩ ①抛物线的函数表达式为2114y x =-+;【小问2详解】 解:设21,14B t t ⎛⎫-+ ⎪⎝⎭根据题意,ABP 是以AB 为腰的等腰三角形,有两种情况:当AB AP =时,点B 和点P 关于y 轴对称①()4,3P -,①()4,3B --;当AB BP =时,则22AB BP =①()()2222221101141344t t t t ⎛⎫⎛⎫-+-+-=-+-++ ⎪ ⎪⎝⎭⎝⎭ 整理,得24160t t +-=解得12t =--22t =-+当2t =--时,2114t -+(212154=-⨯--+=--则(25B ----当2t =-+,2114t -+(212154=-⨯-++=-+则(25B -+-+综上,满足题意的点B 的坐标为(4,3)--或(25----或(25-+-+;【小问3详解】解:存在常数m ,使得OD OE ⊥.根据题意,画出图形如下图设抛物线2114y x =-+与直线(0)y kx k =≠的交点坐标为(),B a ka ,(),C b kb 由2114y x kx =-+=得2440x kx +-= ①4a b k +=-,4ab =-;设直线AB 的表达式为y px q =+则1ap q ka q +=⎧⎨=⎩,解得11ka p a q -⎧=⎪⎨⎪=⎩ ①直线AB 的表达式为11ka y x a-=+ 令y m =,由11ka y x m a -=+=得()11a m x ka -=- ①()1,1a m D m ka -⎛⎫ ⎪-⎝⎭同理,可得直线AC 的表达式为11kb y x b -=+,则()1,1b m E m kb -⎛⎫ ⎪-⎝⎭过E 作EQ x ⊥轴于Q ,过D 作DN x ⊥轴于N则90EQO OND ∠=∠=︒,EQ ND m ==,()11b m QO kb -=--,()11a m ON ka -=- 若OD OE ⊥,则90EOD ∠=︒①90QEO QOE DON QOE ∠+∠=∠+∠=︒①QEO DON ∠=∠①EQO OND ∽①EQ QO ON ND= 则()()1111b m m kb a m mka ---=-- 整理,得()()()22111m ka kb ab m --=--即()()22211m abk k a b ab m ⎡⎤-++=--⎣⎦ 将4a b k +=-,4ab =-代入,得()()222244141mk k m -++=- 即()2241m m =-,则()21m m =-或()21m m =--解得12m =,223m = 综上,存在常数m ,使得OD OE ⊥,m 的值为2或23. 26. (1)见解析(2)①123AE BF AB +=,证明过程略 ①当点F 在射线BC 上时,11AE BF AB n n +=+,当点F 在CB 延长线上时1AE BF AB n -= (3证明:如图,连接CD当1n =时,1AD BD=,即AD BD = 90,C AC BC ∠=︒=∴45A B ∠=∠=︒,CD AB ⊥,1452FCD ACB ∠=∠=︒ CD AD ∴=,AB =,即2BC AB = DE FD ⊥90ADE EDC FDC EDC ∴∠+∠=∠+∠=︒CDF ADE ∠=∠∴在ADE ∆与CDF ∆中ADE CDF DA DCDAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ADE CDF ∴≌AE CF ∴=2BC CF BF AE BF AB ∴=+=+=; 【小问2详解】①123AE BF AB += 证明:如图,过BD 的中点G 作BC 的平行线,交DF 于点J ,交AC 于点H当2n =时,12AD DB =,即2AD DB =G 是DB 的中点AD DG ∴=,23AG AB =HG BC ∥90AHG C ∴∠=∠=︒,45HGA B ∠=∠=︒45A ∠=︒∴AHG 是等腰直角三角形,且DJG DBF △∽△12JG DG FB DB ∴==根据(1)中的结论可得2AE JG AG +=1223AE JG AE FB AG AB AB ∴+=+===;故线段AE BF AB ,,之间的数量关系为123AE BF AB +=; ①解:当点F 在射线BC 上时 如图,在DB 上取一点G 使得AD DG =,过G 作BC 的平行线,交DF 于点J ,交AC 于点H同①,可得2AE JG AG += 1AD BD n =,AD DG = 1DG BD n ∴=,21AG AB n =+ 同①可得1JG DG FB DB n==121AE JG AE FB AG AB AB n n ∴+=+===+即线段AE BF AB ,,之间数量关系为11AE BF AB n n +=+; 当点F 在CB 延长线上时如图,在DB 上取一点G 使得AD DG =,过G 作BC 的平行线,交DF 于点J ,交AC 于点H ,连接HD同(1)中原理,可证明()ASA DHE DGJ △≌△可得2AE GJ AG -= 1AD BD n =,AD DG = 1DG BD n ∴=,21AG AB n =+ 同①可得1JG DG FB DB n==121AE JG AE FB AG AB AB n n ∴-=-===+即线段AE BF AB ,,之间数量关系为11AE BF AB n n -=+综上所述,当点F 在射线BC 上时,11AE BF AB n n +=+;当点F 在CB 延长线上时,11AE BF AB n n -=+; 【小问3详解】 解:如图,当1E 与A 重合时,取11E F 的中点1M ,当2E 与C 重合时,取22E F 的中点2M .可得M 的轨迹长度即为12M M 的长度.如图,以点D 为原点,1DF 为y 轴,DB 为x 轴建立平面直角坐标系,过点2E 作AB 的垂线段,交AB 于点G ,过点2F 作AB 的垂线段,交AB 于点H .12AD AB DB n ==1AD n ∴=+,1DB n =+11E n ⎛⎫∴- ⎪ ⎪+⎝⎭145F BD ∠=︒1F D BD ∴=1F ⎛∴ ⎝⎭1M 是11E F 的中点1M ⎛∴ ⎝⎭12GB GC AB ===1DG DB BG n ∴=-=+21E n ⎛∴ +⎝根据(2)中的结论221AE BF AB n -=2222211n n BF n AE AB n n ⎛⎫-∴=-= ⎪ ⎪++⎝⎭22221BH F H BF n ∴===+DH DB BH ∴=+=22,1F n ⎫∴-⎪⎪+⎭2222M n ⎛+∴ +⎝⎭12M M ∴=。
2022年四川省成都市中考数学真题(解析版)
2022年四川省成都市中考数学试题及答案数学A 卷第Ⅰ卷(选择题)一、选择题(本大题共8个小题,每小题均有四个选项,其中只有一项符合题目要求)1.37-的相反数是()A.37 B.37-C.73-D.73【答案】A 【解析】【分析】直接根据相反数的求法求解即可.【详解】解:任意一个实数a 的相反数为-a 由−37的相反数是37;故选A .【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2.2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为()A.21.610⨯ B.51.610⨯ C.61.610⨯ D.71.610⨯【答案】C 【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解答:解:160万=1600000=61.610⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.下列计算正确的是()A.2m m m += B.()22m n m n-=-C.222(2)4m n m n +=+D.2(3)(3)9m m m +-=-【答案】D 【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.4.如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF △≌△的是()A.BC DE =B.AE DB =C.A DEF ∠=∠D.ABC D∠=∠【答案】B 【解析】【分析】根据三角形全等的判定做出选择即可.【详解】A 、BC DE =,不能判断ABC DEF △≌△,选项不符合题意;B 、AE DB =,利用SAS 定理可以判断ABC DEF △≌△,选项符合题意;C 、A DEF ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;D 、ABC D ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.5.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数A.56B.60C.63D.72【答案】B 【解析】【分析】结合题意,根据众数的性质分析即可得到答案.【详解】根据题意,56,60,63,60,60,72这组数据的众数是:60故选:B .【点睛】本题考查了众数的知识;解题的关键是熟练掌握众数的定义:众数是指在统计分布上具有明显集中趋势点的数值,也就是一组数据中出现次数最多的数值.6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为()A.B.C.3D.【答案】C 【解析】【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.7.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为()A.100041199979x y x y +=⎧⎪⎨+=⎪⎩ B.100079909411x y x y +=⎧⎪⎨+=⎪⎩C.100079999x y x y +=⎧⎨+=⎩ D.1000411999x y x y +=⎧⎨+=⎩【答案】A 【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题.【详解】解:设苦果有x 个,甜果有y 个,由题意可得,100041199979x y x y +=⎧⎪⎨+=⎪⎩故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组的有关知识,正确找到相等关系是解决本题的关键.8.如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A.0a >B.当1x >-时,y 的值随x 值的增大而增大C.点B 的坐标为()4,0D.420a b c ++>【答案】D 【解析】【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即0a <,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对称轴()112B x x +-==,解得3B x =,即()3,0B ,故该选项不符合题意;D 、根据()3,0B 可知,当2x =时,420y a b c =++>,故该选项符合题意;故选:D .【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与x 轴交点()1,0A -得到()3,0B 是解决问题的关键.第Ⅱ卷(非选择题)二、填空题(本大题共5个小题)9.计算:()23a -=______.【答案】6a 【解析】【分析】根据幂的乘方可直接进行求解.【详解】解:()236a a -=;故答案为6a .【点睛】本题主要考查幂的乘方,熟练掌握幂的乘方是解题的关键.10.关于x 的反比例函数2m y x-=的图像位于第二、四象限,则m 的取值范围是________.【答案】2m <【解析】【分析】根据反比例函数的性质即可确定m-2的符号,从而求解.【详解】根据题意得:m-2<0,解得:m <2.故答案为:m <2.【点睛】本题考查了反比例函数的性质,对于反比例函数y =kx(k≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.11.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF的周长比是_________.【答案】2:5【解析】【分析】根据位似图形的性质,得到OCA OFD ∆∆ ,根据:2:3OA AD =得到相似比为25CA OA OA FD OD OA AD ===+,再结合三角形的周长比等于相似比即可得到结论.【详解】解: ABC 和DEF 是以点O 为位似中心的位似图形,∴OCA OFD ∆∆ ,∴CA OAFD OD=, :2:3OA AD =,∴25CA OA OA FD OD OA AD ===+,∴根据ABC 与DEF 的周长比等于相似比可得25ABC DEF C CA C FD ∆∆==,故答案为:2:5.【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键.12.分式方程31144x x x-+=--的解是_________.【答案】3x =【解析】【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解.【详解】解:31144x x x-+=--解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解,故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.13.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.【答案】7【解析】【分析】连接EC ,依据垂直平分线的性质得EB EC =.由已知易得90BEC CEA ∠∠=︒=,在Rt △AEC 中运用勾股定理求得AE ,即可求得答案.【详解】解:由已知作图方法可得,MN 是线段BC 的垂直平分线,连接EC ,如图,所以BE CE =,所以45ECB B ∠=∠=︒,所以∠BEC =∠CEA =90°,因为5AC =,4BE =,所以4CE =,在AEC △中,3AE ==,所以347AB AE BE =+=+=,因此AB 的长为7.故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得AE 即可.三、解答题(本大题共5个小题)14.计算:113tan 3022-⎛⎫+︒+ ⎪⎝⎭.(2)解不等式组:3(2)252123x x x x +≥+⎧⎪⎨--<⎪⎩①②.【答案】(1)1;(2)12x -≤<【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(1)113tan 3022-⎛⎫-︒- ⎪⎝⎭=-+⨯+23323=-+-12=1.(2)3(2)252123x x x x +≥+⎧⎪⎨--<⎪⎩①②不等式①的解集是x ≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长:(单位:分钟)人数所占百分比A02t≤<4xB24t≤<20C46t≤<36%D6t≥16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x的值为_________;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【答案】(1)50,8%(2)200(3)2 3【解析】【分析】(1)利用概率计算公式先求出总人数,再求出等级为A 的学生人数;(2)利用概率计算公式先求出等级为B 的学生所占的百分比,再求出等级为B 的学生人数;(3)记两名男生为a ,b ,记两名女生为c ,d ,通过列出表格列出所有可能的结果,用恰有一男一女的结果数除以总的结果数,即可得到恰好抽到一名男生和一名女生的概率.【小问1详解】解:∵D 组人数为8人,所占百分比为16%,∴总人数为816%50÷=人,∴4508%x =÷=.【小问2详解】解:等级为B 的学生所占的百分比为205040%÷=,∴等级为B 的学生人数为50040%200⨯=人.【小问3详解】解:记两名男生为a ,b ,记两名女生为c ,d ,列出表格如下:∴一共有12种情况,其中恰有一男一女的有8种,82123P ==.【点睛】本题考查了列表法与树状图法,概率计算公式的熟练应用是解答本题的关键.16.2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin 720.95︒≈,cos720.31︒≈,tan 72 3.08︒≈)【答案】约为19cm【解析】【分析】在Rt△ACO中,根据正弦函数可求OA=20cm,在Rt△A DO'中,根据正弦函数求得A D'的值.【详解】解:在Rt△ACO中,∠AOC=180°-∠AOB=30°,AC=10cm,∴OA=10201sin302OC==°,在Rt△A DO'中,18072A OC A OBⅱÐ=°-Ð=°,20OA OA'==cm,∴sin72200.9519A D OAⅱ=盎�cm.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.17.如图,在Rt ABC△中,90ACB∠=︒,以BC为直径作⊙O,交AB边于点D,在 CD 上取一点E,使BE CD=,连接DE,作射线CE交AB边于点F.(1)求证:A ACF∠=∠;(2)若8AC=,4cos5ACF∠=,求BF及DE的长.【答案】(1)见解析(2)BF=5,4225DE=【解析】【分析】(1)根据Rt ABC△中,90ACB∠=︒,得到∠A+∠B=∠ACF+∠BCF=90°,根据BE CD=,得到∠B=∠BCF,推出∠A=∠ACF;(2)根据∠B =∠BCF ,∠A =∠ACF ,得到AF =CF ,BF =CF ,推出AF =BF =12AB ,根据4cos cos 5AC ACF A AB ∠===,AC =8,得到AB =10,得到BF =5,根据6BC ==,得到3sin 5BC A AB ==,连接CD ,根据BC 是⊙O 的直径,得到∠BDC =90°,推出∠B +∠BCD =90°,推出∠A =∠BCD ,得到3sin 5BD BCD BC ∠==,推出185BD =,得到75DF BF BD =-=,根据∠FDE =∠BCE ,∠B =∠BCE ,得到∠FDE =∠B ,推出DE ∥BC ,得到△FDE ∽△FBC ,推出DE DF BC BF =,得到4225DE =.【小问1详解】解:∵Rt ABC △中,90ACB ∠=︒,∴∠A +∠B =∠ACF +∠BCF =90°,∵ BECD =,∴∠B =∠BCF ,∴∠A =∠ACF ;【小问2详解】∵∠B =∠BCF ,∠A =∠ACF ∴AF =CF ,BF =CF ,∴AF =BF =12AB ,∵4cos cos 5AC ACF A AB ∠===,AC =8,∴AB =10,∴BF =5,∵6BC ==,∴3sin 5BC A AB ==,连接CD ,∵BC 是⊙O 的直径,∴∠BDC =90°,∴∠B +∠BCD =90°,∴∠A =∠BCD ,∴3sin 5BD BCD BC ∠==,∴185BD =,∴75DF BF BD =-=,∵∠FDE =∠BCE ,∠B =∠BCE ,∴∠FDE =∠B ,∴DE ∥BC ,∴△FDE ∽△FBC ,∴DE DFBC BF=,∴4225DE =.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.18.如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(),4A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.【答案】(1)反比例函数的表达式为4y x=,点B 的坐标为()2,2(2)或5172(3)()4,1--,()1,5-【解析】【分析】(1)首先把点A 的坐标代入26y x =-+,即可求得点A 的坐标,再把点A 的坐标代入ky x=,即可求得反比例函数的解析式,再利用方程组,即可求得点B 的坐标;(2)设直线AC 的解析式为y =kx +b ,点C 的坐标为4,m m ⎛⎫⎪⎝⎭,直线AC 与y 轴的交点为点D ,把点A 、C 的坐标分别代入y =kx +b ,可求得点D 的坐标为40,4m ⎛⎫+ ⎪⎝⎭,可求得AD 、CD 的长,再分两种情况分别计算,即可分别求得;(3)方法一:如图,过点B 作PB AB ⊥,交4y x=的另一支于点P ,过点P 作x 轴的平行线,过点B 作x 轴的垂线,交于点C ,作AD BC ⊥交于点D ,设,BQ AP 交于点M ,根据ADB BCP ∽,求得点P 的坐标,进而求得AP 的解析式,设点D 的坐标为(a ,b ),根据定义AQ AB =以及M 在直线AP 上,建立方程组,即可求得点Q 的坐标.【小问1详解】解:把点A 的坐标代入26y x =-+,得426a =-+,解得a =1,故点A 的坐标为(1,4),把点A 的坐标代入k y x=,得k =4,故反比例函数的表达式为4y x=,264y x y x =-+⎧⎪⎨=⎪⎩,得232=0x x -+,解得11x =,22x =,故点A 的坐标为(1,4),点B 的坐标为()2,2;【小问2详解】解:设直线AC 的解析式为y =kx +b ,点C 的坐标为4,m m ⎛⎫⎪⎝⎭,直线AC 与y 轴的交点为点D ,把点A 、C 的坐标分别代入y =kx +b ,得44k b mk b m +=⎧⎪⎨+=⎪⎩,解得444k m b m ⎧=-⎪⎪⎨⎪=+⎪⎩,故点D 的坐标为40,4m ⎛⎫+⎪⎝⎭,AD ∴==,CD ==,如图:当AD :CD =1:2时,连接BC ,12=,得2264120m m-+=,得4212640m m +-=,解得24m =或216m =-(舍去),故2m =-或2m =(舍去),故此时点C 的坐标为(-2,-2),BC ∴==如图:当CD :AD =1:2时,连接BC ,12=,得22164630m m-+=,得4263160m m +-=,解得214m =或216m =-(舍去),故12m =-或12m =(舍去),故此时点C 的坐标为1,82⎛⎫-- ⎪⎝⎭,5172BC ∴==,综上,BC 的长为或5172;【小问3详解】解:如图,过点B 作PB AB ⊥,交4y x=的另一支于点P ,过点P 作x 轴的平行线,过点B 作x 轴的垂线,交于点C ,作AD BC ⊥交于点D ,设,BQ AP 交于点M ,如图∵()()1,4,2,2A B ∴()2,4D设4,P m m ⎛⎫ ⎪⎝⎭,0m <,则42,2,2,1PC m BC DB AD m=-=-==90︒∠= ABP 90ABD PBC BPC∴∠=︒-∠=∠又D C∠=∠∴ADB BCP∽AD DB BC PC ∴=即12=422mm --解得4m =-或2m =(舍去)则点()4,1P --设直线PA 的解析式为y sx t =+,将点()1,4A ,()4,1P --414s t s t -+=-⎧⎨+=⎩解得13s t =⎧⎨=⎩∴直线PA 的解析式为3y x =+设(),Q a b ,根据题意,BQ 的中点M 在直线PB 上,则M 2222a b ++⎛⎫⎪⎝⎭,∵QA AB ====则()()22223=22145a b a b ++⎧+⎪⎨⎪-+-=⎩解得15a b =-⎧⎨=⎩或06a b =⎧⎨=⎩(在直线AB 上,舍去)()1,5Q ∴-.综上所述,()()4,1,1,5P Q ---.【点睛】本题考查一次函数与反比例函数的综合,利用待定系数法求一次函数及反比例函数的解析式,平面直角坐标系中两点间距离公式,相似三角形的判定与性质等知识,采用分类讨论的思想和待定系数法求解析式是解决本题的关键.B 卷一、填空题(本大题共5个小题)19.已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________.【答案】72##3.5##312【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a--⎛⎫-÷ ⎪⎝⎭=22211a a a aa a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷=22(1)1a a a a -⨯-=(1)a a -=2-a a .2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=,两边同除以2得272a a -=,∴原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =-,再根据勾股定理得到直角三角形斜边的长是【详解】解: 一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得63616625322x ±===,∴根据勾股定理可得直角三角形斜边的长是,故答案为:.【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.21.如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.【答案】24π-【解析】【分析】如图,设OA =a ,则OB =OC =a ,根据正方形内接圆和外接圆的关系,求出大正方形、小正方形和圆的面积,再根据概率公式计算即可.【详解】解:如图,设OA =a ,则OB =OC =a ,由正方形的性质可知∠AOB =90°,AB ==,由正方形的性质可得CD =CE =OC =a ,∴DE =2a ,S 阴影=S 圆-S 小正方形=)()2222222a a a a πππ-=-=-,S 大正方形=()2224a a =,∴这个点取在阴影部分的概率是()222244a a ππ--=,故答案为:24π-【点睛】本题考查了概率公式、正方形的性质、正方形外接圆和内切圆的特点、圆的面积计算,根据题意弄清楚图形之间的关系是解题的关键.22.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t ≤≤时,w 的取值范围是_________;当23t ≤≤时,w 的取值范围是_________.【答案】①.05w ≤≤②.520w ≤≤【解析】【分析】根据题意,得-45+3m +n =0,24(5)204(5)n m ⨯-⨯-=⨯-,确定m ,n 的值,从而确定函数的解析式,根据定义计算确定即可.【详解】根据题意,得-45+3m +n =0,24(5)204(5)n m ⨯-⨯-=⨯-,∴2204000m n +-=,∴2605000m m -+=,解得m =50,m =10,当m =50时,n =-105;当m =10时,n =15;∵抛物线与y 轴交于正半轴,∴n >0,∴251015h t t =-++,∵对称轴为t =102(5)-⨯-=1,a =-5<0,∴01t ≤≤时,h 随t 的增大而增大,当t =1时,h 最大,且max 20h =(米);当t =0时,h 最最小,且min 15h =(米);∴w =max min 20155h h -=-=,∴w 的取值范围是05w ≤≤,故答案为:05w ≤≤.当23t ≤≤时,w 的取值范围是∵对称轴为t =102(5)-⨯-=1,a =-5<0,∴123t ≤≤<时,h 随t 的增大而减小,当t =2时,h =15米,且max 20h =(米);当t =3时,h 最最小,且min 0h =(米);∴w =max min 20155h h -=-=,w =max min 20020h h -=-=,∴w 的取值范围是520w ≤≤,故答案为:520w ≤≤.【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.23.如图,在菱形ABCD 中,过点D 作DE CD ⊥交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ',点Q 是AC 上一动点,连接P Q ',DQ .若14AE =,18CE =,则DQ P Q '-的最大值为_________.【答案】1623【解析】【分析】延长DE ,交AB 于点H ,确定点B 关于直线DE 的对称点F ,由点B ,D 关于直线AC 对称可知QD=QB ,求QD QP '-最大,即求QB QP '-最大,点Q ,B ,P '共线时,QD QP QB QP BP '''-=-=,根据“三角形两边之差小于第三边”可得BP '最大,当点P '与点F 重合时,得到最大值.连接BD ,即可求出CO ,EO ,再说明EOD DOC V :V ,可得DO ,根据勾股定理求出DE ,然后证明EOD BHD V :V ,可求BH ,即可得出答案.【详解】延长DE ,交AB 于点H ,∵AB CD ,ED ⊥CD ,∴DH ⊥AB .取FH=BH ,∴点P 的对称点在EF 上.由点B ,D 关于直线AC 对称,∴QD=QB .要求QD QP '-最大,即求QB QP '-最大,点Q ,B ,P '共线时,QD QP QB QP BP '''-=-=,根据“三角形两边之差小于第三边”可得BP '最大,当点P '与点F 重合时,得到最大值BF .连接BD ,与AC 交于点O .∵AE=14,CE=18,∴AC=32,∴CO=16,EO=2.∵∠EDO +∠DEO =90°,∠EDO +∠CDO =90°,∴∠DEO=∠CDO .∵∠EOD=∠DOC ,∴EOD DOC V :V ,∴EO DO DO CO=,即221632DO =⨯=,解得DO =,∴2BD DO ==.在Rt △DEO 中,6DE ==.∵∠EDO=∠BDH ,∠DOE=∠DHB ,∴EOD BHD V :V ,∴EO DE BH BD=,即2BH =解得3BH =,∴23BF BH ==.故答案为:1623.【点睛】这是一道根据轴对称求线段差最大的问题,考查了菱形的性质,勾股定理,轴对称的性质,相似三角形的性质和判定等,确定最大值是解题的关键.二、解答题24.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h ,乙骑行的路程()km s 与骑行的时间()h t 之间的关系如图所示.(1)直接写出当00.2t ≤≤和0.2t >时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?【答案】(1)当00.2t ≤≤时,15s t =;当0.2t >时,201s t =-(2)0.5小时后【解析】【分析】(1)根据函数图象,待定系数法求解析式即可求解;(2)根据乙的路程大于甲的路程即可求解.【小问1详解】由函数图像可知,设00.2t ≤≤时,s kt =,将()0.2,3代入,得3150.2s k t ===,则15s t =,当0.2t >时,设s at b =+,将()0.2,3,()0.5,9代入得0.230.59t b t b +=⎧⎨+=⎩解得201t b =⎧⎨=-⎩∴201s t =-【小问2详解】由(1)可知00.2t ≤≤时,乙骑行的速度为15km /h ,而甲的速度为18km/h ,则甲在乙前面,当0.2t >时,乙骑行的速度为20km /h ,甲的速度为18km/h ,设x 小时后,乙骑行在甲的前面则18201x x <-解得0.5x >答:0.5小时后乙骑行在甲的前面【点睛】本题考查了一次函数的应用,一元一次不等式的应用,立即题意是解题的关键.25.如图,在平面直角坐标系xOy 中,直线()30y kx k =-≠与抛物线2y x =-相交于A ,B 两点(点A 在点B 的左侧),点B 关于y 轴的对称点为B '.(1)当2k =时,求A ,B 两点的坐标;(2)连接OA ,OB ,AB ',BB ',若B AB 'V 的面积与OAB 的面积相等,求k 的值;(3)试探究直线'AB 是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【答案】(1)点A 的坐标为()3,9--,点B 的坐标为()1,1-(2)2或2-(3)是,()0,3【解析】【分析】(1)解方程组223y x y x=-⎧⎨=-⎩,整理得到2230x x +-=,解方程即可得到答案.(2)分k <0和k >0,两种情形求解.(3)设直线A B '的解析式为y =px +q ,根据题意求得p ,q 的值,结合方程组的意义,确定与y 轴的交点即可.【小问1详解】根据题意,得223y x y x =-⎧⎨=-⎩,整理得到2230x x +-=,解方程,得123,1x x =-=,当x =-3时,y =-9;当x =1时,y =-1;∵点A 在点B 的左侧,∴点A 的坐标为(-3,-9),点B 的坐标为(1,-1).【小问2详解】∵A ,B 是抛物线2y x =-图像上的点,设A (m ,2m -),B (n ,2n -),则B '(-n ,2n -),当k >0时,根据题意,得23y kx y x =-⎧⎨=-⎩,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线y =kx -3与y 轴的交点为D ,则点D (0,-3)∴13()()22OAB S OD n m n m =-=⨯- △,2211()2()22B AB B A S BB y y n n m '''=-=⨯⨯-+ △,∴3()2n m ⨯-=2212()2n n m ⨯⨯-+=12()()2n m n m n ⨯⨯+-,∴3=2()n m n -⨯+=2nk ,∴2nk mn =-,∵n ≠0,∴2m k =-,n k =,∴23k k -⨯=-,解得k =2或k =-2(舍去),故k =2;当k <0时,根据题意,得23y kx y x=-⎧⎨=-⎩,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线y =kx -3与y 轴的交点为D ,则点D (0,-3)∴13()()22OAB S OD n m n m =-=⨯- △,2211()2()22B AB A B S BB y y n n m '''=-=⨯⨯- △,∴3()2n m ⨯-=2212()2n n m ⨯⨯-=12()()2n m n n m ⨯⨯+-,∴3=2()n m n ⨯+=-2nk ,∴-2nk mn =-,∵n ≠0,∴2m k =,3n k =-,∴2(3)3k k ⨯-=-,解得k =-2或k =2(舍去),故k =-22;综上所述,k 的值为2或22-.【小问3详解】直线A B '一定过定点(0,3).理由如下:∵A ,B 是抛物线2y x =-图像上的点,∴设A (m ,2m -),B (n ,2n -),则B '(-n ,2n -),根据题意,得23y kx y x =-⎧⎨=-⎩,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线A B '的解析式为y =px +q ,根据题意,得22m mp q n np q⎧-=+⎨-=-+⎩,解得p n m q mn =-⎧⎨=-⎩,∴直线A B '的解析式为y =(n -m )x -mn ,∵mn =-3,∴-mn =3,∴直线A B '的解析式为y =(n -m )x ,故直线A B '一定过定点(0,3).【点睛】本题考查了抛物线与一次函数的交点问题,待定系数法,一元二次方程根与系数关系定理,对称性,熟练掌握抛物线与一次函数的交点,及其根与系数关系定理是解题的关键.26.如图,在矩形ABCD 中,()1AD nAB n =>,点E 是AD 边上一动点(点E 不与A ,D 重合),连接BE ,以BE 为边在直线BE 的右侧作矩形EBFG ,使得矩形EBFG ∽矩形ABCD ,EG 交直线CD 于点H .(1)【尝试初探】在点E 的运动过程中,ABE △与DEH △始终保持相似关系,请说明理由.(2)【深入探究】若2n =,随着E 点位置的变化,H 点的位置随之发生变化,当H 是线段CD 中点时,求tan ABE ∠的值.(3)【拓展延伸】连接BH ,FH ,当BFH △是以FH 为腰的等腰三角形时,求tan ABE ∠的值(用含n 的代数式表示).【答案】(1)见解析(2)222-或222+(3)2n【解析】【分析】(1)根据题意可得∠A =∠D =∠BEG =90°,可得∠DEH =∠ABE ,即可求证;(2)根据题意可得AB =2DH ,AD =2AB ,AD =4DH ,设DH =x ,AE =a ,则AB =2x ,AD =4x ,可得DE =4x -a ,再根据△ABE ∽△DEH,可得(22a x =或(22a ,即可求解;(3)根据题意可得EG =nBE ,然后分两种情况:当FH =BH 时,当FH =BF =nBE 时,即可求解.【小问1详解】解:根据题意得:∠A =∠D =∠BEG =90°,∴∠AEB +∠DEH =90°,∠AEB +∠ABE =90°,∴∠DEH =∠ABE ,∴△ABE ∽△DEH ;【小问2详解】解:根据题意得:AB =2DH ,AD =2AB ,∴AD =4DH ,设DH =x ,AE =a ,则AB =2x ,AD =4x ,∴DE =4x -a ,∵△ABE ∽△DEH ,∴AB AE DE DH=,∴24x a x a x =-,解得:(22a x =或(22a -,∴(2AB a =或(2a ,∴22tan 2AE ABE AB -∠==或22+;【小问3详解】解:∵矩形EBFG ∽矩形ABCD ,()1AD nAB n =>,∴EG =nBE ,如图,当FH =BH 时,∵∠BEH =∠FGH =90°,BE =FG ,∴Rt △BEH ≌Rt △FGH ,∴EH =GH=12EG ,∴2n EH BE =,∵△ABE ∽△DEH ,∴2DE EH n AB BE ==,即2n DE AB =,∴2n AE AD DE AB =-=,∴tan 2AE n ABE AB ∠==;如图,当FH =BF =nBE 时,HG ==,∴(EH EG HG n BE =-=-,∵△ABE ∽△DEH ,∴DE EH n AB BE ==-(DE n AB =-,∴AE AD DE =-=,∴tan AE ABE AB==∠;综上所述,tan ABE ∠的值为2n 【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识是解题的关键.。
2022年四川省成都市中考数学真题(解析版)
2022年四川省成都市中考数学试题及答案数学A 卷第Ⅰ卷(选择题)一、选择题(本大题共8个小题,每小题均有四个选项,其中只有一项符合题目要求)1. 37-的相反数是( )A. 37 B. 37- C. 73- D. 73【答案】A【解析】【分析】直接根据相反数的求法求解即可.【详解】解:任意一个实数a 的相反数为-a由 −37 的相反数是37;故选A .【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2. 2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家.将数据160万用科学记数法表示为( )A. 21.610´ B. 51.610´ C. 61.610´ D. 71.610´【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是非负数;当原数的绝对值<1时,n 是负数.详解】解答:解:160万=1600000=61.610´,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 下列计算正确的是( )A. 2m m m +=B. ()22m n m n-=-【C. 222(2)4m n m n +=+ D. 2(3)(3)9m m m +-=-【答案】D【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.4. 如图,在ABC V 和DEF V 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF △≌△的是( )A. BC DE= B. AE DB = C. A DEF Ð=Ð D. ABC DÐ=Ð【答案】B【解析】【分析】根据三角形全等的判定做出选择即可.【详解】A 、BC DE =,不能判断ABC DEF △≌△,选项不符合题意;B 、AE DB =,利用SAS 定理可以判断ABC DEF △≌△,选项符合题意;C 、A DEF Ð=Ð,不能判断ABC DEF △≌△,选项不符合题意;D 、ABC D Ð=Ð,不能判断ABC DEF △≌△,选项不符合题意;故选:B .【点睛】本题考查三角形全等判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.的5. 在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A. 56B. 60C. 63D. 72【答案】B【解析】【分析】结合题意,根据众数的性质分析即可得到答案.【详解】根据题意,56,60,63,60,60,72这组数据的众数是:60故选:B.【点睛】本题考查了众数的知识;解题的关键是熟练掌握众数的定义:众数是指在统计分布上具有明显集中趋势点的数值,也就是一组数据中出现次数最多的数值.6. 如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6p,则正六边形的边长为()C. 3D.【答案】C【解析】【分析】连接OB,OC,由⊙O的周长等于6π,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB,OC,∵⊙O的周长等于6π,∴⊙O的半径为:3,∵∠BOC 61=´360°=60°,∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.7. 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A. 100041199979x y x y +=ìïí+=ïî B. 100079909411x y x y +=ìïí+=ïîC. 100079999x y x y +=ìí+=î D. 1000411999x y x y +=ìí+=î【答案】A【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题.【详解】解:设苦果有x 个,甜果有y 个,由题意可得,100041199979x y x y +=ìïí+=ïî故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组的有关知识,正确找到相等关系是解决本题的关键.8. 如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A. 0a > B. 当1x >-时,y 的值随x 值的增大而增大C. 点B 的坐标为()4,0 D. 420a b c ++>【答案】D【解析】【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即0a <,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对称轴()112B x x +-==,解得3B x =,即()3,0B ,故该选项不符合题意;D 、根据()3,0B 可知,当2x =时,420y a b c =++>,故该选项符合题意;故选:D .【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与x 轴交点()1,0A -得到()3,0B 是解决问题的关键.第Ⅱ卷(非选择题)二、填空题(本大题共5个小题)9. 计算:()23a -=______.【答案】6a 【解析】【分析】根据幂的乘方可直接进行求解.【详解】解:()236a a -=;故答案为6a .【点睛】本题主要考查幂乘方,熟练掌握幂的乘方是解题的关键.10. 关于x 的反比例函数2m y x -=的图像位于第二、四象限,则m 的取值范围是________.【答案】2m <【解析】【分析】根据反比例函数的性质即可确定m-2的符号,从而求解.【详解】根据题意得:m-2<0,解得:m <2.故答案为:m <2.【点睛】本题考查了反比例函数的性质,对于反比例函数y =k x(k≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.11. 如图,ABC V 和DEF V 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC V 与DEF V 的周长比是_________.【答案】2:5【解析】【分析】根据位似图形的性质,得到OCA OFD D D :,根据:2:3OA AD =得到相似比为25CA OA OA FD OD OA AD ===+,再结合三角形的周长比等于相似比即可得到结论.【详解】解:Q ABC V 和DEF V 是以点O 为位似中心的位似图形,\OCA OFD D D :,\CA OA FD OD=,Q :2:3OA AD =,\25CA OA OA FD OD OA AD ===+,的\根据ABC V 与DEF V 的周长比等于相似比可得25ABC DEF C CA C FD D D ==,故答案为:2:5.【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键.12. 分式方程31144x x x-+=--的解是_________.【答案】3x =【解析】【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解.【详解】解:31144x x x-+=--解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解,故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.13. 如图,在ABC V 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B Ð=°,则AB 的长为_________.【答案】7【解析】【分析】连接EC ,依据垂直平分线的性质得EB EC =.由已知易得90BEC CEA ÐÐ=°=,在Rt △AEC 中运用勾股定理求得AE ,即可求得答案.【详解】解:由已知作图方法可得,MN 是线段BC 的垂直平分线,连接EC ,如图,所以BE CE =,所以45ECB B Ð=Ð=°,所以∠BEC =∠CEA =90°,因为5AC =,4BE =,所以4CE =,在AEC △中,3AE ==,所以347AB AE BE =+=+=,因此AB 的长为7.故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得AE 即可.三、解答题(本大题共5个小题)14计算:113tan 3022-æö+-ç÷èø.(2)解不等式组:3(2)252123x x x x +³+ìïí--<ïî①②.【答案】(1)1;(2)12x -£<【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算.时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(1)113tan302 2-æö--ç÷èø=-+2332=-++12=1.(2)3(2)252123x xx x+³+ìïí--<ïî①②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15. 2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长:(单位:分钟)人数所占百分比A02t£<4xB24t£<20C46t£<36%D6t³16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x的值为_________;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【答案】(1)50,8%(2)200 (3)2 3【解析】【分析】(1)利用概率计算公式先求出总人数,再求出等级为A的学生人数;(2)利用概率计算公式先求出等级为B的学生所占的百分比,再求出等级为B的学生人数;(3)记两名男生为a,b,记两名女生为c,d,通过列出表格列出所有可能的结果,用恰有一男一女的结果数除以总的结果数,即可得到恰好抽到一名男生和一名女生的概率.【小问1详解】解:∵D组人数为8人,所占百分比为16%,∴总人数为816%50¸=人,∴4508%x=¸=.【小问2详解】解:等级为B的学生所占的百分比为205040%¸=,∴等级为B的学生人数为50040%200´=人.【小问3详解】解:记两名男生为a,b,记两名女生为c,d,列出表格如下:∴一共有12种情况,其中恰有一男一女的有8种,∴恰好抽到一名男生和一名女生的概率82123P ==.【点睛】本题考查了列表法与树状图法,概率计算公式的熟练应用是解答本题的关键.16. 2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB Ð=°时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB ¢Ð=°时(点A ¢是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A ¢处离桌面的高度A D ¢的长.(结果精确到1cm ;参考数据:sin 720.95°»,cos 720.31°»,tan 72 3.08°»)【答案】约为19cm【解析】【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO ¢中,根据正弦函数求得A D ¢的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC ==°,在Rt △A DO ¢中,18072A OC A OB ¢¢Ð=°-Ð=°,20OA OA ¢==cm ,∴sin 72200.9519A D OA ¢¢=°»´=g cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.17. 如图,在Rt ABC △中,90ACB Ð=°,以BC 为直径作⊙O ,交AB 边于点D ,在 CD上取一点E ,使 BECD =,连接DE ,作射线CE 交AB 边于点F.(1)求证:A ACF Ð=Ð;(2)若8AC =,4cos 5ACF Ð=,求BF 及DE 的长.【答案】(1)见解析 (2)BF =5,4225DE =【解析】【分析】(1)根据Rt ABC △中,90ACB Ð=°,得到∠A +∠B =∠ACF +∠BCF =90°,根据 BECD =,得到∠B =∠BCF ,推出∠A =∠ACF ;(2)根据∠B =∠BCF ,∠A =∠ACF ,得到AF =CF ,BF =CF ,推出AF =BF =12 AB ,根据4cos cos 5AC ACF A AB Ð===,AC =8,得到AB =10,得到BF =5,根据6BC ==,得到3sin 5BC A AB ==,连接CD ,根据BC 是⊙O 的直径,得到∠BDC =90°,推出∠B +∠BCD =90°,推出∠A =∠BCD ,得到3sin 5BD BCD BC Ð==,推出185BD =,得到75DF BF BD =-=,根据∠FDE =∠BCE ,∠B =∠BCE ,得到∠FDE =∠B ,推出DE ∥BC ,得到△FDE ∽△FBC ,推出DE DF BC BF=,得到4225DE =.【小问1详解】解:∵Rt ABC △中,90ACB Ð=°,∴∠A +∠B =∠ACF +∠BCF =90°,∵ BECD =,∴∠B =∠BCF ,∴∠A =∠ACF ;【小问2详解】∵∠B =∠BCF ,∠A =∠ACF∴AF =CF ,BF =CF ,∴AF=BF=12AB,∵4cos cos5ACACF AABÐ===,AC=8,∴AB=10,∴BF=5,∵6 BC==,∴3 sin5BCAAB==,连接CD,∵BC是⊙O的直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∴3 sin5BDBCDBCÐ==,∴185 BD=,∴75 DF BF BD=-=,∵∠FDE=∠BCE,∠B=∠BCE,∴∠FDE=∠B,∴DE∥BC,∴△FDE∽△FBC,∴DE DF BC BF=,∴4225 DE=.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.18. 如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数k y x=的图象相交于(),4A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.【答案】(1)反比例函数的表达式为4y x=,点B 的坐标为()2,2(2) (3)()4,1--,()1,5-【解析】【分析】(1)首先把点A 的坐标代入26y x =-+,即可求得点A 的坐标,再把点A 的坐标代入k y x =,即可求得反比例函数的解析式,再利用方程组,即可求得点B 的坐标;(2)设直线AC 的解析式为y =kx +b ,点C 的坐标为4,m m æöç÷èø,直线AC 与y 轴的交点为点D , 把点A 、C 的坐标分别代入y =kx +b ,可求得点D 的坐标为40,4m æö+ç÷èø,可求得AD 、CD 的长,再分两种情况分别计算,即可分别求得;(3)方法一:如图,过点B 作PB AB ^,交4y x=的另一支于点P ,过点P 作x 轴的平行线,过点B 作x 轴的垂线,交于点C ,作AD BC ^交于点D ,设,BQ AP 交于点M ,根据ADB BCP V V ∽,求得点P 的坐标,进而求得AP 的解析式,设点D 的坐标为(a ,b ),根据定义AQ AB =以及M 在直线AP 上,建立方程组,即可求得点Q 的坐标.【小问1详解】解:把点A 的坐标代入26y x =-+,得426a =-+,解得a =1,故点A 的坐标为(1,4),把点A 的坐标代入k y x =,得k =4,故反比例函数的表达式为4y x=,264y x y x =-+ìïí=ïî, 得232=0x x -+,解得11x =,22x =,故点A 的坐标为(1,4),点B 的坐标为()2,2;【小问2详解】解:设直线AC 的解析式为y =kx +b ,点C 的坐标为4,m m æöç÷èø,直线AC 与y 轴的交点为点D , 把点A 、C 的坐标分别代入y =kx +b ,得44k b mk b m +=ìïí+=ïî,解得444k m b m ì=-ïïíï=+ïî, 故点D 的坐标为40,4m æö+ç÷,AD \=,CD ==,如图:当AD :CD =1:2时,连接BC ,12=,得2264120m m -+=,得4212640m m +-=,解得24m =或216m =-(舍去),故2m =-或2m =(舍去),故此时点C 的坐标为(-2,-2),BC \==如图:当CD :AD =1:2时,连接BC ,12=,得22164630m m -+=,得4263160m m +-=,解得214m =或216m =-(舍去),故12m =-或12m =(舍去),故此时点C 的坐标为1,82æö--ç÷,BC \==,综上,BC的长为【小问3详解】解:如图,过点B 作PB AB ^,交4y x=的另一支于点P ,过点P 作x 轴的平行线,过点B 作x 轴的垂线,交于点C ,作AD BC ^交于点D ,设,BQ AP 交于点M ,如图∵()()1,4,2,2A B \()2,4D 设4,P m m æöç÷èø,0m <,则42,2,2,1PC m BC DB AD m=-=-==90°Ð=Q ABP90ABD PBC BPC\Ð=°-Ð=Ð又D CÐ=Ð\ADB BCPV V ∽AD DB BC PC\=即12=422m m--解得4m =-或2m =(舍去)则点()4,1P --设直线PA 的解析式为y sx t =+,将点()1,4A ,()4,1P --414s t s t -+=-ìí+=î解得13s t =ìí=î\直线PA 的解析式为3y x =+设(),Q a b ,根据题意,BQ 的中点M 在直线PB 上,则M 2222a b ++æöç÷èø,∵QA AB ====则()()22223=22145a b a b ++ì+ïíï-+-=î解得15a b =-ìí=î或06a b =ìí=î(在直线AB 上,舍去)()1,5Q \-.综上所述,()()4,1,1,5P Q ---.【点睛】本题考查一次函数与反比例函数的综合,利用待定系数法求一次函数及反比例函数的解析式,平面直角坐标系中两点间距离公式,相似三角形的判定与性质等知识,采用分类讨论的思想和待定系数法求解析式是解决本题的关键.B 卷一、填空题(本大题共5个小题)19. 已知2272a a -=,则代数式2211a a a a a --æö-¸ç÷èø的值为_________.【答案】72##3.5##312【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --æö-¸ç÷èø=22211a a a a a aæö---¸ç÷èø=22211a a a a a-+-¸=22(1)1a a a a -´-=(1)a a -=2-a a .2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=,两边同除以2得272a a -=,∴原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20. 若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =三角形斜边的长是.【详解】解:Q 一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,\由公式法解一元二次方程2640x x -+=可得3x ===,\==,故答案为:.【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.21. 如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.【答案】24p -【解析】【分析】如图,设OA =a ,则OB =OC =a ,根据正方形内接圆和外接圆的关系,求出大正方形、小正方形和圆的面积,再根据概率公式计算即可.【详解】解:如图,设OA =a ,则OB =OC =a ,由正方形的性质可知∠AOB =90°,AB ==,由正方形的性质可得CD =CE =OC =a ,∴DE =2a ,S 阴影=S 圆-S 小正方形=)()2222222a a a a p p p -=-=-,S 大正方形=()2224a a =,∴这个点取在阴影部分的概率是()222244a a p p --=,故答案为:24p -【点睛】本题考查了概率公式、正方形的性质、正方形外接圆和内切圆的特点、圆的面积计算,根据题意弄清楚图形之间的关系是解题的关键.22. 距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t ££时,w 的取值范围是_________;当23t ££时,w 的取值范围是_________.【答案】①. 05w ££ ②. 520w ££【解析】【分析】根据题意,得-45+3m +n =0,24(5)204(5)n m ´-´-=´-,确定m ,n 的值,从而确定函数的解析式,根据定义计算确定即可.详解】根据题意,得-45+3m +n =0,24(5)204(5)n m ´-´-=´-,∴ 2204000m n +-=,∴ 2605000m m -+=,解得m =50,m =10,当m =50时,n =-105;当m =10时,n =15;∵抛物线与y 轴交于正半轴,∴n >0,∴251015h t t =-++,∵对称轴为t =102(5)-´-=1,a =-5<0,∴01t ££时,h 随t 的增大而增大,当t =1时,h 最大,且max 20h =(米);当t =0时,h 最最小,且min 15h =(米);∴w =max min 20155h h -=-=,∴w 的取值范围是05w ££,故答案为:05w ££.当23t ££时,w的取值范围是【∵对称轴为t =102(5)-´-=1,a =-5<0,∴123t ££<时,h 随t 的增大而减小,当t =2时,h =15米,且max 20h =(米);当t =3时,h 最最小,且min 0h =(米);∴w =max min 20155h h -=-=,w =max min 20020h h -=-=,∴w 的取值范围是520w ££,故答案为:520w ££.【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.23. 如图,在菱形ABCD 中,过点D 作DE CD ^交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ¢,点Q 是AC 上一动点,连接P Q ¢,DQ .若14AE =,18CE =,则DQ P Q ¢-的最大值为_________.【解析】【分析】延长DE ,交AB 于点H ,确定点B 关于直线DE 的对称点F ,由点B ,D 关于直线AC 对称可知QD=QB ,求Q D Q P ¢-最大,即求Q B Q P ¢-最大,点Q ,B ,P ¢共线时,Q D Q P Q B Q P B P ¢¢¢-=-=,根据“三角形两边之差小于第三边”可得BP ¢最大,当点P ¢与点F 重合时,得到最大值.连接BD ,即可求出CO ,EO ,再说明E O D D O C V :V ,可得DO ,根据勾股定理求出DE ,然后证明E O D B H D V :V ,可求BH ,即可得出答案.【详解】延长DE ,交AB 于点H ,∵AB CD P ,ED ⊥CD ,∴DH ⊥AB .取FH=BH ,∴点P 的对称点在EF 上.由点B ,D 关于直线AC 对称,∴QD=QB .要求Q D Q P ¢-最大,即求Q B Q P ¢-最大,点Q ,B ,P ¢共线时,Q D Q P Q B Q P B P ¢¢¢-=-=,根据“三角形两边之差小于第三边”可得BP ¢最大,当点P ¢与点F 重合时,得到最大值BF .连接BD ,与AC 交于点O .∵AE=14,CE=18,∴AC=32,∴CO=16,EO=2.∵∠EDO +∠DEO =90°,∠EDO +∠CDO =90°,∴∠DEO=∠CDO .∵∠EOD=∠DOC ,∴ E O D D O C V :V ,∴E O D O D O C O=,即221632D O =´=,解得DO =,∴2B D D O ==.在Rt △DEO 中,6D E ==.∵∠EDO=∠BDH ,∠DOE=∠DHB ,∴E O D B H D V :V ,∴E O D E B H B D=,即2B H =解得B H =∴2B F B H ==..【点睛】这是一道根据轴对称求线段差最大的问题,考查了菱形的性质,勾股定理,轴对称的性质,相似三角形的性质和判定等,确定最大值是解题的关键.二、解答题24. 随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h ,乙骑行的路程()km s 与骑行的时间()h t 之间的关系如图所示.(1)直接写出当00.2t ££和0.2t >时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?【答案】(1)当00.2t ££时,15s t =;当0.2t >时,201s t =-(2)0.5小时后【解析】【分析】(1)根据函数图象,待定系数法求解析式即可求解;(2)根据乙的路程大于甲的路程即可求解.【小问1详解】由函数图像可知,设00.2t ££时,s kt =,将()0.2,3代入,得3150.2s k t ===,则15s t =,当0.2t >时,设s at b =+,将()0.2,3,()0.5,9代入得0.230.59t b t b +=ìí+=î解得201t b =ìí=-î\201s t =-【小问2详解】由(1)可知00.2t ££时,乙骑行的速度为15km /h ,而甲的速度为18km/h ,则甲在乙前面,当0.2t >时,乙骑行的速度为20km /h ,甲的速度为18km/h ,设x 小时后,乙骑行在甲的前面则18201x x <-解得0.5x >答:0.5小时后乙骑行在甲的前面【点睛】本题考查了一次函数的应用,一元一次不等式的应用,立即题意是解题的关键.25. 如图,在平面直角坐标系xOy 中,直线()30y kx k =-¹与抛物线2y x =-相交于A ,B 两点(点A 在点B 的左侧),点B 关于y 轴的对称点为B ¢.(1)当2k =时,求A ,B 两点的坐标;(2)连接OA ,OB ,AB ¢,BB ¢,若B AB ¢V 的面积与OAB V 的面积相等,求k 的值;(3)试探究直线'AB 是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【答案】(1)点A 的坐标为()3,9--,点B 的坐标为()1,1-(2 (3)是,()0,3【解析】【分析】(1)解方程组223y x y x=-ìí=-î,整理得到2230x x +-=,解方程即可得到答案.(2)分k <0和k >0,两种情形求解.(3) 设直线A B ¢的解析式为y =px +q ,根据题意求得p ,q 的值,结合方程组的意义,确定与y 轴的交点即可.【小问1详解】根据题意,得223y x y x=-ìí=-î,整理得到2230x x +-=,解方程,得123,1x x =-=,当x =-3时,y =-9;当x =1时,y = -1;∵点A 在点B 的左侧,∴点A 的坐标为(-3,-9),点B 的坐标为(1,-1).【小问2详解】∵A ,B 是抛物线2y x =-图像上的点,设A (m ,2m -),B (n ,2n -),则B ¢(-n ,2n -),当k >0时,根据题意,得23y kx y x =-ìí=-î,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线y =kx -3与y 轴的交点为D ,则点D (0,-3)∴13()()22OAB S OD n m n m =-=´-g △,2211()2()22B AB B A S BB y y n n m ¢¢¢=-=´´-+g △,∴3()2n m ´-=2212()2n n m ´´-+=12()()2n m n m n ´´+-,∴3=2()n m n -´+=2nk ,∴2nk mn =-,∵n ≠0,∴2m k =-,n k =,∴23k k -´=-,解得k k = 舍去),故k 当k <0时,根据题意,得23y kx y x =-ìí=-î,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线y =kx -3与y 轴的交点为D ,则点D (0,-3)∴13()()22OAB S OD n m n m =-=´-g △,2211()2()22B AB A B S BB y y n n m ¢¢¢=-=´´-g △,∴3()2n m ´-=2212()2n n m ´´-=12()()2n m n n m ´´+-,∴3=2()n m n ´+=-2nk ,∴-2nk mn =-,∵n ≠0,∴2m k =,3n k =-,∴2(3)3k k ´-=-,解得k =或k (舍去),故k =;综上所述,k .【小问3详解】直线A B ¢一定过定点(0,3).理由如下:∵A ,B 是抛物线2y x =-图像上的点,∴设A (m ,2m -),B (n ,2n -),则B ¢(-n ,2n -),根据题意,得23y kx y x =-ìí=-î,整理得到230x kx +-=,∴m ,n 是230x kx +-=的两个根,∴3m n k mn +=-=-,,设直线A B ¢的解析式为y =px +q ,根据题意,得22m mp q n np q ì-=+í-=-+î,解得p n m q mn =-ìí=-î,∴直线A B ¢的解析式为y =(n -m )x -mn ,∵mn =-3,∴-mn =3,∴直线A B ¢的解析式为y =(n -m )x +3,故直线A B ¢一定过定点(0,3).【点睛】本题考查了抛物线与一次函数的交点问题,待定系数法,一元二次方程根与系数关系定理,对称性,熟练掌握抛物线与一次函数的交点,及其根与系数关系定理是解题的关键.26. 如图,在矩形ABCD 中,()1AD nAB n =>,点E 是AD 边上一动点(点E 不与A ,D 重合),连接BE ,以BE 为边在直线BE 的右侧作矩形EBFG ,使得矩形EBFG ∽矩形ABCD ,EG 交直线CD 于点H .(1)【尝试初探】在点E 的运动过程中,ABE △与DEH △始终保持相似关系,请说明理由.(2)【深入探究】若2n =,随着E 点位置的变化,H 点的位置随之发生变化,当H 是线段CD 中点时,求tan ABE Ð的值.(3)【拓展延伸】连接BH ,FH ,当BFH △是以FH 为腰的等腰三角形时,求tan ABE Ð的值(用含n 的代数式表示).【答案】(1)见解析 (2(3)2n【解析】【分析】(1)根据题意可得∠A =∠D =∠BEG =90°,可得∠DEH =∠ABE ,即可求证;(2)根据题意可得AB =2DH ,AD =2AE =a ,则AB =2x ,AD =4x ,可得DE =4x -a ,再根据△ABE ∽△DEH ,可得x =,即可求解;(3)根据题意可得EG =nBE ,然后分两种情况:当FH =BH 时,当FH =BF =nBE 时,即可求解.【小问1详解】解:根据题意得:∠A =∠D =∠BEG =90°,∴∠AEB +∠DEH =90°,∠AEB +∠ABE =90°,∴∠DEH =∠ABE ,∴△ABE ∽△DEH ;【小问2详解】解:根据题意得:AB =2DH ,AD =2AB ,∴AD =4DH ,设DH =x ,AE =a ,则AB =2x ,AD =4x ,∴DE =4x -a ,∵△ABE ∽△DEH ,∴AB AE DE DH=,∴24x a x a x =-,解得:x =∴(2AB a =+或(2a -,∴tan AE ABE AB Ð==【小问3详解】解:∵矩形EBFG ∽矩形ABCD ,()1AD nAB n =>,∴EG =nBE ,如图,当FH =BH 时,∵∠BEH =∠FGH =90°,BE =FG ,∴Rt △BEH ≌Rt △FGH ,∴EH =GH=12EG ,∴2n EH BE =,∵△ABE ∽△DEH ,∴2DE EH n AB BE ==,即2n DEAB =,∴2n AE AD DE AB =-=,∴tan 2AE n ABE AB Ð==;如图,当FH =BF =nBE 时,HG ===,∴(EH EG HG n BE =-=,∵△ABE ∽△DEH ,∴DE EH n AB BE==-,即(DE n AB =-,∴AE AD DE =-=,∴tan AE ABE AB==Ð;综上所述,tan ABE Ð的值为2n 【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分)1. 计算2×(12-)的结果是(A)-1 (B) l (C)一2 (D) 22. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x > 3. 如图所示的是某几何体的三视图,则该几何体的形状是(A)长方体 (B)三棱柱 (C)圆锥 (D)正方体4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨(B)随机抛掷一枚均匀的硬币,落地后正面一定朝上”表示抽奖l00次就一定会中 (C)在一次抽奖活动中,“中奖的概率是1100奖(D)在平面内,平行四边形的两条对角线一定相交5.已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为(A)1:2 (B)1:4 (C)2:1 (D)4:16.在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到0A′,则点A′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7.若关于x的一元二次方程2210--=有两个不相等的实数根,则k的取值kx x范围是(A)1k<且0k< (D) 1k≠k≠ (c)1k>- (B) 1k>-且08.若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是(A)40° (B)80° (C)120° (D)150°9.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如Array (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小一名同学A B C DE A′随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是(A)众数是6度 (B)平均数是6.8度(C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分)将答案直接写在该题目中的横线上.11.分式方程2131x x =+的解是_________ 12.如图,将矩形ABCD 沿BE 折叠,若∠CBA′=30°则∠BEA′=_____.13.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①54.4110⨯人;②64.4110⨯人;③544.110⨯人.其中是科学记数法表示的序号为_________.14.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD =6,A B CD 那么BD =_________.三、(第15题每小题6分,第16题6分,共18分)15.解答下列各题:(1032(2009)4sin 45(1)π--+-。
(2)先化简,再求值:22(3)(2)1x x x x x -+-+,其中x =16.解不等式组312(1)312x x x -<+⎧⎪⎨+≥⎪⎩,,并在所给的数轴上表示出其解集。
四、(每小题8分,共16分)17.已知一次函数2y x =+与反比例函数k y x=,其中一次函数2y x =+的图象经过点P(k ,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标.18.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°。
请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)五、(每小题10分,共20分) 19.有一枚均匀的正四面体,四个面上分别标有数字l ,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字一2,一l ,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并图①从中随机地抽取一张,把卡片正面上的数字记为y ;然后他们计算出S=x+y 的值.(1)用树状图或列表法表示出S 的所有可能情况;(2)分别求出当S=0和S<2时的概率.20.已知A 、D 是一段圆弧上的两点,且在直线l 的同侧,分别过这两点作l 的垂线,垂足为B 、C ,E 是BC 上一动点,连结AD 、AE 、DE ,且∠AED=90°。
(1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD 的长。
(2)如图②,若点E 恰为这段圆弧的圆心,则线段AB 、BC 、CD 之间有怎样的等量关系?请写出你的结论并予以证明。
再探究:当分别在直线l 两侧且AB ≠CD ,而其余条件不变时,线段AB 、、CD之间又有怎样的等量关系?请直接写出结论,不必证明。
B 卷(共50分)一、填空题:(每小题4分,共20分)将答案直接写在该题目中的横线上.21.化简:22221369x y x y x y x xy y +--÷--+=_______ 22.如图,A 、B 、c 是⊙0上的三点,以BC 为一边,过BC 上一点P ,作PE∥AB 交BD 于点E 到弦AB 的距离为_______.23.已知21(123...)(1)n a n n ==+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______.(用含n 的代数式表示)24.如图,正方形OABC 的面积是4,点B 在反比例函数(00)k y k x x=><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S=m(m 为常数,且0<m<4)时,点R 的坐标是________________________ (用含m 的代数式表示)25.已知M(a ,b)是平面直角坐标系xOy 中的点,其中a 是从l ,2,3三个数中任取的一个数,b 是从l ,2,3,4四个数中任取的一个数.定义“点M(a ,b)在直线x+y=n 上”为事件Q n (2≤n≤7,n 为整数),则当Q n 的概率最大时,n的所有可能的值为______.二、(共8分)26.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11Q 302x =+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式; (2)请问在这30天的试销售中,哪一天的日销售利润最大并求出这个最大利润.注:销售利润=销售收入一购进成本.三、(共10分)B 27.如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .(1)判断0G 与CD (2)求证:AE=BF ;(3)若3(2OG DE ⋅=-,求⊙O 的面积。
四、(共12分)28.在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO=10。
(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标:若不存在,请说明理由;(3)过点A 作x 轴的垂线,交直线MC 于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度向下最多可平移多少个单位长度。