最新高三数学(理科二轮复习教案专题四第二讲数列的通项公式与数列求和名师精编资料汇编
(课标专用)2020高考数学二轮复习专题四数列4.2数列的通项与求和课件
![(课标专用)2020高考数学二轮复习专题四数列4.2数列的通项与求和课件](https://img.taocdn.com/s3/m/334aa45accbff121dc36836f.png)
1 ������������ +1
=
1 ������������
+
1.
2
∴数列 1 是等差数列,其首项为 1,公差为1,
������������
2
∴
1 ������������
=1+������2-1,∴an=������
2.
+1
高频考点•探究突破
-10-
突破点一
突破点二
突破点三
(2)∵Sn=23an+13,① ∴当 n≥2 时,Sn-1=23an-1+13.② 由①-②,得 an=23an-23an-1,即���������������������-���1=-2. ∵a1=S1=23a1+13,∴a1=1. ∴{an}是以 1 为首项,-2 为公比的等比数列,an=(-2)������-1.
高频考点•探究突破
-7-
突破点一
突破点二
突破点三
解法二 (待定系数法) 因为an+1与an的系数不相等,故可构造等 比数列.
设an+1+[k(n+1)+t]=3(an+kn+t),
整理得an+1=3an+2kn+2t-k.
由已知an+1=3an+2n-1,
所以
22������������-���=��� =2,-1,解得
高频考点•探究突破
-4-
突破点一
突破点二
突破点三
(2)∵an+1=an+ln
1+1
������
,
∴an-an-1=ln
1+ 1
高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理
![高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理](https://img.taocdn.com/s3/m/a2ba00d3ed630b1c58eeb54a.png)
+2an+1=4S
n+1+3.
可得
a2 n 1
-
an2
+2(an+1- an)=4an+1,即
2(an+1+an)=
a2 n 1
-
an2
= (an+1+an)(an+1-an).
由于 an>0,可得 an+1-an=2.
又 a12 +2a1=4a1+3, 解得 a1=-1(舍去)或 a1=3.
所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1.
第二个使用累积的方法、第三个可以使用待定系数法化为等比数列(设 an+1+λ =p(an+λ),展开比较系数得出λ);(3)周期数列,通过验证或者推理得出数列的 周期性后得出其通项公式.
热点训练 1:(1)(2018·湖南长沙雅礼中学、河南省实验中学联考)在数列{an}
中,a1=2, an1 = an +ln(1+ 1 ),则 an 等于( )
n
所以
1 =2(1- 1 + 1 - 1 +…+ 1 -
1
)
S k 1 k
223
n n1
=2(1- 1 ) n 1
= 2n . n 1
答案: 2n n 1
3.(2015·全国Ⅱ卷,理16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
解析:因为 an+1=S n+1-Sn,所以 Sn+1-Sn=Sn+1Sn,
2024届高三数学二轮专题复习教案数列
![2024届高三数学二轮专题复习教案数列](https://img.taocdn.com/s3/m/cd7147517dd184254b35eefdc8d376eeaeaa1794.png)
2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。
熟练运用数列的通项公式、求和公式。
能够解决数列的综合应用题。
2.能力目标提高学生分析问题和解决问题的能力。
培养学生的逻辑思维能力和创新意识。
二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。
2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。
(2)数列的项:数列中的每一个数叫做数列的项。
(3)数列的项数:数列中项的个数。
(4)数列的通项公式:表示数列中任意一项的公式。
(5)数列的分类:等差数列、等比数列、斐波那契数列等。
3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。
(2)周期性:数列中某些项的值呈周期性变化。
(3)界限性:数列的项有最大值或最小值。
4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。
5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。
(2)数列与方程:利用数列的性质解决方程问题。
(3)数列与不等式:利用数列的性质解决不等式问题。
6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。
(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。
高三数学二轮专题复习教案――数列.docx
![高三数学二轮专题复习教案――数列.docx](https://img.taocdn.com/s3/m/38f99d8bf111f18583d05af9.png)
高三数学二轮专题复习教案――数列一、本章知识结构:二、重点知识回顾1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.a n S1( n 1)a n S n S n Sn 1(n ≥ 2)(4)与的关系:.2.等差数列和等比数列的比较(1)定义:从第 2 项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2 项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.(2)递推公式:a n1a n d, a n 1a n·q, q 0, n N .(3)通项公式:a n a1(n 1)d, a n a1q n 1, n N.(4)性质等差数列的主要性质:①单调性: d ≥0 时为递增数列, d ≤ 0 时为递减数列, d 0 时为常数列.②若mn p q ,则aman a p a q (m, n,p,qN ).特别地,当 m n 2 p时,有ama n2a p.③an a m(n m)d(m, n N ) .④Sk,S2kSk,S3 kS2k,成等差数列.等比数列的主要性质:,a10a1,a10a1 00①单调性:当0q 1 或 q 1时,为递增数列;当q,,或q1时,为1递减数列;当q0时,为摆动数列;当q1时,为常数列.②若m npa ·a a ·a (m,n,p,q N ).特别地,若mn 2 p ,q,则m n p q则a m·a n a p2.a n q n m ( m, n N , q 0)③am.④ S k, S2k S k, S3k S2k,,当 q1时为等比数列;当q1时,若 k 为偶数,不是等比数列.若k为奇数,是公比为1的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质例 1.( 2008 深圳模拟)已知数列{ a}的前 n项和 S12n n 2 .n n(1)求数列{ an}的通项公式;(2)求数列{| an|}的前 n项和 T n .解:( 1)当n1时, a1S112 11211 ;、当n时S nSn 1(12n n2)[12(n1)(n 1)2]132n. ,2 ,a na也符合132n的形式.所以 ,数列{ a}的通项公式为 an13 2n.1n、11( 2)令a n132n0, 又 n N * , 解得 n 6.n 6时,T n| a1 || a2|| a n| a1a2a n S n12n n 2;当当n6 ,T n| a1 | | a2 || a6 | | a7 || a n |a1 a2a6a7a8a n2S6S2(12 6 62 )(12 n n2 ) n 212n72. nT n 12n n 2 , n6,n212n 72, n 6.综上,点评:本题考查了数列的前n 项与数列的通项公式之间的关系,特别要注意n=1时情况,在解题时经常会忘记。
(新课标)高考数学二轮复习专题二数列第2讲数列通项与求和学案理新人教A版
![(新课标)高考数学二轮复习专题二数列第2讲数列通项与求和学案理新人教A版](https://img.taocdn.com/s3/m/5c3647b4bed5b9f3f90f1ce5.png)
(新课标)高考数学二轮复习专题二数列第2讲数列通项与求和学案理新人教A 版第2讲 数列通项与求和[做真题]题型一 a n 与S n 关系的应用1.(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析:法一:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2; 当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4; 当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8; 当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16; 当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32; 所以S 6=-1-2-4-8-16-32=-63.法二:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n =S n-S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×(1-26)1-2=-63.答案:-632.(2015·高考全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n=________.解析:因为 a n +1=S n +1-S n ,a n +1=S n S n +1, 所以S n +1-S n =S n S n +1.因为 S n ≠0,所以1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,所以{1S n}是首项为-1,公差为-1的等差数列.所以1S n =-1+(n -1)×(-1)=-n ,所以S n =-1n.答案:-1n题型二 数列求和1.(2017·高考全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=__________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意,⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,即⎩⎪⎨⎪⎧a 1+2d =3,2a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1,d =1, 所以S n =n (n +1)2,因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +12.(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解:(1)设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.3.(2016·高考全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.[明考情]1.已知数列递推关系求通项公式,主要考查利用a n 与S n 的关系求通项公式、累加法、累乘法及构造法求通项公式,主要以选择题、填空题的形式考查,有时作为解答题的第(1)问考查,难度中等.2.数列求和常与数列综合应用一起考查,常以解答题的形式考查,有时与函数不等式综合在一起考查,难度中等偏上.S n,a n关系的应用[典型例题](1)已知数列{a n}的前n项和为S n,若3S n=2a n-3n,则a2 019=( )A.-22 019-1 B.32 019-6C.⎝⎛⎭⎪⎫122 019-72D.⎝⎛⎭⎪⎫132 019-103(2)(2019·东北四市联合体模拟(一))已知数列{a n}中,a1=2,a n+1=(n+1)a nn+2a n(n∈N*),则∑k=1n ka k=________.(3)(一题多解)(2019·武汉市调研测试)已知数列{a n}的前n项和S n满足S n=3S n-1+2n-3(n≥2),a1=-1,则a4=________.【解析】(1)因为a1=S1,所以3a1=3S1=2a1-3⇒a1=-3.当n≥2时,3S n=2a n-3n,3S n-1=2a n-1-3(n-1),所以a n=-2a n-1-3,即a n+1=-2(a n -1+1),所以数列{a n+1}是以-2为首项,-2为公比的等比数列.所以a n+1=(-2)×(-2)n-1=(-2)n,则a2 019=-22 019-1.(2)由题意可知na n+1+2a n a n+1=(n+1)a n,两边同除以a n a n+1,得n+1a n+1-na n=2,又1a1=12,所以⎩⎨⎧⎭⎬⎫na n是以12为首项,2为公差的等差数列,所以∑k=1n ka k=12n+12n(n-1)×2=n2-12n.(3)法一:由S n=3S n-1+2n-3(n≥2)可得S2=3S1+1=3a1+1,即a2=2a1+1=-1.根据S n=3S n-1+2n-3(n≥2)①,知S n+1=3S n+2n+1-3②,②-①可得,a n+1=3a n+2n(n≥2).两边同时除以2n+1可得a n+12n+1=32·a n2n+12(n≥2),令b n=a n2n,可得b n+1=32·b n+12(n≥2).所以b n+1+1=32(b n+1)(n≥2),数列{b n+1}是以b2+1=34为首项,32为公比的等比数列.所以b n +1=⎝ ⎛⎭⎪⎫32n -2·34(n ≥2), 所以b n =12·⎝ ⎛⎭⎪⎫32n -1-1(n ≥2).*又b 1=-12也满足*式,所以b n =⎝ ⎛⎭⎪⎫32n -1·12-1(n ∈N *),又b n =a n2n ,所以a n =2n b n ,即a n =3n -1-2n.所以a 4=33-24=11.法二:由S n =3S n -1+2n-3(n ≥2),a 1=-1,知S 2=3S 1+4-3,所以a 2=-1.S 3=3S 2+8-3,所以a 3=1.S 4=3S 3+16-3,所以a 4=11.【答案】 (1)A (2)n 2-12n (3)11(1)给出S n 与a n 的递推关系求a n 的常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .(2)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[对点训练]1.(2019·武昌区调研考试)已知数列{a n }的前n 项和S n =n 2-1,则a 1+a 3+a 5+a 7+a 9=( )A .40B .44C .45D .49解析:选B .法一:因为S n =n 2-1,所以当n ≥2时,a n =S n -S n -1=n 2-1-(n -1)2+1=2n -1,又a 1=S 1=0,所以a n =⎩⎪⎨⎪⎧0,n =12n -1,n ≥2,所以a 1+a 3+a 5+a 7+a 9=0+5+9+13+17=44.故选B .法二:因为S n =n 2-1,所以当n ≥2时,a n =S n -S n -1=n 2-1-(n -1)2+1=2n -1,又a 1=S 1=0,所以a n =⎩⎪⎨⎪⎧0,n =12n -1,n ≥2,所以{a n }从第二项起是等差数列,a 2=3,公差d =2,所以a 1+a 3+a 5+a 7+a 9=0+4a 6=4×(2×6-1)=44,故选B .2.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,所以a n =2n -1.因为a n b n =-n 2+9n -20, 所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6}数列求和问题 [典型例题]命题角度一 公式法求和已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 为等差数列;(2)设T 2n =1a 1a 2-1a 2a 3+1a 3a 4-1a 4a 5+…+1a 2n -1a 2n -1a 2n a 2n +1,求T 2n .【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +23, 所以1a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为23的等差数列.(2)设b n =1a 2n -1a 2n -1a 2n a 2n +1=⎝⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n,由(1)得,数列⎩⎨⎧⎭⎬⎫1a n 是公差为23的等差数列,所以1a 2n -1-1a 2n +1=-43,即b n =⎝ ⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n =-43×1a 2n ,所以b n +1-b n =-43⎝ ⎛⎭⎪⎫1a 2n +2-1a 2n =-43×43=-169. 又b 1=-43×1a 2=-43×⎝ ⎛⎭⎪⎫1a 1+23=-209,所以数列{b n }是首项为-209,公差为-169的等差数列,所以T 2n =b 1+b 2+…+b n =-209n +n (n -1)2×⎝ ⎛⎭⎪⎫-169=-49(2n 2+3n ).求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2或S n =na 1+n (n -1)2d ;等比数列{a n }的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解.命题角度二 裂项相消法求和(2019·广东省七校联考)已知数列{a n }为公差不为0的等差数列,a 1=5,且a 2,a 9,a 30成等比数列.(1)求{a n }的通项公式;(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求数列{1b n}的前n 项和T n .【解】 (1)设等差数列{a n }的公差为d (d ≠0),依题意得(a 1+d )(a 1+29d )=(a 1+8d )2. 又a 1=5,所以d =2,所以a n =2n +3.(2)依题意得b n +1-b n =2n +3(n ∈N *),所以b n -b n -1=2n +1(n ≥2且n ∈N *),所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=(2n +1)+(2n -1)+…+5+3=n (2n +1+3)2=n 2+2n (n ≥2且n ∈N *),b 1=3,上式也成立,所以b n =n (n +2)(n ∈N *),所以1b n=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.所以T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2.(1)裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. [提醒] 常见的裂项式有:1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,1n (n +1)(n +2)=12[1n (n +1)-1(n +1)(n +2)],1n +1+n =n +1-n 等.命题角度三 错位相减法求和(2019·唐山模拟)已知数列{a n }的前n 项和为S n ,S n =3a n -12. (1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 【解】 (1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1.(2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③则3T n =0×31+1×32+2×33+…+(n -1)×3n.④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n=3-3n1-3-(n -1)×3n =(3-2n )×3n-32. 所以T n =(2n -3)×3n+34.(1)求解此类题需掌握三个技巧:一是巧分拆,即把数列的通项转化为等差数列、等比数列的通项的和,并求出等比数列的公比;二是构差式,求出前n 项和的表达式,然后乘以等比数列的公比,两式作差;三是得结论,即根据差式的特征进行准确求和.(2)运用错位相减法求和时应注意三点:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错开位置;三是相减时一定要注意最后一项的符号,学生常在此步出错,一定要小心.命题角度四 分组转化求和(2019·河北省九校第二次联考)已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.(1)求数列{a n }的通项公式; (2)令c n =4b n ·b n +1+a n ,求数列{c n }的前n 项和S n .【解】 (1)由b n =log 2a n 和b 1+b 2+b 3=12得log 2(a 1a 2a 3)=12, 所以a 1a 2a 3=212.设等比数列{a n }的公比为q .因为a 1=4,所以a 1a 2a 3=4·4q ·4q 2=26·q 3=212, 计算得q =4. 所以a n =4·4n -1=4n.(2)由(1)得b n =log 24n=2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n.设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n·41-4=43(4n-1),所以S n =nn +1+43(4n-1).(1)在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 进行讨论.最后再验证是否可以合并为一个表达式.(2)分组求和的策略:①根据等差、等比数列分组.②根据正号、负号分组. 命题角度五 并项求和数列{a n }满足a n +1=⎝ ⎛⎭⎪⎫2⎪⎪⎪⎪⎪⎪sinn π2-1a n +2n ,n ∈N *,则数列{a n }的前100项和为( )A .5 050B .5 100C .9 800D .9 850【解析】 设k ∈N *,当n =2k 时,a 2k +1=-a 2k +4k ,即a 2k +1+a 2k =4k ,① 当n =2k -1时,a 2k =a 2k -1+4k -2,② 联立①②可得,a 2k +1+a 2k -1=2, 所以数列{a n }的前100项和S n =a 1+a 2+a 3+a 4+…+a 99+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=(a 1+a 3+…+a 99)+[(-a 3+4)+(-a 5+4×2)+(-a 7+4×3)+…+(-a 101+4×50)] =25×2+[-(a 3+a 5+…+a 101)+4×(1+2+3+…+50)] =25×2-25×2+4×50(1+50)2=5 100. 故选B .【答案】 B(1)将一个数列分成若干段,然后各段分别利用等差(比)数列的前n 项和的公式及错位相减法进行求和.利用并项求和法求解问题的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”.(2)运用分类讨论法求数列的前n 项和的突破口:一是对分类讨论的“度”的把控,如本题,因为⎪⎪⎪⎪⎪⎪sinn π2可以等于1,也可以等于0,因此分类的“度”可定位到“n 分为奇数与偶数”,有些含绝对值的数列,其分类的“度”需在零点处下功夫;二是对各类分法做到不重不漏,解题的思路就能顺畅.[对点训练]1.(2019·唐山市摸底考试)已知数列{a n }是公差不为0的等差数列,a 4=3,a 2,a 3,a 5成等比数列.(1)求a n ;(2)设b n =n ·2an ,数列{b n }的前n 项和为T n ,求T n . 解:(1)设数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d . 因为a 2,a 3,a 5成等比数列, 所以(a 1+2d )2=(a 1+d )(a 1+4d ), 化简得,a 1d =0, 又d ≠0, 所以a 1=0. 又a 4=a 1+3d =3, 所以d =1. 所以a n =n -1. (2)b n =n ×2n -1,T n =1×20+2×21+3×22+…+n ×2n -1,①则2T n =1×21+2×22+3×23+…+n ×2n.② ①-②得,-T n =1+21+22+…+2n -1-n ×2n=1-2n1-2-n ×2n=(1-n )×2n-1. 所以T n =(n -1)×2n+1.2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)(4a 1+12), 解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.数列与不等式的综合问题[典型例题](2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),证明:T n <1.【解】 (1)因为2a n =a n -1+a n +1a n -1a n +1(n ≥2),所以2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, 所以1a 1=1,1a 2=32,所以1a 2-1a 1=12,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.所以1a n =1+12(n -1)=12(n +1),即a n =2n +1. (2)证明:因为4b n =a n -1a n (n ≥2), 所以b n =1n (n +1)=1n -1n +1(n ≥2),所以T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.解决与数列求和有关的不等式问题的常用方法——“放缩法” (1)如果和式能够求出,则求出结果后进行放缩,本例就是这种类型.(2)如果和式不能求出,则需要把数列的通项放缩成能够求和的形式,求和后再进行放缩,但要注意放缩的“尺度”和“位置”.[对点训练](2019·四省八校双教研联考)已知数列{a n }的前n 项和为S n ,a n +1=4S n -12n -1,a 1=1且n ∈N *.(1)求{a n }的通项公式; (2)设a n b n =1S n,数列{b n }的前n 项和为T n ,求证:T n <32(n ∈N *).解:(1)由a n +1=4S n -12n -1,得(2n -1)a n +1=4S n -1,可得(2n -3)a n =4S n -1-1(n ≥2),两式相减得(2n +1)a n =(2n -1)a n +1,即a n 2n -1=a n +12n +1(n ≥2),又由a n +1=4S n -12n -1,a 1=1,得a 2=3,所以a 12×1-1=a 22×1+1,所以⎩⎨⎧⎭⎬⎫a n 2n -1为常数列,所以a n2n -1=1,即a n =2n -1.(2)证明:由a n =2n -1,得S n =n 2,所以b n =1n (2n -1).当n =1时,T 1=1<32成立;当n ≥2时,b n =1n (2n -1)=12n ⎝ ⎛⎭⎪⎫n -12<12n (n -1)=12⎝⎛⎭⎪⎫1n-1-1n,所以T n<1+12⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝⎛⎭⎪⎫1n-1-1n=1+12⎝⎛⎭⎪⎫1-1n<32.综上,T n<32(n∈N*).[A组夯基保分专练]一、选择题1.(2019·广东省六校第一次联考)数列{a n}的前n项和为S n=n2+n+1,b n=(-1)n a n(n∈N*),则数列{b n}的前50项和为( )A.49 B.50C.99 D.100解析:选A.由题意得,当n≥2时,a n=S n-S n-1=2n,当n=1时,a1=S1=3,所以数列{b n}的前50项和为-3+4-6+8-10+…+96-98+100=1+48=49,故选A.2.(一题多解)(2019·洛阳尖子生第二次联考)已知数列{a n}的前n项和为S n,a1=1,S n =2a n+1,则S n=( )A.2n-1B.⎝⎛⎭⎪⎫32n-1C.⎝⎛⎭⎪⎫23n-1D.⎝⎛⎭⎪⎫12n-1解析:选B.法一:当n=1时,S1=a1=2a2,则a2=12.当n≥2时,S n-1=2a n,则S n-S n -1=a n=2a n+1-2a n,所以a n+1a n=32,所以当n≥2时,数列{a n}是公比为32的等比数列,所以a n=⎩⎨⎧1,n=112×⎝⎛⎭⎪⎫32n-2,n≥2,所以S n=1+12+12×32+…+12×⎝⎛⎭⎪⎫32n-2=1+12×⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫32n-11-32=⎝⎛⎭⎪⎫32n-1,当n=1时,此式也成立.故选B.法二:当n=1时,S1=a1=2a2,则a2=12,所以S2=1+12=32,结合选项可得只有B满足,故选B.3.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2 019=( ) A .1 B .-2 C .3D .-3解析:选A .因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2 019=336×6+3,所以a 2 019=a 3=a 2-a 1=3-2=1.故选A .4.若数列{a n }满足a 1=1,且对于任意的n ∈N *都有a n +1=a n +n +1,则1a 1+1a 2+…+1a 2 017+1a 2 018等于( ) A .4 0352 017 B .2 0162 017 C .4 0362 019D .4 0352 018解析:选C .由a n +1=a n +n +1,得a n +1-a n =n +1, 则a 2-a 1=1+1,a 3-a 2=2+1, a 4-a 3=3+1,…,a n -a n -1=(n -1)+1,以上等式相加,得a n -a 1=1+2+3+…+(n -1)+n -1, 把a 1=1代入上式得,a n =1+2+3+…+(n -1)+n =n (n +1)2,1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,则1a 1+1a 2+…+1a 2 017+1a 2 018=2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 017-12 018⎦⎥⎤+⎝ ⎛⎭⎪⎫12 018-12 019=2⎝ ⎛⎭⎪⎫1-12 019=4 0362 019.5.(2019·郑州市第一次质量预测)已知数列{a n }满足2a n +1+a n =3(n ≥1),且a 3=134,其前n 项和为S n ,则满足不等式|S n -n -6|<1123的最小整数n 是( )A .8B .9C .10D .11解析:选C .由2a n +1+a n =3,得2(a n +1-1)+(a n -1)=0,即a n +1-1a n -1=-12(*), 又a 3=134,所以a 3-1=94,代入(*)式,有a 2-1=-92,a 1-1=9,所以数列{a n -1}是首项为9,公比为-12的等比数列.所以|S n -n -6|=|(a 1-1)+(a 2-1)+…+(a n -1)-6|=⎪⎪⎪⎪⎪⎪⎪⎪9×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12-6=⎪⎪⎪⎪⎪⎪-6×⎝ ⎛⎭⎪⎫-12n <1123,又n ∈N *,所以n 的最小值为10.故选C . 6.(2019·江西省五校协作体试题)设S n 是数列{a n }的前n 项和,若a n +S n =2n,2bn =2a n+2-a n +1,则1b 1+12b 2+…+1100b 100=( )A .9798 B .9899 C .99100D .100101解析:选D .因为a n +S n =2n①,所以a n +1+S n +1=2n +1②,②-①得2a n +1-a n =2n,所以2a n +2-a n +1=2n +1,又2bn =2a n +2-a n +1=2n +1,所以b n =n +1,1nb n=1n (n +1)=1n -1n +1,则1b 1+12b 2+…+1100b 100=1-12+12-13+…+1100-1101=1-1101=100101,故选D . 二、填空题7.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为________.解析:设该女子第一天织布x 尺, 则x (25-1)2-1=5,解得x =531, 所以该女子前3天所织布的总尺数为531(23-1)2-1=3531.答案:35318.(一题多解)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=________.解析:法一:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,所以a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 答案:929.(2019·蓉城名校第一次联考)已知S n 是数列{a n }的前n 项和,若a n +⎪⎪⎪⎪⎪⎪cos n π2S n =2,则a 12=________.解析:当n =1,2,3,4,…时,⎪⎪⎪⎪⎪⎪cosn π2=0,1,0,1,…,所以a 1=a 3=a 5=a 7=…=2,a 2+S 2=a 4+S 4=a 6+S 6=a 8+S 8=…=a 12+S 12=…=2,S 2-S 1+S 2=S 4-S 3+S 4=S 6-S 5+S 6=S 8-S 7+S 8=…=2,所以2S 2=2+S 1⇒S 2=2;2S 4=2+S 3=4+S 2⇒S 4=2+12S 2=3,同理可得S 6=2+12S 4=2+32=72,S 8=2+12S 6=2+74=154,S 10=2+158=318,S 12=6316,又a 12+S 12=2,所以a 12=2-S 12=2-6316=-3116.答案:-3116三、解答题10.(2019·广州市综合检测(一))已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解:(1)因为lg a 1=0,lg a 4=1, 所以a 1=1,a 4=10. 设等差数列{a n }的公差为d , 则d =a 4-a 14-1=3.所以a n =a 1+3(n -1)=3n -2. (2)由(1)知a 1=1,a 6=16,因为a 1,a k ,a 6是等比数列{b n }的前3项,所以a 2k =a 1a 6=16. 又a n =3n -2>0, 所以a k =4.因为a k =3k -2, 所以3k -2=4,得k =2.所以等比数列{b n }的公比q =b 2b 1=a 2a 1=4. 所以b n =4n -1.所以a n +b n =3n -2+4n -1.所以数列{a n +b n }的前n 项和为S n =n (3n -1)2+1-4n 1-4=32n 2-12n +13(4n -1). 11.(2019·江西八所重点中学联考)设数列{a n }满足a 1=1,a n +1=44-a n(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)设b n =a 2na 2n -1-1,求数列{b n }的前n 项和T n . 解:(1)证明:因为a n +1=44-a n ,所以1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12. 又a 1=1,所以1a 1-2=-1, 所以数列⎩⎨⎧⎭⎬⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)由(1)知1a n -2=-1+(n -1)⎝ ⎛⎭⎪⎫-12=-n +12,所以a n =2-2n +1=2n n +1,所以b n =a 2n a 2n -1-1=4n2n +12(2n -1)2n -1=4n2(2n -1)(2n +1)-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =b 1+b 2+b 3+…+b n =12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1, 所以数列{b n }的前n 项和T n =n2n +1. 12.(2019·福建省质量检查)数列{a n }的前n 项和S n 满足S n =2a n -n . (1)求证数列{a n +1}是等比数列,并求a n ;(2)若数列{b n }为等差数列,且b 3=a 2,b 7=a 3,求数列{a n b n }的前n 项和. 解:(1)当n =1时,S 1=2a 1-1,所以a 1=1.因为S n =2a n -n ①,所以当n ≥2时,S n -1=2a n -1-(n -1)②, ①-②得a n =2a n -2a n -1-1,所以a n =2a n -1+1, 所以a n +1a n -1+1=2a n -1+1+1a n -1+1=2a n -1+2a n -1+1=2.所以{a n +1}是首项为2,公比为2的等比数列. 所以a n +1=2·2n -1,所以a n =2n-1.(2)由(1)知,a 2=3,a 3=7,所以b 3=a 2=3,b 7=a 3=7. 设{b n }的公差为d ,则b 7=b 3+(7-3)·d ,所以d =1. 所以b n =b 3+(n -3)·d =n . 所以a n b n =n (2n -1)=n ·2n-n .设数列{n ·2n}的前n 项和为K n ,数列{n }的前n 项和为T n , 则K n =2+2×22+3×23+…+n ·2n③, 2K n =22+2×23+3×24+…+n ·2n +1④,③-④得,-K n =2+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=(1-n )·2n +1-2,所以K n =(n -1)·2n +1+2.又T n =1+2+3+…+n =n (n +1)2, 所以K n -T n =(n -1)·2n +1-n (n +1)2+2,所以数列{a n b n }的前n 项和为(n -1)·2n +1-n (n +1)2+2.[B 组 大题增分专练]1.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.2.(2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.解:(1)由已知有S n -S n -1=1(n ≥2,n ∈N ),所以数列{}S n 为等差数列,又S 1=a 1=1,所以S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,所以a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,所以n ≥5,所以n 的最小值为5.3.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2), 又a 1=S 1=1,所以a n =n -n -1. (2)b n =(-1)na n=(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .4.(2019·高考天津卷)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n =⎩⎪⎨⎪⎧1,2k<n <2k +1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式;②求∑i =12na i c i (n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎪⎨⎪⎧6q =6+2d ,6q 2=12+4d , 解得⎩⎪⎨⎪⎧d =3,q =2,故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n. 所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n. (2)①a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n-1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n-1.②∑i =12na i c i =∑i =12n[a i +a i (c i -1)]=∑i =12na i +∑i =1na 2i (c 2i -1)=[2n×4+2n(2n-1)2×3]+∑i =1n(9×4i-1)=(3×22n -1+5×2n -1)+9×4(1-4n)1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
高三数学复习教案:数列的通项公式复习教案
![高三数学复习教案:数列的通项公式复习教案](https://img.taocdn.com/s3/m/675320feba1aa8114531d97d.png)
高三数学复习教案:数列的通项公式复习教案高三数学复习教案:数列的通项公式复习教案【】欢送来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学复习教案:数列的通项公式复习教案希望能为您的提供到帮助。
本文题目:高三数学复习教案:数列的通项公式复习教案一、课前检测1.等差数列是递增数列,前n项和为,且成等比数列,。
求数列的通项公式。
解:设数列公差为∵ 成等比数列,,即由①②得:,2.数列的前项和满足。
求数列的通项公式。
解:由当时,有经验证也满足上式,所以二、知识梳理(一)数列的通项公式一个数列{an}的与之间的函数关系,如果可用一个公式an=f(n)来表示,我们就把这个公式叫做这个数列的通项公式.解读:(二)通项公式的求法(7种方法)1.定义法与观察法(合情推理:不完全归纳法):直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目;有的数列可以根据前几项观察出通项公式。
解读:2.公式法:在数列{an}中,前n项和Sn与通项an的关系为:(数列的前n项的和为 ).解读:解法:由递推式计算出前几项,寻找周期。
类型1 递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。
类型2 (1)递推公式为解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。
(2)由和确定的递推数列的通项可如下求得:由递推式有,,,依次向前代入,得,这就是叠(迭)代法的根本模式。
类型3 递推公式为 (其中p,q均为常数, )。
解法:把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。
三、典型例题分析题型1 周期数列例1 假设数列满足,假设,那么 =____。
答案:。
变式训练1 (2021,湖南文5)数列满足,那么 =( B ) A.0 B. C. D.小结与拓展:由递推式计算出前几项,寻找周期。
题型2 递推公式为,求通项例2 数列,假设满足,,求。
高考数学二轮复习专题四数列4.2数列的通项与求和课件文
![高考数学二轮复习专题四数列4.2数列的通项与求和课件文](https://img.taocdn.com/s3/m/cac79a10581b6bd97f19ea42.png)
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=ln
������ ������-1 3 +ln +…+ln +ln 2 ������-1 ������-2 ������ ������-1 3 · · …· · 2 2 ������-1 ������-2
2+2
=2+ln
=2+ln n(n≥2).
2 1 时,Sn-1= an-1+ . 3 3 2 3 2 3
由①-②,得 an= an- an-1,即
∵a1=S1=3a1+3,∴a1=1.
������ 1
2
1
∴{an}是以 1 为首项,-2 为公比的等比数列,an=(-2)
.
-8热点1 热点2 热点3
裂项相消法求和
【思考】 在裂项相消法中,裂项的基本思想是什么?
n=1,2,3,…,n-1,
1 2 3 ������-1 bn= × × ×…× × 3 4 5 ������+1
1 1 =,a =1. ������(������+1) n ������(������+1)
(3)由 an+1=3an+2,得 an+1+1=3(an+1),
∵a1=1,知 a1+1=2,an+1≠0,
������������+1 +1 ∴ ������ +1 =3.∴数列{an+1}是以 ������
2 为首项,以 3 为公比的等比数列.
则 an+1=2· 3n-1,故 an=2· 3n-1-1.
高三数学第二轮复习教案《数列》
![高三数学第二轮复习教案《数列》](https://img.taocdn.com/s3/m/3a40635e6ad97f192279168884868762caaebbde.png)
数列(第二轮复习)1.等差(比)数列的定义如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列.2.通项公式等差 a n =a 1+(n-1)d ,等比a n =a 1q n -13.等差(比)中项如果在a 、b 中间插入一个数A ,使a 、A 、b 成等差(比)数列,则A 叫a 、b 的等差(比)中项.A =(a+b)/2或A =±ab4.重要性质:m+n=p+q ⇔ a m ·a n =a p ·a q (等比数列)a m +a n =a p +a q (等差数列) (m 、n 、p 、q ∈N*) 特别地 m+n=2p ⇔ a m +a n =2a p (等差数列) a m ·a n =a p 2 (等比数列)5.等差数列前n 项和等比数列前n 项和6.如果某个数列前n 项和为Sn ,则7.差数列前n 项和的最值(1)若a1>0,d <0,则S n 有最大值,n 可由 ⎩⎨⎧≥≥+0a 0a 1n n (2)若a1<0,d >0,则S n 有最小值,n 可由 ⎩⎨⎧≤≤+0a 0a 1n n 8.求数列的前n 项和S n ,重点应掌握以下几种方法:(1).倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.(2).错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.(3).分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.(4).裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,()()⎩⎨⎧≥-==-2111n S S n S a n n n ()()d n n na n a a S n n 21211-+=+=()()()⎪⎩⎪⎨⎧≠--==111111q qq a q na S n n在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.9. 三个模型:(1)复利公式按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(2).单利公式利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) (3).产值模型原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x10.例、习题:1.若关于x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四个根组成首项为1/4的等差数列,则a+b的值为( )A. 3/8B. 11/24C. 13/24D. 31/722.在等差数列{a n}中,a2+a4=p,a3+a5=q.则其前6项的和S6为( )(A) 5 (p+q)/4 (B) 3(p+q)/2 (C) p+q (D) 2(p+q)3.下列命题中正确的是( )A.数列{a n}的前n项和是S n=n2+2n-1,则{a n}为等差数列B.数列{a n}的前n项和是S n=3n-c,则c=1是{a n}为等比数列的充要条件C.数列既是等差数列,又是等比数列D.等比数列{a n}是递增数列,则公比q大于14.等差数列{a n}中,a1>0,且3a8=5a13,则S n中最大的是( )(A)S10(B)S11(C)S20(D)S215.等差数列{a n}中,S n为数列前n项和,且S n/S m=n2/m2 (n≠m),则a n / a m值为( )(A)m/n (B)(2m-1)/n (C)2n/(2n-1) (D)(2n-1)/(2m-1)6.已知{a n}的前n项和S n=n2-4n+1,则|a1|+|a2|+…|a10|=( )(A)67 (B)65 (C)61 (D)567.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为()(A)12 (B)10 (C)8 (D)68.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(111…11)2 (16个1)位转换成十进制形式是( )(A) 217-2 (B) 216-2 (C) 216-1 (D)215-19.{a n}为等比数列,{b n}为等差数列,且b1=0,C n=a n+b n,若数列{C n}是1,1,5,…则{C n}的前10项和为___________.10.如果b是a,c的等差中项,y是x与z的等比中项,且x,y,z都是正数,则(b-c)log m x+(c-a)log m y+(a-b)log m z=_______.11.数列{a n}的前n项和S n=n2+1,则a n=_________________.12.四个正数成等差数列,若顺次加上2,4,8,15后成等比数列,求原数列的四个数.13.已知等比数列{a n }的公比为q ,前n 项的和为S n ,且S 3,S 9,S 6成等差数列.(1)求q 3的值;(2)求证a 2,a 8,a 5成等差数列.14.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,求公差d.15.数列{a n }是由正数组成的等比数列,S n 为前n 项的和,是否存在正常数c ,使得 对任意的n ∈N +成立?并证明你的结论.16.一个首项为正数的等差数列中,前3项和等于前11项和,问此数列前多少项的和最大?17.已知等比数列{a n }的首项a1>0,公比q >0.设数列{b n }的通项b n =a n+1+a n+2(n ∈N*),数列{a n }与{b n }的前n 项和分别记为A n 与B n ,试比较A n 与B n 的大小.()()()c S c S c S n n n -=-+-++12lg 2lg lg18.设等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,试求S 110.19.已知数列{a n }和{b n }满足(n ∈N +),试证明:{a n }成等差数列的充分条件是{b n }成等差数列.20.已知数列{a n }中的a 1=1/2,前n 项和为S n .若S n =n 2a n ,求S n 与a n 的表达式.21.在数列{a n }中,a n >0, 2Sn = a n +1(n ∈N) ①求S n 和a n 的表达式;②求证: n a n a a b n n +++⋅++⋅+⋅= 21212121111321<+++nS S S S。
最新高三数学第二轮专题复习数列的通项公式与求和的常用方法教学设计
![最新高三数学第二轮专题复习数列的通项公式与求和的常用方法教学设计](https://img.taocdn.com/s3/m/fbda33adcc22bcd126ff0c57.png)
高三数学第二轮专题复习:数列的通项公式与求和的常用方法高考要求数列是函数概念的继续和延伸,数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法重难点归纳1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同 因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性2 数列{a n }前n 项和S n 与通项a n 的关系式 a n =⎩⎨⎧≥-=-2,1,11n S S n S n n3 求通项常用方法①作新数列法 作等差数列与等比数列 ②累差叠加法 最基本形式是a n =(a n -a n -1+(a n -1+a n -2)+…+(a 2-a 1)+a 1③归纳、猜想法4 数列前n 项和常用求法①重要公式 1+2+…+n =21n (n +1) 12+22+…+n 2=61n (n +1)(2n +1)13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2②等差数列中S m +n =S m +S n +mnd ,等比数列中S m +n =S n +q n S m =S m +q m S n③裂项求和 将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项等)!1(1!1)!1(1,C C C ,ctg2ctg 2sin 1,!)!1(!,111)1(111+-=+-=-=-+=⋅+-=++-n n n ααn n n n n n n n rn r n n nα④错项相消法 ⑤并项求和法数列通项与和的方法多种多样,要视具体情形选用合适方法典型题例示范讲解例1已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),求数列{a n }和{b n }的通项公式;解 ∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∵d =2,∴a n =a 1+(n -1)d =2(n -1);又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2,∴2213)2(qq b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·q n -1=4·(-2)n -1 例2设A n 为数列{a n }的前n 项和,A n =23(a n -1),数列{b n }的通项公式为b n =4n +3;(1)求数列{a n }的通项公式;(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明数列{d n }的通项公式为d n =32n +1;(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim∞→n 4)(n na T 命题意图 本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力知识依托 利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点错解分析 待证通项d n =32n +1与a n 的共同点易被忽视而寸步难行;注意不到r 与n 的关系,使T n 中既含有n ,又含有r ,会使所求的极限模糊不清技巧与方法 (1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n 与r 的关系,正确表示B r ,问题便可迎刃而解解 (1)由A n =23(a n -1),可知A n +1=23(a n +1-1),∴a n +1-a n =23 (a n +1-a n ),即n n a a 1+=3,而a 1=A 1=23(a 1-1),得a 1=3,所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n(2)∵32n +1=3·32n =3·(4-1)2n =3·[42n +C 12n ·42n -1(-1)+…+C 122-n n ·4·(-1)+(-1)2n ]=4n +3,∴32n +1∈{b n }而数32n =(4-1)2n=42n +C 12n ·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ∉{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1(3)由32n +1=4·r +3,可知r =43312-+n ,∴B r =)19(827)91(9127,273433)52(2)347(1212-=-⋅-=+⋅-=+=++++n n n n n D r r r r , 89)(lim ,3)(,433811389)19(827821349444241212=∴=+⋅-⋅=---⋅+=-=∴∞→++n n n n n n n nn n n r n a T a D B T 例3 设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项(1)写出数列{a n }的前3项(2)求数列{a n }的通项公式(写出推证过程)解析 (1)由题意,当n =1时,有11222S a =+,S 1=a 1, ∴11222a a =+,解得a 1=2 当n =2时,有22222S a =+,S 2=a 1+a 2,将a 1=2代入,整理得(a 2-2)2=16,由a 2>0,解得a 2=6当n =3时,有33222S a =+,S 3=a 1+a 2+a 3,将a 1=2,a 2=6代入,整理得(a 3-2)2=64,由a 3>0,解得a 3=10故该数列的前3项为2,6,10(2)解法一 由(1)猜想数列{a n } 有通项公式a n =4n -2下面用数学归纳法证明{a n }的通项公式是a n =4n -2,(n ∈N *)①当n =1时,因为4×1-2=2,,又在(1)中已求出a 1=2,所以上述结论成立②假设当n =k 时,结论成立,即有a k =4k -2,由题意,有k k S a 222=+,将a k =4k -2 代入上式,解得2k =k S 2,得S k =2k 2,由题意,有11222++=+k k S a ,S k +1=S k +a k +1,将S k =2k 2代入得(221++k a )2=2(a k +1+2k 2),整理得a k +12-4a k +1+4-16k 2=0,由a k +1>0,解得a k +1=2+4k ,所以a k +1=2+4k =4(k +1)-2,即当n =k +1时,上述结论成立根据①②,上述结论对所有的自然数n ∈N *成立解法二 由题意知n n S a 222=+,(n ∈N *) 整理得,S n =81(a n +2)2, 由此得S n +1=81(a n +1+2)2,∴a n +1=S n +1-S n =81[(a n +1+2)2-(a n +2)2]整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,∴a n +1-a n =4, 即数列{a n }为等差数列,其中a 1=2,公差d =4∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2学生巩固练习1 设z n =(21i -)n,(n ∈N *),记S n =|z 2-z 1|+|z 3-z 2|+…+|z n +1-z n |,则lim ∞→n S n =_________2 作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________3 数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1-na n +12=0,又知数列{b n }的通项为b n =2n -1+1(1)求数列{a n }的通项a n 及它的前n 项和S n ;(2)求数列{b n }的前n 项和T n ;(3)猜想S n 与T n 的大小关系,并说明理由4 数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *)(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ; (3)设b n =)12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *均有T n >32m成立?若存在,求出m 的值;若不存在,说明理由参考答案,)22(|)21()21(|||:.1111+++=---=-=n n n n n n i i z z c 设解析 22)22(1221])22(1[2121--=--=+++=∴nn n n c c c S 221222221lim +=+=-=∴∞→n n S 2 解析 由题意所有正三角形的边长构成等比数列{a n },可得a n =12-n a,正三角形的内切圆构成等比数列{r n },可得r n =12163-n a ,c =lim ∞→n 2π(r 1+r 2+…+r n )=233π a 2,面积之和S =lim ∞→n π(n 2+r 22+…+r n 2)=9πa 2 3 解 (1)可解得11+=+n na a n n ,从而a n =2n ,有S n =n 2+n , (2)T n =2n +n -1(3)T n -S n =2n -n 2-1,验证可知,n =1时,T 1=S 1,n =2时T 2<S 2;n =3时,T 3<S 3;n =4时,T 4<S 4;n =5时,T 5>S 5;n =6时T 6>S 6猜想当n ≥5时,T n >S n ,即2n >n 2+1可用数学归纳法证明(略)4 解 (1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n 可知{a n }d =1414--a a =-2,∴a n =10-2n (2)由a n =10-2n ≥0可得n ≤5,当n ≤5时,S n =-n 2+9n ,当n >5时,S n =n 2-9n +40,故S n =⎪⎩⎪⎨⎧>+-≤≤+-540951922n n n n n n(3)b n =)111(21)22(1)12(1+-=+=-n n n n a n n)1(2)]111()3121()211[(2121+=+-++-+-=+++=∴n n n n b b b T n n ;要使T n >32m总成立,需32m<T 1=41成立,即m <8且m ∈Z ,故适合条件的m 的最大值为7。
高三数学二轮复习专题四第二讲数列的通项公式与数列求和教案理
![高三数学二轮复习专题四第二讲数列的通项公式与数列求和教案理](https://img.taocdn.com/s3/m/fefc681627284b73f3425045.png)
第二讲 数列的通项公式与数列求和研热点(聚焦突破)类型一 数列的通项问题1.累加法求通项:形如a n +1-a n =f (n ).2.累乘法求通项:形如a n +1a n=f (n ). 3.构造法:形如:a n +1=pa n +q .4.已知S n 求a n ,即a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2). [例1](2012年高考广东卷)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.[解析](1)当n =1时,T 1=2S 1-12.因为T 1=S 1=a 1,所以a 1=2a 1-1,解得a 1=1.(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1,所以S n =2S n -1+2n -1,①所以S n +1=2S n +2n +1,②②-①得a n +1=2a n +2.所以a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2). 当n =1时,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2,所以当n =1时也满足上式.所以{a n +2}是以3为首项,2为公比的等比数列,所以a n +2=3·2n -1,所以a n =3·2n -1-2.跟踪训练数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,数列{a n }的通项公式为________. 解析:由题意,当n ≥2时,a 1·a 2·a 3·…·a n =n 2,①故当n =2时,有a 1·a 2=22=4,又因为a 1=1,所以a 2=4.故当n ≥3时,有a 1·a 2·a 3·…·a n -1=(n -1)2,②由①②,得a n =n 2(n -1)2. 而当n =1时,a 1=1,不满足上式,n =2时,满足上式.所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1(n =1),n 2(n -1)2(n ≥2). 答案:⎩⎪⎨⎪⎧1 (n =1)n 2(n -1)2 (n ≥2) 类型二 数列求和数列求和的方法技巧(1)转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并;(2)错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列;(3)裂项相消法利用通项变形,将通项分裂成两项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.[例2](2012年高考浙江卷)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .[解析](1) 由S n =2n 2+n ,得当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=4n-1.所以a n=4n-1,n∈N*.由4n-1=a n=4log2b n+3,得b n=2n-1,n∈N*.(2)由(1)知a n b n=(4n-1)·2n-1,n∈N*,所以T n=3+7×2+11×22+…+(4n-1)·2n-1,2T n=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2T n-T n=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故T n=(4n-5)2n+5,n∈N*.跟踪训练(2012年高考课标全国卷)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为()A.3 690 B.3 660C.1 845 D.1 830解析:利用数列的递推式的意义结合等差数列求和公式求解.∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×(10+234)2=1 830. 答案:D类型三 数列的综合应用1.数列的综合应用多涉及函数、不等式、解析几何等知识.2.数列的单调性的判断方法:(1)作差:a n +1-a n 与0的关系;(2)作商:a n +1a n与1的关系. [例3] (2012年高考广东卷)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32. [解析] (1)∵a 1,a 2+5,a 3成等差数列,∴2(a 2+5)=a 1+a 3.又2S n =a n +1-2n +1+1, ∴2S 1=a 2-22+1,2S 2=a 3-23+1,∴2a 1=a 2-3,2(a 1+a 2)=a 3-7.由⎩⎪⎨⎪⎧2(a 2+5)=a 1+a 3,2a 1=a 2-3,2(a 1+a 2)=a 3-7得⎩⎪⎨⎪⎧a 1=1,a 2=5,a 3=19.∴a 1=1.(2)∵2S n =a n +1-2n +1+1,①∴当n ≥2时,2S n -1=a n -2n +1.②①-②得2a n =a n +1-a n -2n +1+2n , ∴a n +1=3a n +2n .两边同除以2n +1得a n +12n +1=32·a n 2n +12,∴a n +12n +1+1=32(a n 2n +1). 又由(1)知a 222+1=32(a 121+1),∴数列{a n 2n +1}是以32为首项,32为公比的等比数列, ∴a n 2n +1=32·(32)n -1=(32)n ,∴a n =3n -2n , 即数列{a n }的通项公式为a n =3n -2n .(3)证明:∵a n =3n -2n =(1+2)n -2n=C 0n ·1n ·20+C 1n ·1n -1·21+C 2n ·1n -2·22+…+C n n ·10·2n -2n =1+2n +2(n 2-n )+…+2n -2n>1+2n +2(n 2-n )=1+2n 2>2n 2>2n (n -1),∴1a n =13n -2n <12n (n -1)=12·1n (n -1), ∴1a 1+1a 2+…+1a n<1+12[11×2+12×3+…+1n (n -1)] =1+12(1-12+12-13+…+1n -1-1n) =1+12(1-1n )=32-12n <32, 即1a 1+1a 2+…+1a n <32.跟踪训练(2012年北京东城模拟)已知数列{a n }满足a 1=14,a n =a n -1(-1)n a n -1-2(n ≥2,n ∈N). (1)试判断数列{1a n+(-1)n }是否为等比数列,并说明理由; (2)设c n =a n sin (2n -1)π2,数列{c n }的前n 项和为T n .求证:对任意的n ∈N *,T n <23. 解析:(1)由a n =a n -1(-1)n a n -1-2得1a n=(-1)n a n -1-2a n -1=(-1)n -2a n -1, 所以1a n +(-1)n =2·(-1)n -2a n -1=-2[1a n -1+(-1)n -1].又1a 1-1=3≠0, 故数列{1a n+(-1)n }是首项为3,公比为-2的等比数列. (2)证明:由(1)得1a n+(-1)n =3·(-2)n -1. 所以1a n=3·(-2)n -1-(-1)n , a n =13·(-2)n -1-(-1)n ,所以c n =a n sin (2n -1)π2=13·(-2)n -1-(-1)n (-1)n -1 =13·2n -1+1<13·2n -1. 所以T n <13[1-(12)n ]1-12=23[1-(12)n ]<23. 析典题(预测高考)高考真题【真题】 (2012年高考湖南卷)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).【解析】 (1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4500-52d .a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32(32a n -2-d )-d =(32)2a n -2-32d -d =…=(32)n -1a 1-d [1+32+(32)2+…+(32)n -2]. 整理得a n =(32)n -1(3 000-d )-2d [(32)n -1-1] =(32)n -1(3 000-3d )+2d . 由题意,知a m =4 000,即(32)m -1(3 000-3d )+2d =4 000, 解得d =[(32)m -2]×1 000(32)m -1=1 000(3m -2m +1)3m -2m . 即该企业每年上缴资金d 的值为1 000(3m -2m +1)3m -2m 时,经过m (m ≥3)年企业的剩余资金为4 000万元.【名师点睛】 本题考查利用递推数列求通项的方法,考查综合利用数列知识分析解决实际问题的能力,难度较大,解答本题的关键是求出递推关系a n +1=a n -d ,并变形求a n .考情展望高考对数列的通项与求和的考查多以解答题形式出现,主要考查a n 与S n 的关系,以及错位相减求和、裂项求和及分组转化求和,难度中档偏上.名师押题【押题】 在平面直角坐标系中,设不等式组⎩⎪⎨⎪⎧x >0,y ≥0,y ≤-2n (x -3)(n ∈N *)表示的平面区域为D n ,记D n内的整点(横坐标和纵坐标均为整数的点)的个数为a n .(1)求数列{a n }的通项公式;(2)若b n +1=2b n +a n ,b 1=-13.求证:数列{b n +6n +9}是等比数列,并求出数列{b n }的通项公式.【解析】 (1)由⎩⎪⎨⎪⎧x >0,y ≥0,y ≤-2n (x -3)得0<x ≤3,所以平面区域为D n 内的整点为点(3,0)或在直线x =1和x =2上.直线y=-2n(x-3)与直线x=1和x=2交点纵坐标分别为y1=4n和y2=2n,D n内在直线x=1和x =2上的整点个数分别为4n+1和2n+1,∴a n=4n+1+2n+1+1=6n+3.(2)由b n+1=2b n+a n得b n+1=2b n+6n+3,∴b n+1+6(n+1)+9=2(b n+6n+9),∵b1+6×1+9=2,∴{b n+6n+9}是以2为首项,公比为2的等比数列,∴b n+6n+9=2n,∴b n=2n-6n-9.。
高中数学备课教案数列的通项与求和
![高中数学备课教案数列的通项与求和](https://img.taocdn.com/s3/m/2cc4a94e77c66137ee06eff9aef8941ea76e4b29.png)
高中数学备课教案数列的通项与求和【高中数学备课教案】数列的通项与求和一、引言数列作为高中数学重要的内容之一,是初步学习数学分析的重要基础。
在高中数学学习中,掌握数列的通项公式和求和公式是必须掌握的基本知识。
本文将从数列的定义、数列的分类、数列的通项公式和数列的求和公式四个方面进行论述。
二、数列的定义数列是指由一列数字构成的有序集合。
其中,每一项的数值均可用公式表示出来,称为数列的通项公式。
数列的一般表示形式为:$$a_1,a_2,...,a_n,...$$其中,$a_n$表示数列中第n项的值。
三、数列的分类数列可以分为等差数列和等比数列两类。
1. 等差数列一般地,如果一个数列的相邻两项之差等于同一个常数$d$,那么这个数列就是等差数列。
等差数列的通项公式为:$$a_n=a_1+(n-1)d$$其中,$a_1$表示数列的第一项,$d$表示公差。
2. 等比数列一般地,如果一个数列的相邻两项之比等于同一个常数$q$,那么这个数列就是等比数列。
等比数列的通项公式为:$$a_n=a_1q^{n-1}$$其中,$a_1$表示数列的第一项,$q$表示公比。
四、数列的通项公式和求和公式1. 等差数列的通项公式等差数列的通项公式为:$$a_n=a_1+(n-1)d$$其中,$a_1$表示数列的第一项,$d$表示公差。
2.等差数列的求和公式设等差数列的首项为$a_1$,公差为$d$,共有$n$项,则该等差数列的前$n$项和为:$$S_n=\frac{n(a_1+a_n)}{2}$$其中,$a_n$表示数列的第$n$项。
3.等比数列的通项公式等比数列的通项公式为:$$a_n=a_1q^{n-1}$$其中,$a_1$表示数列的第一项,$q$表示公比。
4.等比数列的求和公式设等比数列的首项为$a_1$,公比为$q$,共有$n$项,则该等比数列的前$n$项和为:$$S_n=\frac{a_1(1-q^n)}{1-q}$$其中,$q\neq 1$。
(通用版)2020版高考数学大二轮复习专题四数列4.2.2求数列的通项及前n项和课件理
![(通用版)2020版高考数学大二轮复习专题四数列4.2.2求数列的通项及前n项和课件理](https://img.taocdn.com/s3/m/b4827155580216fc700afd76.png)
所以,{an}的通项公式为 an=3n,{bn}的通项公式为 bn=3n.
-2-
考向一 考向二 考向三
(2)a1c1+a2c2+…+a2nc2n =(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn)
=
n×3+������
(������ -1) 2
×6
+(6×31+12×32+18×33+…+6n×3n)
=3n2+6(1×31+2×32+…+n×3n).
记 Tn=1×31+2×32+…+n×3n,
①
则 3Tn=1×32+2×33+…+n×3n+1,
②
②-①得,2Tn=-3-32-33-…-3n+n×3n+1=-3(11--33������
)+n×3n+1=(2������
-1)3������ 2
+1
求a1c1+a2c2+…+a2nc2n(n∈N*).
解 (1)设等差数列{an}的公差为 d,等比数列{bn}的公比为 q.依题
意,得
3������ = 3 + 3������2 = 15
2+������4, ������.解得
������ ������
= =
33,,故
an=3+3(n-1)=3n,bn=3×3n-1=3n.
由题意得 ������42 = ������2������9, ������3 = 7,
高考数学二轮复习专题四数列4.2.1等差等比数列与数列的通项及求和课件文
![高考数学二轮复习专题四数列4.2.1等差等比数列与数列的通项及求和课件文](https://img.taocdn.com/s3/m/9a085b330b1c59eef8c7b473.png)
(2)由(1)得a3n+1=23n,
∴bn=ln 23n=3nln 2.
∵bn+1-bn=3ln 2,
∴数列{bn}为等差数列.
∴Tn=b1+b2+…+bn=������(������12+������������)
=
������(3ln2+3������ln2) 2
=
3������(���2���+1)ln
−
2������1+1=1-2������1+1.
令
1-2������1+1
>
2 2
001167,解得
n>1
008,故所求的
n=1
009.
-19-
涉及奇偶数讨论的数列求和
例5已知等差数列{an}的前n项和为Sn,且a1=2,S5=30.数列{bn}的
前n项和为Tn,且Tn=2n-1.
(1)求数列{an},{bn}的通项公式;
(1)由a3+b3=5,得2d+q2=6.②
联立①和②解得
������ ������
= =
03,(舍去),
������ ������
= =
1, 2.
因此{bn}的通项公式为bn=2n-1. (2)由b1=1,T3=21得q2+q-20=0, 解得q=-5或q=4.
当q=-5时,由①得d=8,则S3=21. 当q=4时,由①得d=-1,则S3=-6.
通项公式为 an=3n-1.
(2)由(1)和 anbn+1+bn+1=nbn 得 bn+1=���3���������,
因此{bn}是首项为 1,公比为13的等比数列.
专题四4.2.2 求数列的通项及前n项和课件
![专题四4.2.2 求数列的通项及前n项和课件](https://img.taocdn.com/s3/m/eb4ddda12dc58bd63186bceb19e8b8f67c1cefd8.png)
=
1
1
1
2 (+1) (+1)(+2)
1
(
;
+ − ).
;
关键能力 学案突破
热点一
求通项及错位相减法求和
【例1】(202X山东潍坊一模,18)在①b2n=2bn+1,②a2=b1+b2,③b1,b2,b4成等
比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求
解.
.
3
1 2 1
cn+1=
cn,得 cn=
+2
+1
1+
c1+c2+c3+…+cn=
1-
1
+1
由 b1=1,d>0,得 bn+1>0,因此
=
1+ 1
-
1
+1
,所以
,
1
c1+c2+c3+…+cn<1+ ,n∈N*.
热点三
求通项及分组求和或并项求和
2.数列求和的常用方法
(1)公式法:利用等差数列、等比数列的求和公式.
(2)错位相减法:合适求数列{an·bn}的前n项和Sn,其中{an},{bn}一个是等差
数列,另一个是等比数列.
(3)裂项相消法:将数列的通项分成两个式子的代数和,通过累加抵消中间
若干项的方法.
(4)拆项分组法:先把数列的每一项拆成两项(或多项),再重新组合成两个
已知数列{an}中a1=1,an+1=3an,公差不等于0的等差数列{bn}满
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 数列的通项公式与数列求和研热点(聚焦突破)类型一 数列的通项问题1.累加法求通项:形如a n +1-a n =f (n ).2.累乘法求通项:形如a n +1a n=f (n ). 3.构造法:形如:a n +1=pa n +q .4.已知S n 求a n ,即a n =⎩⎨⎧S 1(n =1),S n -S n -1(n ≥2).[例1] (2012年高考广东卷)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.[解析] (1)当n =1时,T 1=2S 1-12.因为T 1=S 1=a 1,所以a 1=2a 1-1,解得a 1=1.(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1,所以S n =2S n -1+2n -1,①所以S n +1=2S n +2n +1,②②-①得a n +1=2a n +2.所以a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2). 当n =1时,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2,所以当n =1时也满足上式.所以{a n +2}是以3为首项,2为公比的等比数列,所以a n +2=3·2n -1,所以a n =3·2n -1-2.跟踪训练数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,数列{a n }的通项公式为________. 解析:由题意,当n ≥2时,a 1·a 2·a 3·…·a n =n 2,①故当n =2时,有a 1·a 2=22=4,又因为a 1=1,所以a 2=4.故当n ≥3时,有a 1·a 2·a 3·…·a n -1=(n -1)2,②由①②,得a n =n 2(n -1)2. 而当n =1时,a 1=1,不满足上式,n =2时,满足上式.所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1(n =1),n 2(n -1)2(n ≥2). 答案:⎩⎪⎨⎪⎧1 (n =1)n 2(n -1)2 (n ≥2) 类型二 数列求和数列求和的方法技巧(1)转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并;(2)错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n项和,其中{an },{bn}分别是等差数列和等比数列;(3)裂项相消法利用通项变形,将通项分裂成两项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.[例2](2012年高考浙江卷)已知数列{an }的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an =4log2bn+3,n∈N*.(1)求an ,bn;(2)求数列{an ·bn}的前n项和Tn.[解析](1) 由Sn=2n2+n,得当n=1时,a1=S1=3;当n≥2时,an =Sn-Sn-1=4n-1.所以an=4n-1,n∈N*.由4n-1=an =4log2bn+3,得bn=2n-1,n∈N*.(2)由(1)知an bn=(4n-1)·2n-1,n∈N*,所以Tn=3+7×2+11×22+…+(4n-1)·2n-1,2Tn=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2Tn -Tn=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故Tn=(4n-5)2n+5,n∈N*.跟踪训练(2012年高考课标全国卷)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为() A.3 690 B.3 660C.1 845 D.1 830解析:利用数列的递推式的意义结合等差数列求和公式求解.∵a n+1+(-1)n a n=2n-1,∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1,a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12=23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1,∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57+a58+a59+a60)=10+26+42+…+234=15×(10+234)2=1 830.答案:D类型三数列的综合应用1.数列的综合应用多涉及函数、不等式、解析几何等知识.2.数列的单调性的判断方法:(1)作差:a n+1-a n与0的关系;(2)作商:a n +1a n与1的关系. [例3] (2012年高考广东卷)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n<32. [解析] (1)∵a 1,a 2+5,a 3成等差数列,∴2(a 2+5)=a 1+a 3.又2S n =a n +1-2n +1+1,∴2S 1=a 2-22+1,2S 2=a 3-23+1,∴2a 1=a 2-3,2(a 1+a 2)=a 3-7.由⎩⎪⎨⎪⎧2(a 2+5)=a 1+a 3,2a 1=a 2-3,2(a 1+a 2)=a 3-7得⎩⎪⎨⎪⎧a 1=1,a 2=5,a 3=19.∴a 1=1.(2)∵2S n =a n +1-2n +1+1,①∴当n ≥2时,2S n -1=a n -2n +1.②①-②得2a n =a n +1-a n -2n +1+2n ,∴a n +1=3a n +2n .两边同除以2n +1得a n +12n +1=32·a n 2n +12, ∴a n +12n +1+1=32(a n 2n +1). 又由(1)知a 222+1=32(a 121+1),∴数列{a n 2n +1}是以32为首项,32为公比的等比数列,∴a n 2n +1=32·(32)n -1=(32)n ,∴a n =3n -2n ,即数列{a n }的通项公式为a n =3n -2n .(3)证明:∵a n =3n -2n =(1+2)n -2n=C 0n ·1n ·20+C 1n ·1n -1·21+C 2n ·1n -2·22+…+C n n ·10·2n -2n =1+2n +2(n 2-n )+…+2n -2n>1+2n +2(n 2-n )=1+2n 2>2n 2>2n (n -1),∴1a n =13n -2n <12n (n -1)=12·1n (n -1), ∴1a 1+1a 2+…+1a n<1+12[11×2+12×3+…+1n (n -1)] =1+12(1-12+12-13+…+1n -1-1n ) =1+12(1-1n )=32-12n <32,即1a 1+1a 2+…+1a n<32.跟踪训练(2012年北京东城模拟)已知数列{a n }满足a 1=14,a n =a n -1(-1)n a n -1-2(n ≥2,n ∈N). (1)试判断数列{1a n+(-1)n }是否为等比数列,并说明理由; (2)设c n =a n sin (2n -1)π2,数列{c n }的前n 项和为T n .求证:对任意的n ∈N *,T n <23.解析:(1)由a n =a n -1(-1)n a n -1-2得 1a n =(-1)n a n -1-2a n -1=(-1)n -2a n -1,所以1a n +(-1)n =2·(-1)n -2a n -1=-2[1a n -1+(-1)n -1]. 又1a 1-1=3≠0, 故数列{1a n+(-1)n }是首项为3,公比为-2的等比数列. (2)证明:由(1)得1a n+(-1)n =3·(-2)n -1. 所以1a n=3·(-2)n -1-(-1)n , a n =13·(-2)n -1-(-1)n , 所以c n =a n sin (2n -1)π2=13·(-2)n -1-(-1)n (-1)n -1 =13·2n -1+1<13·2n -1. 所以T n <13[1-(12)n ]1-12=23[1-(12)n ]<23. 析典题(预测高考)高考真题【真题】 (2012年高考湖南卷)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).【解析】 (1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4500-52d .a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32(32a n -2-d )-d=(32)2a n -2-32d -d=…=(32)n -1a 1-d [1+32+(32)2+…+(32)n -2].整理得a n =(32)n -1(3 000-d )-2d [(32)n -1-1] =(32)n -1(3 000-3d )+2d .由题意,知a m =4 000,即(32)m -1(3 000-3d )+2d =4 000,解得d =[(32)m -2]×1 000(32)m -1=1 000(3m -2m +1)3m -2m . 即该企业每年上缴资金d 的值为1 000(3m -2m +1)3m -2m 时,经过m (m ≥3)年企业的剩余资金为4 000万元.【名师点睛】 本题考查利用递推数列求通项的方法,考查综合利用数列知识分析解决实际问题的能力,难度较大,解答本题的关键是求出递推关系a n +1=a n -d ,并变形求a n .考情展望高考对数列的通项与求和的考查多以解答题形式出现,主要考查a n 与S n 的关系,以及错位相减求和、裂项求和及分组转化求和,难度中档偏上.名师押题【押题】 在平面直角坐标系中,设不等式组⎩⎨⎧x >0,y ≥0,y ≤-2n (x -3)(n ∈N *)表示的平面区域为D n ,记D n 内的整点(横坐标和纵坐标均为整数的点)的个数为a n .(1)求数列{a n }的通项公式;(2)若b n +1=2b n +a n ,b 1=-13.求证:数列{b n +6n +9}是等比数列,并求出数列{b n }的通项公式.【解析】(1)由⎩⎪⎨⎪⎧x >0,y ≥0,y ≤-2n (x -3)得0<x ≤3,所以平面区域为D n 内的整点为点(3,0)或在直线x =1和x =2上.直线y =-2n (x -3)与直线x =1和x =2交点纵坐标分别为y 1=4n 和y 2=2n ,D n 内在直线x =1和x =2上的整点个数分别为4n +1和2n +1,∴a n =4n +1+2n +1+1=6n +3.(2)由b n +1=2b n +a n 得b n +1=2b n +6n +3,∴b n +1+6(n +1)+9=2(b n +6n +9),∵b 1+6×1+9=2,∴{b n +6n +9}是以2为首项,公比为2的等比数列,∴b n +6n +9=2n ,∴b n =2n -6n -9.。