医学统计学知识点

合集下载

医学统计学知识点总结

医学统计学知识点总结

医学统计学1. 对定量资料进行统计描述时,如何选择适宜的指标定量资料统计描述常用的统计指标及其适用场合描述内容指标意义适用场合平均水平;均数个体的平均值·对称分布几何均数平均倍数取对数后对称分布中位数[位次居中的观察值①非对称分布;②半定量资料;③末端开口资料;④分布不明众数频数最多的观察值不拘分布形式,概略分析?调和均数基于倒数变换的平均值正偏峰分布资料变异度全距观察值取值范围不拘分布形式,概略分析标准差(方差)观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距?居中半数观察值的全距①非对称分布;②半定量资料;③末端开口资料;④分布不明变异系数标准差与均数的相对比①不同量纲的变量间比较;②量纲相同但数量级相差悬殊的变量间比较定性资料:阳性事件的概率,概率分布,强度和相对比。

¥2. 应用相对数时应注意哪些问题答:(1)防止概念混淆相对数的计算是两部分观察结果的比值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。

(2)计算相对数时分母不宜过小样本量较小时以直接报告绝对数为宜。

(3)观察单位数不等的几个相对数,不能直接相加求其平均水平。

(4)相对数间的比较须注意可比性,有时需分组讨论或计算标准化率。

3. 常用统计图有哪些分别适用于什么分析目的常用统计图的适用资料及实施方法<图形适用资料实施方法条图组间数量对比用直条高度表示数量大小直方图用直条的面积表示各组段的频数或频率(定量资料的分布百分条图构成比用直条分段的长度表示全体中各部分的构成比饼图构成比用圆饼的扇形面积表示全体中各部分的构成比定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系、线图半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图}双变量间的关联点的密集程度和形成的趋势,表示两现象间的相关关系箱式图定量资料取值范围用箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布'用茎表示组段的设置情形,叶片为个体值,叶长为频数第3章概率分布(连续随机变量的正态分布;离散随机变量的二项分布及Poisson分布)1. 服从二项分布及Poisson分布的条件分别是什么二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。

2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。

A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。

3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。

3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。

2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。

一是统计报表,二是经常性工作记录,三是专题调查或专题实验。

C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。

变异(variation):同质基础上的各观察单位间的差异。

变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。

变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。

临床医学统计学知识点

临床医学统计学知识点

临床医学统计学知识点统计学在临床医学中扮演着至关重要的角色,它通过收集、分析和解释数据,帮助医生做出准确的诊断和治疗方案。

本文将介绍一些临床医学中常用的统计学知识点。

1. 样本与总体在临床医学中,样本指的是从总体中抽取出来的一部分个体或数据。

总体是指研究对象的全体。

通过对样本的研究分析,可以推断总体的特征。

在医学研究中,样本的选择要具有代表性和随机性,以保证研究结果的可靠性。

2. 平均数、中位数、众数在统计学中,平均数指的是将一组数据相加后除以数据的个数所得到的值,用来表示数据的集中趋势。

中位数是按照数据大小排列后位于中间位置的值,众数是数据中出现次数最多的数值。

在临床医学中,这些统计指标常用于描述疾病的发病率、临床表现等。

3. 标准差、方差标准差和方差是衡量数据的离散程度的指标。

标准差是方差的平方根,它表示数据偏离平均值的程度。

在临床医学中,标准差和方差常用于评估治疗效果的稳定性和数据的稳定性。

4. t检验、方差分析t检验和方差分析是常用的统计方法,用于比较两组或多组数据之间的差异性。

在临床医学中,这两种方法可以帮助医生判断治疗方案的有效性,疾病的进展情况等。

5. 敏感度、特异度敏感度和特异度是评价诊断检测方法准确性的重要指标。

敏感度指的是在疾病存在的情况下,检测方法能够正确识别出疾病的能力;特异度指的是在疾病不存在的情况下,检测方法能够正确排除疾病的能力。

在临床医学中,敏感度和特异度的值越高,说明诊断方法越准确。

6. 风险比、相对危险度风险比和相对危险度是疾病发病风险的评估指标。

风险比表示两组人群中发病率的比值,相对危险度表示一组人群某种因素的风险相对于另一组的倍数。

在临床医学研究中,这两种指标可以帮助医生评估疾病的危险程度和相关因素的作用程度。

7. 生存分析、回归分析生存分析和回归分析是用于评估疾病预后和危险因素的统计方法。

生存分析可以分析患者的生存时间和生存率,回归分析可以研究疾病发生的相关因素。

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。

以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。

观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。

2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。

定性数据如性别、血型,定量数据如血压、体重。

3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。

4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。

常见的分布有正态分布、二项分布和泊松分布。

5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。

常见的检验方法有t检验、卡方检验和F检验。

6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。

95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。

7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。

简单线性回归和多元线性回归是常见的回归分析方法。

8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。

Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。

9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。

10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。

样本量计算需要考虑效应大小、显著性水平和检验力。

11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。

12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。

医学统计学基础

医学统计学基础

医学统计学基础医学统计学是一门研究医学中数据的收集、分析和解释的科学。

它在医学研究中扮演着至关重要的角色,并且对医学实践和决策具有深远影响。

本文将介绍医学统计学的基本概念、常用的统计方法以及其在医学领域的应用。

一、基本概念1.1 总体与样本在医学统计学中,我们常常需要研究某个感兴趣的群体,这个群体被称为总体。

总体可以是人群中的所有个体,也可以是其他单位,如医院、地区等。

由于总体往往很大,我们无法对其进行全面的研究,因此我们从总体中选取一部分个体进行研究,这部分个体称为样本。

1.2 数据类型医学研究中常见的数据类型包括定性数据和定量数据。

定性数据是描述性质或属性的数据,如性别、病情分类等;定量数据是可度量或计数的数据,如年龄、生命体征等。

了解数据类型对选择合适的统计方法至关重要。

1.3 描述统计学与推断统计学描述统计学用于总结和描述已有数据的特征,如均值、中位数、标准差等。

推断统计学则是通过对样本进行分析,推断总体的特征,并对结果进行估计和推断。

推断统计学可通过假设检验和置信区间来实现。

二、常用统计方法2.1 均值与标准差均值是用来描述一组数据集中趋势的指标,一般用于定量数据。

标准差则衡量了数据的离散程度,即数据的波动情况。

2.2 相关分析相关分析用于研究两个变量之间的关系。

通过计算相关系数,可以了解两个变量是正相关、负相关还是无关。

2.3 生存分析生存分析是用来研究事件发生和持续时间的统计方法。

在医学中,生存分析常用于研究患者的生存时间、复发时间等。

2.4 方差分析方差分析用于比较两个或多个组的均值是否存在显著差异。

它适用于一组分类变量和一个连续变量的比较。

三、医学统计学的应用3.1 临床试验设计与分析临床试验是评价药物疗效的重要手段。

医学统计学在临床试验的设计和分析中起到关键作用,如确定样本量、随机分组、双盲试验等。

3.2 流行病学研究流行病学研究可以揭示疾病的发病原因、预后以及控制策略。

医学统计学的方法可以帮助研究者分析大量数据,确定疾病的危险因素和相关性。

医学统计学护理知识点总结

医学统计学护理知识点总结

医学统计学护理知识点总结一、基本统计学概念1.总体和样本总体是指某一特定性质的全部个体的集合,而样本则是从总体中选取的一部分个体。

在临床实践中,医护人员常常需要根据样本数据来对总体进行推断。

2.参数和统计量参数是总体的特征值,统计量是样本的特征值。

统计量通常用来估计参数,比如样本平均值用来估计总体均值。

3.变量和常量变量是指在研究对象中取值不同的特征,可以分为定量变量和定性变量。

定量变量是以数字表示的,比如身高、体重;定性变量是以类别表示的,比如性别、婚姻状况。

常量是指在研究对象中取值不变的特征。

4.测量水平测量水平分为名义尺度、顺序尺度、区间尺度和比率尺度。

名义尺度是指仅代表对象分类的变量,如性别;顺序尺度是指变量的数值表示有序的关系,但不能准确比较差异,如疼痛程度的分级;区间尺度是指能够比较大小和进行加减运算,但没有绝对零点的变量,如体温;比率尺度是指能进行所有数学运算并有绝对零点的变量,如年龄、收入。

5.描述统计和推断统计描述统计是根据样本数据对总体进行描述和概括,它使用一些常见的指标,如平均值、标准差、百分比等。

推断统计是根据样本数据对总体的特征进行推断,如参数估计和假设检验。

二、概率论基础1.随机事件和概率随机事件是指在一定条件下可以出现也可以不出现的事件,它的出现是偶然的。

概率是描述随机事件发生可能性大小的一个数,通常用P(A)表示事件A发生的概率,概率的取值范围是0≤P(A)≤1。

2.独立事件和相关事件独立事件是指两个事件的发生互不影响,事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率,P(A∩B)=P(A)×P(B)。

相关事件是指两个事件的发生互相影响,事件A和事件B同时发生的概率不等于事件A发生的概率乘以事件B发生的概率。

3.概率分布概率分布是随机变量取值和相应概率的对应关系,包括离散型随机变量的概率分布和连续型随机变量的概率分布。

常见的离散型随机变量有二项分布、泊松分布等;常见的连续型随机变量有正态分布、t分布、F分布等。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是应用统计学原理和方法于医学领域的一门学科,通过对医学数据的收集、整理、分析和解释,可以帮助医学研究者和临床医生更好地理解和应用医学知识。

本文将介绍一些医学统计学中的重要知识点。

一、数据的类型在医学统计学中,我们常常需要处理各种类型的数据,其中最常见的数据类型包括:1. 定性数据:也称为分类数据,指描述事物性质或属性的数据,如性别、疾病类型等。

2. 定量数据:也称为连续数据,指可以用数字进行度量的数据,如身高、体重、血压等。

3. 二分类数据:指只有两种可能取值的数据,如阳性/阴性、生/死等。

4. 多分类数据:指有多种可能取值的数据,如血型、既往医疗史等。

二、描述统计学1. 描述性统计:描述性统计是对数据进行整理、总结和描述的过程,主要包括以下指标:- 频数与频率:频数是指某一数值在数据集中出现的次数,频率是频数与数据总数的比值。

- 中心趋势指标:包括均值、中位数和众数,用于描述数据的集中程度。

- 离散程度指标:包括标准差、方差和四分位差等,用于描述数据的分散程度。

2. 绘图方法:绘图是描述性统计的重要手段之一,常用的绘图方法包括:- 饼图:用于展示分类数据的比例关系。

- 条形图:用于展示不同类别之间的数量关系。

- 箱线图:用于展示数据的分布情况和异常值。

- 散点图:用于展示两个变量之间的相关性关系。

三、推断统计学推断统计学是从样本中得出总体特征的方法,通过对样本数据的分析来进行推断。

其中的重要概念和方法包括:1. 总体与样本:总体是我们研究的对象的全体,样本是从总体中选取的一部分。

2. 参数与统计量:参数是总体的特征值,统计量是样本的特征值,通过统计量来估计参数。

3. 抽样分布:抽样分布是样本统计量的概率分布,常用的抽样分布包括正态分布和t分布。

4. 假设检验:假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某个假设。

5. 置信区间:置信区间是对总体参数的一个范围估计,常用于估计总体均值和总体比例。

医学统计学知识点汇总

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。

医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。

以下是医学统计学知识点的一些精华汇总。

1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。

2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。

3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。

4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。

5.参数估计:常用的参数估计方法有点估计和区间估计。

点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。

6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。

常用的假设检验方法有t检验、卡方检验、方差分析等。

7.数据分析:包括描述性统计分析和推断性统计分析。

描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。

8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。

9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。

10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。

11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。

12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。

以上是医学统计学的一些精华知识点的汇总。

医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。

医学统计知识点整理

医学统计知识点整理

医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。

如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。

变异:同质的基础上个体间的差异。

“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。

一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。

表现为数值大小,带有度、量、衡单位。

如身高(cm)、体重(kg)、血红蛋白(g)等。

二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。

分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。

统计推断:是使用样本信息来推断总体特征。

统计推断包括区间估计和假设检验。

第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。

标目:横标目和纵标目。

线条:通常采用三线表和四线表的形式。

没有竖线或斜线。

数字:表内数字一律用阿拉伯数字。

同一指标,小数位数应一致,位次对齐。

无数字用“—”表示。

暂缺用“…”表示。

“0”为确切值。

备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。

一张统计表的备注不宜太多。

二、制表原则1.(7理分布。

【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。

医学统计学知识点

医学统计学知识点

医学统计学知识点1.数据类型:医学研究中使用的数据包括定类数据和定量数据。

定类数据是非数值型的数据,例如性别、种族等;定量数据是数值型的数据,例如年龄、体重等。

了解数据类型是分析数据的第一步。

2.数据收集:医学研究中的数据可以通过不同的方式收集,例如问卷调查、实验研究、观察等。

在数据收集过程中,需要注意样本的选择、数据的完整性和准确性。

3.描述统计学:描述统计学包括对数据的整体特征进行描述和总结。

常用的描述统计学方法包括中心趋势度量(例如均值、中位数、众数)、离散程度度量(例如标准差、方差)和数据分布描述等。

4.推断统计学:推断统计学是从样本数据推断总体特征的一种方法。

通过推断统计学,可以根据样本数据的统计量(例如样本均值、样本比例)来推断总体参数的区间估计或假设检验。

5.假设检验:假设检验是根据样本数据对总体参数提出假设,并通过计算概率值来判断是否接受或拒绝该假设。

常用的假设检验方法包括t检验、卡方检验、方差分析等。

6.相关分析:相关分析用于研究两个或多个变量之间的关系。

常见的相关分析方法有皮尔逊相关系数、斯皮尔曼相关系数等。

相关分析可以帮助研究者了解变量之间的线性关系和方向。

7. 回归分析:回归分析用于研究因变量与自变量之间的关系,并可用于预测因变量的数值。

常用的回归分析方法有简单线性回归分析、多元线性回归分析和 logistic 回归分析等。

8. 生存分析:生存分析用于研究时间相关的数据,例如疾病患者的生存时间或事件发生的时间。

生存分析方法包括 Kaplan-Meier 曲线、Cox 比例风险模型等。

9.双盲试验和随机分组:在医学研究中,双盲试验和随机分组是常用的研究设计方法。

双盲试验是指研究中既不知道接受治疗的病人,也不知道给予治疗的医生;随机分组是指将研究对象随机分配到不同的治疗组和对照组。

10.统计软件:为了进行医学统计分析,研究者可以使用专业的统计软件,例如SPSS、SAS、R等。

医学统计学知识点汇总

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是一门关于医学研究中数据收集、数据分析和推理的学科,它对医学领域的决策和实践具有重要的指导作用。

本文将对医学统计学的一些重要知识点进行汇总和介绍。

一、数据类型在医学统计学中,常见的数据类型包括定类(分类)数据和定量(数量)数据。

定类数据表示事物的属性或者类别,如性别、病情分级等;而定量数据表示具体的数量或测量结果,如年龄、血压等。

正确理解和分析数据类型对于进行准确的统计分析是至关重要的。

二、描述统计学描述统计学是对数据进行整理、总结和描述的方法和技术。

常见的描述统计学方法包括中心趋势的度量、离散程度的度量以及数据的分布形态。

1.中心趋势的度量中心趋势是指数据集中的中间位置,常用的度量包括平均值、中位数和众数。

平均值是所有观测值的总和除以观测值的个数,中位数是将数据按升序排列,找出中间位置的数值,众数是出现频率最高的数值。

2.离散程度的度量离散程度是指数据的分散程度,常用的度量包括方差、标准差和极差。

方差是观测值与平均值之差的平方的平均值,标准差是方差的平方根,极差是数据集中最大值与最小值之差。

3.数据的分布形态数据的分布形态可以通过绘制直方图和概率密度曲线来进行可视化。

直方图可以显示数据的频数分布情况,概率密度曲线可以反映数据的分布密度。

三、推论统计学推论统计学是根据样本数据对总体进行推断的方法和技术。

主要包括参数估计和假设检验两个方面。

1.参数估计参数估计是通过样本数据来估计总体参数的值。

常用的参数估计方法包括点估计和区间估计。

点估计是通过样本数据来估计总体参数的唯一值,如样本均值估计总体均值;区间估计是通过样本数据来估计总体参数的范围,如置信区间估计总体均值。

2.假设检验假设检验是用来判断总体参数是否符合某个特定的假设。

它涉及到原假设和备择假设的设定,以及根据样本数据进行统计推断的过程。

常用的假设检验方法包括t检验、卡方检验和方差分析等。

四、相关分析相关分析研究两个或多个变量之间的关系。

卫生统计学知识点(笔记)

卫生统计学知识点(笔记)

第一章绪论1.统计学(statistics)是一门处理数据中变异性的科学与艺术,内容包括收集、分析、解释和表达数据,目的是求得可靠的结果。

2.▲总体(population)用来表示大同小异的对象全体,例如一个国家的所有成年人;某地的所有小学生。

可分为目标总体和研究总体。

若试图对某个总体下结论,这个总体便称为目标总体(target population);资料常来源于目标总体中的一个部分,它称为研究总体(study population)。

需要谨慎的是,就研究总体所下的结论未必适用于目标总体。

3.▲样本(sample)是指从研究总体中抽取的一部分有代表性的个体。

获取样本的过程称为抽样(sampling)。

抽样研究的目的是用样本数据推断总体的特征。

需要注意的是,统计学的结论从来就不是完全肯定或完全否定的,能不能成功地达到从样本推断总体的目的,关键是抽样的方法、样本的代表性和推断的技术。

4.▲同质(homogeneity)是指同一总体中个体的主要性质相同。

5.▲变异(variation)是指同质的个体之间存在的差异。

6.▲变量的类型二分类变量分类变量或名义变量定性变量多分类变量变量有序变量或等级变量定量变量离散型变量连续型变量变量的转化:只能由“高级”向“低级”转化,即由信息量多的向信息量少的类型转化,如:定量有序分类二值7.▲参数(parameter)是反映总体特征的指标,参数的大小是客观存在的,是一个常数,不会发生变化,然而往往是未知的,需要通过样本资料来估计,如总体均数μ,总体标准差σ。

8.▲统计量(statistic)又称样本统计量,是反映样本特征的指标,是由观察资料计算出来的,如样本均数 X,样本标准差S。

统计学的任务就是依据样本统计量来推断总体参数。

9.▲概率与频率的区别:概率是参数,频率是统计量;频率总是围绕概率上下波动。

当某事件发生的概率≤0.05时,即P≤0.05,统计学习惯上称该事件为小概率事件。

(完整版)医学统计学知识点汇总

(完整版)医学统计学知识点汇总

医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。

2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。

3、变异:同质基础上各观察单位某变量值的差异。

数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。

变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。

可以分为有限总体和无限总体。

5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。

样本代表性的前提:同质总体,足够的观察单位数,随机抽样。

统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。

6、概率:描述随机事件发生的可能性大小的一个度量。

若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。

统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。

频数分布有对称分布和偏态分布之分。

后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。

2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。

均数:适用于正态或近似正态的分布的数值变量资料。

样本均数用x表示,总体均数用μ表示。

几何均数:适用于等比级数资料和对数呈正态分布的资料。

注意观察值中不能有零,一组观察值中不能同时有正值和负值。

中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。

3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。

全距:任何资料,一组中最大值与最小值的差。

医学统计学知识点汇集总结

医学统计学知识点汇集总结

医学统计学知识点汇集总结一、医学统计学概述医学统计学是指运用统计学方法和技术研究医学数据,并分析、解释医学现象的学科。

对于医学研究和临床实践来说,统计学扮演了至关重要的角色,它可以帮助我们从数据中找出规律和关联,了解疾病的发病机制、评估治疗效果、预测疾病的发展趋势等。

医学统计学应用广泛,包括流行病学调查、临床试验、疾病筛查、医疗资源分配等方面。

二、基本统计概念1.总体与样本总体是指研究者希望了解的所有个体或事物的集合,而样本是从总体中抽出的一部分个体或事物。

在医学统计学中,我们往往针对总体的某些特征进行研究,但因为总体过于庞大或难以直接观察,所以需要通过样本来间接推断总体特征。

2.描述统计学与推断统计学描述统计学是通过对样本数据进行整理、汇总和展示,来描述总体的特征。

例如,用均值、标准差、百分比等指标来描述样本的中心趋势、离散程度和分布规律。

推断统计学则是通过对样本数据进行分析和推断,来进行总体参数估计、假设检验和区间估计等操作,从样本的情况推断总体的性质。

3.测量尺度在医学统计学中,常用的测量尺度有四种:名义尺度、序数尺度、区间尺度和比率尺度。

名义尺度用于对个体进行分类,如性别、种族等;序数尺度表达了个体之间的顺序关系,如疾病的分期、疼痛的程度等;区间尺度是指定了单位长度的测量尺度,其间隔是均匀的,但没有绝对的零点,如温度;比率尺度有绝对的零点,可以进行加减乘除运算,如年龄、身高、体重等。

4.受试者特征曲线(ROC曲线)受试者特征曲线(Receiver Operating Characteristic Curve,ROC曲线)常用于评价诊断试验的准确性。

横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度),曲线下面积(AUC)为对角线以下的面积,用来评价诊断试验在不同判断标准下的表现。

三、数据的搜集与整理1.样本量计算样本量的大小直接关系到研究结果的可靠性和精度。

样本量计算需要根据预期效应大小、显著性水平、统计功效、数据分析方法等因素来确定。

医学统计学知识点

医学统计学知识点

第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。

2、研究对象:具有不确定性结果的事物。

3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。

4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。

5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。

6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。

变异,指总体内的个体间存在的、绝对的差异。

统计学通过对变异的研究来探索事物。

(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。

变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。

(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。

包括二分类、无序多分类。

(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。

统计方法的选用与数据类型有密切的关系。

(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。

样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。

抽样,是从研究总体中随机抽取部分有代表性的观察单位。

参数,指描述总体特征的指标。

统计量,指描述样本特征的指标。

(4)误差误差,指观测值与真实值、统计量与参数之间的差别。

可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。

随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。

抽样误差,是抽样引起的统计量与参数间的差异。

抽样误差主要来源于个体的变异。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是医学中的重要分支,通过对医学数据的收集、整理、分析和解释,帮助医生和研究人员更好地理解疾病的发病规律和治疗效果。

下面将介绍一些医学统计学中常见的知识点。

一、数据类型在医学统计学中,数据通常分为定性数据和定量数据两种类型。

定性数据是指具有类别属性的数据,如性别、疾病类型等;定量数据是指可进行加减乘除等运算的数据,如血压、体重等。

二、描述统计学描述统计学是对收集到的数据进行整理、汇总和描述的过程,包括频数分布、中心趋势和离散程度等指标。

通过描述统计学可以更直观地了解疾病的流行病学特征。

三、推断统计学推断统计学是通过对小样本数据进行推断,得出对总体的推断结论。

常见的方法包括假设检验、置信区间估计和方差分析等。

推断统计学在临床研究和药物试验中有重要应用。

四、生存分析生存分析是研究事件发生时间和生存时间的统计方法,常用于临床预后评估和生存曲线绘制。

生存分析可以帮助医生评估疾病的进展速度和治疗效果。

五、因子分析因子分析是研究多个变量之间的关联性和内在结构的统计方法,常用于疾病危险因素的筛选和分类。

通过因子分析可以揭示疾病的复杂发病机制和影响因素。

六、线性回归线性回归是研究两个或多个变量之间线性关系的统计方法,可用于分析疾病风险因素和疗效预测。

线性回归可以帮助医生更好地控制干预措施,提高治疗效果。

综上所述,医学统计学是医学研究和临床实践中不可或缺的工具,掌握相关知识点可以更好地帮助医生理解和解释医学数据,促进疾病防控和治疗水平的提高。

希望本文介绍的医学统计学知识点能够为医学工作者提供参考和帮助。

感谢阅读!。

医科数学知识点总结

医科数学知识点总结

医科数学知识点总结一、统计学1. 统计学概述统计学是一门研究如何收集、整理、分析和解释数据的学科。

在医学领域中,统计学被广泛应用于疾病流行病学调查、临床试验设计和数据分析等方面。

医生们可以通过统计学的方法来评估某种治疗方法的疗效,分析疾病的发病率和死亡率,预测疾病的发展趋势等。

2. 统计学方法在医科数学中,统计学方法有很多种,常见的包括描述统计法、推断统计法、回归分析、方差分析、生存分析等。

描述统计法主要用于整理和描述数据的分布特征,推断统计法主要用于从样本数据中推断总体的特征。

回归分析和方差分析则可以帮助医生们分析不同因素对疾病影响的程度,生存分析则可以帮助医生们评估患者的存活率。

3. 统计学实例举例来说,医生们可以通过统计学的方法来评估某种治疗方法的疗效。

他们可以通过临床试验收集患者的样本数据,然后利用推断统计学的方法来判断该治疗方法是否有效。

又如,医生们也可以通过统计学的方法来预测疾病的发展趋势。

他们可以通过收集历史病例数据,然后利用生存分析的方法来评估患者的存活率,从而预测疾病的发展趋势。

4. 统计学的应用统计学在医学领域中有着广泛的应用,它可以帮助医生们解读研究文献、设计临床试验、评估治疗方法的疗效、预测疾病的发展趋势等。

通过统计学的方法,医生们可以更准确地了解疾病的发展规律,从而提高诊断和治疗的效果。

二、生物统计学1. 生物统计学概述生物统计学是统计学在生物学领域中的应用。

在医学领域中,生物统计学被广泛应用于遗传学研究、流行病学调查、临床试验设计和数据分析等方面。

医生们可以通过生物统计学的方法来评估遗传疾病的遗传风险、分析疾病的发病率和死亡率、设计临床试验、分析患者数据等。

2. 生物统计学方法在医科数学中,生物统计学方法与统计学方法有很多相似之处,但也有一些特殊的应用。

例如,医生们可以通过生物统计学的方法来评估遗传疾病的遗传风险。

他们可以利用家系调查和基因分析的方法来收集患者数据,然后利用生物统计学的方法来评估患者患病的风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。

2、研究对象:具有不确定性结果的事物。

3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。

4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。

5、医学统计学根本内容:统计设计、数据整理、统计描述、统计推断。

6、医学统计学中的根本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。

变异,指总体内的个体间存在的、绝对的差异。

统计学通过对变异的研究来探索事物。

(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。

变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。

〔如身高、体重、血压、温度等〕定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。

包括二分类、无序多分类。

〔进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等〕有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。

统计方法的选用与数据类型有密切的关系。

〔3〕总体与样本总体,指根据研究目确实定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。

样本,是从研究总体中随机抽取局部有代表性的观察单位,对变量进行观测得到的数据。

抽样,是从研究总体中随机抽取局部有代表性的观察单位。

参数,指描述总体特征的指标。

统计量,指描述样本特征的指标。

〔4〕误差误差,指观测值与真实值、统计量与参数之间的差异。

可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。

随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。

抽样误差,是抽样引起的统计量与参数间的差异。

抽样误差主要来源于个体的变异。

统计学主要研究抽样误差。

〔5〕概率概率,是描述某事件发生可能性大小的量度。

必然事件,事件肯定发生,概率P(U)=1;随机事件,事件可能发生,可能不发生,概率介于0≤P(A)≤ 1;不可能事件,事件肯定不发生,概率P(∮)=0;小概率事件,事件发生的可能性很小,概率P(A)≤ 0.05、或P(A)≤ 0.01。

医学科研中,P(A)≤0.05作为事物差异有统计意义,P(A)≤ 0.01作为事物差异有高度统计意义。

第二章定量数据的统计描述定量数据的统计描述方法:频数表、直方图、统计指标。

〔1〕频数分布频数分布的目的:了解数据的分布范围、集中位置以及分布形态等特征,以便根据资料分布情况选择适宜的统计方法。

频数分布的用途:①作为陈述资料的形式;②便于观察数据的分布类型;③便于发现数据中特大或特小的可疑值;④当样本量大时,可用各组段的频率作为概率的估计值。

计算全距〔range,R〕:是一组数据的最大值与最小值之差。

R=Max-Min确定组数与组距样本量在100例左右,组数选择8~15之间,一般取10组左右。

组距≈全距/组数确定组限第一组段必须包括最小值,最后一组段必须包括最大值。

最后一组段包括最大值,且一般情况下应包含该组段上限,其余各组段区间左闭右开。

计算各组段频数〔frequency〕:即计算各组段内观察值的个数。

计算各组段频率〔percent〕:即计算各组段频数与总观察值个数之比,用百分数表示。

计算累计频数〔cumulative frequency〕和累计频率〔cumulative percent〕:累计频数是由上至下将频数累加;累计频率是由上至下将频率累加。

〔2〕直方图直方图,是以垂直条段代表频数分布的一种图形。

〔3〕频数分布表的用途1、作为称述资料的形式,可以代替原始资料,便于进一步分析。

2、便于观察数据的分布类型。

资料分布类型分为:对称分布和偏态分布。

在统计分析时常需要根据资料的分布形式选择相应的统计分析方法,因此对数据分布形式的判定非常重要。

3、便于发现资料中某些远离群体的特大或特小值。

4、当样本含量比拟大时,可用各组段的频率作为概率的估计值。

集中趋势的统计指标平均数,是描述一组观察值集中位置或平均水平的统计指标,常作为一组数据的代表值用于分析和进行组间的比拟。

常用的有算术均数、几何均数、中位数、百分位数等。

算术均数,等于一个变量所有观察值的和除以观察值个数。

总体均数用希腊字母μ表示,样本均数用符号Χ拔表示。

算术均数适用于对称分布的资料,如分布均匀的小样本数据或近似正态分布的大样本数据。

算术均数易受极端值的影响,并且受极大值的影响大于受极小值的影响。

几何均数几何均数〔geometric mean,G〕,等于一个变量所有n个观察值的乘积的n次方根。

几何均数适用于取对数后近似呈对称分布的资料,尤其是右偏态分布数据。

医学研究中常用于比例数据。

【注】计算几何均数的观察值不能小于或等于0,因为无法求对数。

中位数中位数〔median,M〕,是在按大小顺序排列的变量的所有观察值中,位于正中间的一个或两个数值。

当数据呈偏态分布、或频数分布两端无确定数值,均宜采用中位数描述集中趋势。

中位数确实定取决于它在数据序列中的位置,因此对极端值不敏感。

百分位数百分位数〔percentile〕,是一个位置指标,它将一组变量值排列后划分为假设干相等局部的分割点数值。

用Px表示,X用百分数表示。

表示在按照升序排列的数据中,其左侧〔≤Px 〕的观察值个数在整个样本中所占百分比为X %,其右侧〔≥ Px 〕的观察值个数在整个样本中所占百分比为(100-X )%。

百分位数不管资料分布类型均可计算,在实际工作中常用于确定医学参考值范围;在假设检验中用作拒绝或不拒绝检验假设的界值。

百分位数并非由全部观察值综合计算得来,因此,它不如均数和标准差精确;然而中间局部的百分位数因不受资料中个别极端数据的影响,具有较好的稳定性。

小结变异程度的统计指标变异指标,又称离散指标,用以描述一组计量资料各观察值之间参差不齐的程度。

变异指标越大,观察值之间差异愈大,说明变异程度越大;反之亦然。

常用的有极差、四分位数间距、方差、标准差和变异系数。

极差极差〔range,R〕,等于一个变量所有观察值中最大值与最小值之间的差值。

R =Max -Min缺点:①没有利用观察值的全部信息,不能反映其它数据的离散度;②各样本含量大小悬殊时,不宜比拟其极差;③极差的抽样误差也较大,所以不够稳定。

极差仅适用于对未知分布的小样本资料作粗略的分析。

四分位数间距四分位数,是统计学对特殊的三个百分位数P25% 、P50% 和P75%的统称四分位数间距〔quartile range,Q〕,等于第三四分位数与第一四分位数之间的差值。

Q =P75% -P25%缺点:①没有利用观察值的全部信息,不能反映其它数据的离散度;四分位数间距仅用来描述大样本偏态资料的变异情况。

方差方差〔variance〕,是描述一个变量的所有观察值与总体均数的平均离散程度的指标。

总体方差用σ2表示,样本方差用S2表示。

标准差标准差〔standard deviation,S 〕,是描述一个变量的所有观察值与均数的平均离散程度的指标。

总体标准差用σ表示,样本标准差用S表示。

标准差方差或标准差属同类变异指标,它们多用来描述均匀分布或近似正态分布的资料,大、小样本均可,其中以标准差的应用最广,通常与均数结合使用。

比方在许多医学研究报告中常用X拔±S 的形式表达资料。

变异系数变异系数〔coefficient of variation,CV 〕,是一个度量相对离散程度的指标。

CV是无量纲的指标,可以用来比拟几个量纲不同的指标变量之间的离散程度的差异,或比拟量纲相同但均数相差悬殊的变量之间的离散程度的差异。

小结第三章正态分布与医学参考值范围正态分布,是一种连续型随机变量常见而重要的分布。

正态曲线,是一条顶峰位于中央,两侧逐渐下降并完全对称,曲线两端永远不与横轴相交的钟型曲线。

如果随机变量X的分布服从概率密度函数和概率分布函数称连续型随机变量X服从正态分布,记为X~N (μ, σ2 )。

π为圆周率,e为自然对数的底值,σ为总体标准差,μ为总体均数。

正态分布的特征1、正态分布是单峰分布,以X =μ为中心,左右完全对称,正态曲线以X轴为渐近线,两端与X轴不相交。

2、正态曲线在X =μ 处有最大值,其值为f(μ)=1/(μ√2π) ;X越远离μ ,f(X)值越小,在X= μ± σ 处有拐点,呈现钟形。

3、正态分布完全由参数μ和σ决定。

μ是位置参数,决定正态曲线在X轴上的位置。

在σ一定时,μ增大,曲线沿横轴向右移动;μ较小,曲线沿横轴向左移动。

σ是形状参数,决定正态曲线的分布形态。

σ越大,曲线的形状越“矮胖〞,表示数据分布越分散;σ越小,曲线的形状越“瘦高〞,表示数据分布越集中。

正态曲线下面积分布规律1、服从正态分布的随机变量在某一区间上的曲线下面积与其在同一区间上取值的概率相等。

2、曲线下的总面积为1或100%,以μ为中心左右两侧面积各占50%,越靠近μ 处曲线下面积越大,两边逐渐减少。

3、所有的正态曲线,在μ左右的任意个标准差范围内面积相同。

一些特殊情况,在μ±σ范围内的面积约为68.27%,在μ±1.96σ范围内的面积约为95.00%,在μ±2.58σ范围内的面积约为99.00%。

标准正态分布对任意一个服从N (μ, σ2 )分布的随机变量X,经Z=X-μ/σ变换都可以转为μ=0、σ=1的标准正态分布,也称随机变量的标准化变换。

标准正态分布的应用实际应用中,经z变换可把求解任意一个正态分布曲线下面积的问题,转化成标准正态分布曲线下相应面积的问题。

正态分布的应用1、制定医学参考值范围2、质量控制3、正态分布是很多统计方法的理论根底医学参考值范围医学参考值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。

医学参考值范围,习惯上是包含95%的参照总体的范围。

制订的考前须知a、抽取足够例数的同质“正常人〞样本★“正常人〞的定义,样本量〔n>120〕,随机化。

b、确定具有实际意义的统一测量标准★指标的测量方法等要有规定,控制测量误差。

c、根据指标的性质确定是否要分组★根据实际情况、专业知识。

d、根据指标含义决定单、双侧范围★单侧下限,过低异常;单侧上限,过高异常;双侧,过高、过低均异常。

e、选择适当的百分范围★绝大多数人,一般80%、90%、95%、99%;★减少误诊,取较大范围;减少漏诊,取较小范围。

f、估计参考值范围★根据资料分布类型:正态分布法、百分位数法。

第四章定性数据的统计描述相对数,是两个有关的绝对数之比,也可以是两个统计指标之比。

相关文档
最新文档