最新二次函数图像与性质复习-知识点很全课件PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解 :(5)
x=-1
当x<-1时,y随x的增大 而减小;
当x=-1时,y有最小值为 y最小值=-2
•(-3,0) • • (-1,-2)
•(1,0) x
0
•3 (0,-–2)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
2a
4a
2a
4a
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。 (5)x为何值时,y随的增大而减小,x为何值时,y有最大
3
• •C(0,-2–) • M(-1,-2)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,
A,B的坐标。
(3)画出函数图象的示意图。
(4)求ΔMAB的周长及面积。
(5)x为何值时,y随x的增大而减小,x为何值时,y有最大
•(1,0) x
0
•3 (0,-–2)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,
A,B的坐标。
(3)画出函数图象的示意图。
(4)求ΔMAB的周长及面积。
(5)x为何值时,y随的增大而减小,x为何值时,y有最大
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解 :(4)由对称性可知
y
MA=MB=√22+22=2√2
• • AB=|x1-x2|=4
A(-3,0) D B(1,0) x
∴ ΔMAB的周长=2MA+AB
0
=2 √2×2+4=4 √2+4 Δ=—M12 ×AB4的×面2=积4 =—12 AB×MD
二次函数图像与性质复习-知识 点很全
二次函数考点分析
• 二次函数是初等函数中的重要函数,在解决各类数学问题 和实际问题中有着广泛的应用,是江苏中考热点之一。
• 二次函数主要考查表达式、顶点坐标、开囗方向、对称轴、 最大(小)值、用二次函数模型解决生活实际问题。
• 其中顶点坐标、开囗方向、对称轴、最大(小)值、图象 与坐标轴的交点等主要以填空题、选择题出现。
抛物线与y轴的交点C(0,- -32—)
由x1y==-30,得—12x2x=21+x- —32 =0 与x轴交点A(-3,0)B(1,0)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,
A,B的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。 (5)x为何值时,y随的增大而减小,x为何值时,y有最大
(小)值,这个最大(小)值是多少? (6)x为何值时,y<0?x为何值时,y>0?
解: (2)由x=0,得y= - -32—
例1:当m___=_1___时,函数y=(m+1)χ
m2 1
- 2χ+1
是二次函数?
2、二次函数的图像及性质
y
y
0
x
0
x
Байду номын сангаас
抛物线 顶点坐标 对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
b 2a
,
4acb2 4a
直线x b
2a
由a,b和c的符号确定
开口方向 增减性 最值
a>0,开口向上
a<0,开口向下
在对称轴的左侧,y随着x的增大而减小. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当 xb时 ,y最小4值 a cb为 2 当 xb时 ,y最大4值 a cb为 2
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。 (5)x为何值时,y随的增大而减小,x为何值时,y有最大
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解 (3)
x=-1 y
①画对称轴
②确定顶点 ③确定与坐标轴的交点 及对称点
④连线
•(-3,0) • • (-1,-2)
• 利用二次函数解决生活实际问题以及二次函数与几何知识 结合的综合题以解答题形式出现:一类是二次图象及性质 的纯数学问题,一类是利用二次函数性质结合其它知识解 决实际问题的题目,
二次函数知识导航
• 1、二次函数 的定义 • 2、二次函数 的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数 与一元二次方程的关系 • 7、二次函数 的应用题 • 8、二次函数 的综合运用
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。 (5)x为何值时,y随的增大而减小,x为何值时,y有最大
(小)值,这个最大(小)值是多少? (6)x为何值时,y<0?x为何值时,y>0?
解:(1)∵a= —12 >0
∴抛物线的开口向上
∵y= —12 (x2+2x+1)-2=—12 (x+1)2-2
∴对称轴x=-1,顶点坐标M(-1,-2)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
本次复习知识点1——5
1、二次函数的定义
• 定义:y=ax²+ bx + c ( a 、 b 、 c 是常数, a ≠ 0 )
• 定义要点:①a ≠ 0 ②最高次数为2
•
③代数式一定是整式
• 练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,
• y=3 x²-2x+5,其中是二次函数的有 3 个。