(完整word版)二次函数单元测试卷(含答案)
二次函数单元测试题及答案
![二次函数单元测试题及答案](https://img.taocdn.com/s3/m/1231e1462379168884868762caaedd3382c4b519.png)
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 若二次函数y=ax^2+bx+c的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A2. 二次函数y=-3x^2+6x-2的对称轴是()A. x = -1B. x = 1C. x = 2D. x = 0答案:B3. 二次函数y=x^2-4x+c的顶点坐标是()A. (2, c-4)B. (2, c+4)C. (-2, c-4)D. (-2, c+4)答案:A4. 若二次函数y=x^2-6x+c的图像与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c = 9D. c ≠ 9答案:B5. 二次函数y=2x^2-4x+3的最小值是()A. 1B. 2C. 3D. 4答案:C6. 二次函数y=-2x^2+4x+1的图像与y轴的交点坐标是()A. (0, -1)B. (0, 1)C. (0, 3)D. (0, 5)答案:B7. 若二次函数y=ax^2+bx+c的图像与x轴没有交点,则a和b的取值关系是()A. a > 0, b^2 > 4acB. a < 0, b^2 > 4acC. a > 0, b^2 < 4acD. a < 0, b^2 < 4ac8. 二次函数y=x^2-2x+1的图像的顶点坐标是()A. (1, 0)B. (1, 1)C. (0, 1)D. (2, 1)答案:B9. 二次函数y=x^2-6x+5的图像开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A10. 若二次函数y=2x^2-4x+1的图像与x轴有一个交点,则该交点的坐标是()A. (1, 0)B. (2, 0)C. (-1, 0)D. (0, 0)答案:A二、填空题(每题3分,共15分)1. 二次函数y=x^2-2x+1的对称轴方程是______。
第二十二章-二次函数-单元测试(含答案)
![第二十二章-二次函数-单元测试(含答案)](https://img.taocdn.com/s3/m/0ad15f2ee55c3b3567ec102de2bd960591c6d972.png)
第二十二章二次函数学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知二次函数223y x x =--,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为1d 、2d .设d d d =+,下列结论中:①④231(x 4点B C .52D .535.已知二次函数2y x bx c =++的图象上有三个点()11,y -)、()21,y 、()33,y ,若13y y =,则( ).A .21y c y >>B .12c y y <<C .12c y y >>D .21y c y <<6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )78①93的“特征数”为[1,2,3]-.若“特征数”为12,2,2m m m --⎢⎥⎣⎦的二次函数的图象与x 轴只有一个交点,则m的值为( )A .2-或2B .12-C .2-D .210.某同学在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()21349y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则该同学此次掷球的成绩(即OA 的长度)是( )A .4mB .6mC .8mD .9m11.已知函数223y x x =-+,当0x m ≤≤时,有最大值3,最小值2,则m 的取值范围是( )A .1m ≥B .02m ≤≤C .12m ≤≤D .2m ≤12.有一拱桥洞呈抛物线状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在平面直角坐标系中,则抛物线的表达式为( )A .281255x y x =+B .218255y x x =-+C .251825y x x =--D .25125168y x x +=+ 二、填空题13.已知抛物线22161y x x =-+,则这条抛物线的对称轴是直线 .14.已知抛物线()21433y x =--的部分图象如图所示,则图象再次与x 轴相交时的坐标是 .15.已知抛物线()20y ax bx c a =++≠图象的顶点为()2,3P -,且过()3,0A -,则抛物线的关系式为 .16.已知222b c c a a bk a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为 .对于平移后的抛物线,当25x ……时,y 的取值范围是 .17.设关于x 的方程()2440x k x k +--=有两个不相等的实数根12,x x ,且1202x x <<<,那么k 的取值范围是 .三、解答题18.己知二次函数y =ax 2+bx +c (a ,b ,c 均为常数且0a ≠).(1)若该函数图象过点(1,0)A -,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.(4)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.20.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?21.珊珊度假村共有客房50间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,度假村住宿每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房收入每天的最大利润是多少?(3)当x为何值时,客房收入每天的利润不低于10350元?22.篮球是一项广受喜爱的运动.学习了二次函数后,小江同学打篮球时发现,篮球投出时在空中的运动可近似看作一条抛物线,于是建立模型,展开如下研究:如图,篮框距离地面3m,某同学身高2m,站在距离篮球架4mL 处,从靠近头部的O点将球正对篮框投出,球经过最高点时恰好进入篮框,球全程在同一水平面内运动,轨迹可看作一条抛物线C.不计篮框和球的大小、篮板厚度等.(1)求抛物线C的表达式;(2)研究发现,当球击在篮框上方0.2m及以内范围的篮板上时,球会打板进框.若该同学正对篮框,改用跳投的方式,出手点O位置升高了0.5m,要能保证进球,求L的取值范围.(计算结果保留小数点后一位)23.如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接①求证:四边形是平行四边形;②判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.24.如图,抛物线239344y x x =-++与x 轴交于点A ,与y 轴交于点B .在线段OA 上有一动点(m,0)E (不与,O A 重合),过点E 作x 轴的垂线交AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求直线AB的函数解析式;(参考答案:题号12345678910答案B D B A D A C D C D 题号1112 答案CB1.B 2.D 3.B 4.A 5.D 6.A 7.C 8.D 9.C 10.D 11.C 12.B 13.4x =14.(7,0)15.23129y x x =---16.22(1)2y x =+-1670x ……17.-2<k <0 18.(1)223y x x =-++(2)()0,2,()2,0-19.(1)221y x =-;(2)17;(3)略;(4)2288y x x =-+.20.(1)y=-110x+30;(2)z=-110x 2+34x-3200;(3)第二年的销售单价应确定在不低于120元且不高于220元的范围内.21.(1)5010x y =-(2)(3)22(2)2312 24。
二次函数单元测试卷含答案
![二次函数单元测试卷含答案](https://img.taocdn.com/s3/m/3fffbd36fbd6195f312b3169a45177232f60e465.png)
二次函数单元测试卷一、选择题每小题3分,共30分1. 当-2≤ x ≦1,二次函数y=-x-m 2 + m 2 +1有最大值4,则实数m 值为47B. 3或-3 或-3 D. 2或3或-47 2. 函数22y mx x m =+-m 是常数的图像与x 轴的交点个数为A. 0个 B .1个 C .2个 D .1个或2个3. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是A. 1个 B .2个 C .3个 D .4个4. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是A .116m <-B .116m -≥且0m ≠C .116m =-D .116m >-且0m ≠5. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是A .2y x =B .24y x =+C .2325y x x =-+D .2351y x x =+-6. 若二次函数2y ax c =+,当x 取1x 、2x 12x x ≠时,函数值相等,则当x 取12x x +时,函数值为A .a c +B .a c -C .c -D .c7. 下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是A .1x y 2—=B .24y x =+C .1x 2x y 2+=—D .2351y x x =+-8. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是A .没有交点B .只有一个交点C .有且只有两个交点D .有且只有三个交点9. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根10..若把函数y=x 的图象用Ex,x 记,函数y=2x+1的图象用Ex,2x+1记,……则Ex,122+-x x 可以由Ex,2x 怎样平移得到A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位二、填空题每小题3分,共24分11. 抛物线2283y x x =--与x 轴有 个交点,因为其判别式24b ac -= 0,相应二次方程23280x x -+=的根的个数为. 12. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于 点,此时m = .13. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移 个单位.14. 如图所示,函数2(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x = .15. 已知二次函数212y x bx c =-++,关于x 的一元二次方程212x -根是1-和5-,则这个二次函数的解析式为16. 若函数y=m ﹣1x 2﹣4x+2m 的图象与x 轴有且只有一个交点,则m 的值为17. 若根式有意义,则双曲线y =x2-k 2与抛物线y =x 2+2x +2-2k 的交点在第 象限. 18. 将二次三项式x 2+16x+100化成x+p 2+q 的形式应为 三、解答题本大题共7小题,共66分19..7分已知一个二次函数的图象经过点0,0,1,﹣3,2,﹣8,求函数解析式;20. 8分已知抛物线21()3y x h k =--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是求h 和k 的值.21. 8分已知函数22y x mx m =-+-.1求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点;2若函数y 有最小值54-,求函数表达式. 22.9分 已知二次函数2224y x mx m =-+.1求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;2若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC 的面积为求此二次函数的函数表达式23. 10分下图是二次函数2y ax bx c =++的图像,与x 轴交于B ,C 两点,与y 轴交于A 点. 1根据图像确定a ,b ,c 的符号,并说明理由;2如果A 点的坐标为(03)-,,45ABC ∠=,60ACB ∠=,求这个二次函数的函数表达式.24.12分 已知抛物线222m y x mx =-+与抛物线2234m y x mx =+-图所示,其中一条与x 轴交于A ,B 两点.1试判断哪条抛物线经过A ,B 两点,并说明理由;2若A ,B 两点到原点的距离AO ,OB 满足条件1123OB OA -=,求经过A ,B 两点的这条抛物线的函数式.25. 12分已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=. 1求A ,B 两点坐标;2求抛物线表达式及点C 坐标;3在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.参考答案一、选择题每选对一题得3分,共30分1.C 2.C 3.D 4.B 5.D 6.D 7.B 8.B 9.C 10.D二、填空题每填对一题得3分,共24分11.0 < 0 12.一625 或9 7 15.25-x 3-x 21-y 2= 16.-1或1或2 17.2 18.()368x 2++ 三、解答题 7小题,共66分19.7分解:x 2--x y 2=20.1略 213x -x y 1-x -x y 22+==或21.1略 248x x 2y 48x -x 2y 22++=+=或 22.1a>0,b>0,c<0(2)A0,-3, B-3, 0 C0 , -323.14m 3-mx x y 22+= (2)设Ax 1 ,0,Bx 2 ,0, 则有32x 1x 121=+ 解得3-x 2x y 2+=25. 1A-1,0, B3, 0(2)3-x 2-x y 2=,C0,-3(3)存在;P1()()9,131P29,131-+,.。
九年级数学 二次函数单元测试卷 (word版,含解析)
![九年级数学 二次函数单元测试卷 (word版,含解析)](https://img.taocdn.com/s3/m/f84221b202020740bf1e9b11.png)
九年级数学 二次函数单元测试卷 (word 版,含解析)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D .(1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题.(3)分OD 是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0),∴抛物线的对称轴x =﹣42a a-=2. (2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m =,∴P或(3或(1和,当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32),综上所述,满足条件的点P 的坐标为或(3或(1)和)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题2.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点.(1)若点()1,2,()3,a 是一对泛对称点,求a 的值;(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位置关系,并说明理由;(3)抛物线2y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线于点M (不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由.【答案】(1)23;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0【解析】【分析】(1)利用泛对称点得定义求出t 的值,即可求出a.(2)设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),根据题干条件得到A (p,0),B (0,tp ),C (p,tp )的坐标,利用二元一次方程组证出k 1=k 2,所以AB ∥PQ.(3)由二次函数与x 轴交点的特征,得到D 点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案.【详解】(1)解:因为点(1,2),(3,a )是一对泛对称点,设3t =2解得t=23所以a=t×1=23(2)解:设P,Q两点的坐标分别为P(p,tq),Q(q,tp),其中0<p<q,t>0.因为PA⊥x轴于点A,QB⊥y轴于点B,线段PA,QB交于点C,所以点A,B,C的坐标分别为:A(p,0),B(0,tp),C(p,tp)设直线AB,PQ的解析式分别为:y=k1x+b1,y=k2x+b2,其中k1k2≠0.分别将点A(p,0),B(0,tp)代入y=k1x+b1,得111pk b tpb tp+=⎧⎨=⎩. 解得11k tb tp=-⎧⎨=⎩分别将点P(p,tq),Q(q,tp)代入y=k2x+b2,得2222pk b tpqk b tp+=⎧⎨+=⎩. 解得22k tb tp tp=-⎧⎨=+⎩所以k1=k2.所以AB∥PQ(3)解:因为抛物线y=ax2+bx+c(a<0)交y轴于点D,所以点D的坐标为(0,c).因为DM∥x轴,所以点M的坐标为(x M,c),又因为点M在抛物线y=ax2+bx+c(a<0)上.可得ax M 2+bx M+c=c,即x M(ax M+b)=0.解得x M=0或x M=-ba.因为点M不与点D重合,即x M≠0,也即b≠0,所以点M的坐标为(-ba,c)因为直线y=ax+m经过点M,将点M(-ba,c)代入直线y=ax+m可得,a·(-ba)+m=c.化简得m=b+c所以直线解析式为:y=ax+b+c.因为抛物线y=ax2+bx+c与直线y=ax+b+c交于另一点N,由ax 2+bx +c =ax +b +c ,可得ax 2+(b -a )x -b =0.因为△=(b -a )2+4ab =(a +b )2,解得x 1=-b a ,x 2=1. 即x M =-b a ,x N =1,且-b a≠1,也即a +b≠0. 所以点N 的坐标为(1,a +b +c )要使M (-b a,c )与N (1,a +b +c )是一对泛对称点, 则需c =t ×1且a +b +c =t ×(-b a ). 也即a +b +c =(-b a)·c 也即(a +b )·a =-(a +b )·c. 因为a +b≠0,所以当a =-c 时,M ,N 是一对泛对称点.因此对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形.此时点M 的坐标为(-b a,-a ),点N 的坐标为(1,b ). 所以M ,N 两点都在函数y =b x(b≠0)的图象上. 因为a <0, 所以当b >0时,点M ,N 都在第一象限,此时 y 随x 的增大而减小,所以当y M >y N 时,0<x M <1;当b <0时,点M 在第二象限,点N 在第四象限,满足y M >y N ,此时x M <0.综上,对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M (x M ,y M ),N (x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0.【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.3.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-.①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:m=2+2或m=22-.综上所述:m=25-或m=22+或m=22-.②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=x 2-4x-n 与y 轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.4.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.5.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP 最大面积s=1927322288⨯⨯=; P (12,﹣34) (3)存在;k=25 【解析】【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1.联立两个解析式,得:x 2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF(xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN ∽△EOF ,∴NQ EN OF EF =,即:1221k k k k-=, 解得:25, ∵k >0,∴25.∴存在唯一一点Q ,使得∠OQC=90°,此时. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.6.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:1211311322m m +-==,(不合题意,舍去). 所以113m +=. ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:1232132122m m +-==,(不合题意,舍去). 所以3212m +=. 综上所述:m 的取值范围是m <0,m =1132+或m =3212+. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.7.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是4+4-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大.故答案为:(1,41)m --+;13x; (2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为(1-0),D 点坐标为(3+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣23x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴093202a ba b=-+⎧⎨=++⎩解得2343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k bb-+⎧⎨=⎩解得232kb⎧=⎪⎨⎪=⎩∴直线AC的函数解析式为223y x=+;(3)存在.如图: 连接PO,作PM⊥x轴于M,PN⊥y轴于N设点P坐标为(m,n),则n=224233m m--+),PN=-m,AO=3当x=0时,y=22400233-⨯-⨯+=2,∴点C的坐标为(0,2),OC=2∵PAC PAO PCO ACOS S S S=+-212411322()3223322m m m⎛⎫=⨯⋅--++⨯⋅--⨯⨯⎪⎝⎭=23m m--∵a=-1<0∴函数S△PAC=-m2-3m有最大值∴b当m=()33212-=--⨯-∴当m=32-时,S△PAC有最大值n=222423435223332322m m⎛⎫--+=-⨯-⨯+=⎪⎝⎭∴当△ACP的面积最大时,P的坐标为(35,22-).【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC的面积是解答本题的关键.9.在平面直角坐标系xOy中(如图),已知二次函数2y ax bx c=++(其中a、b、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==, 又∵DH//y 轴,∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°,∴△CDH 为等腰直角三角形,∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC , ∵∠BAC=∠FAC ,∴∠OAB=∠OFA .∴△OAB∽△OFA,∴13 OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73 -).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.10.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C 的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键。
原题目:《二次函数》单元测试卷(附答案)
![原题目:《二次函数》单元测试卷(附答案)](https://img.taocdn.com/s3/m/bddc602f1fb91a37f111f18583d049649b660eb0.png)
原题目:《二次函数》单元测试卷(附答案)本文档为《二次函数》单元测试卷,包含答案。
以下是测试卷的内容:选择题:1. 二次函数的通项公式是()。
A. y = ax + bB. y = mx + cC. y = ax^2 + bx + cD. y = mx^2 + cx + d答案:C2. 图像 y = -x^2 的开口方向是()。
A. 向上B. 向下C. 平行于 x 轴D. 平行于 y 轴答案:B3. 若二次函数 y = ax^2 + bx + c 的图像开口朝上,且顶点坐标为 (2, 4),则 a, b, c 的值分别为()。
A. 2, -4, 4B. 2, 4, -4C. 4, -4, 2D. -4, 4, 2答案:A填空题:1. 二次函数的图像是一个()。
答案:抛物线2. 二次函数的图像开口朝上或开口朝下取决于()的正负性。
答案:a 的正负性3. 二次函数的图像与 x 轴交点的个数为()。
答案:2解答题:1. 解答下列各题:a) 求二次函数 y = 2x^2 + 3x - 4 的顶点坐标和开口方向。
答案:顶点坐标为 (-3/4, -37/8),开口朝上。
b) 若二次函数 y = ax^2 - 5x + 2 的图像与 x 轴有两个交点,则 a 的取值范围是多少?答案:a 的取值范围为(1/4, ∞)。
答案解析:1. 对于选择题,答案解析直接给出正确答案。
2. 对于填空题,答案解析给出填空的内容。
3. 对于解答题,答案解析给出详细的解答过程和最终答案。
请注意,以上只是个别题目的示例,实际测试卷内容可能不止这些题目。
希望本测试卷对你的学习有所帮助!。
2024年九年级数学上册《二次函数》单元测试及答案解析
![2024年九年级数学上册《二次函数》单元测试及答案解析](https://img.taocdn.com/s3/m/e87198b7162ded630b1c59eef8c75fbfc67d9443.png)
第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 23.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.4.坐标平面上有两个二次函数的图像,其顶点M、N皆在x轴上,且有一水平线与两图像相交于A、B、C、D四点,各点位置如图所示,若AB=12,BC=4,CD=6,则MN的长度是()A.8B.9C.10D.115.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+c =n -1有两个不相等的实数根;⑤若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.437.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界8.如图,抛物线G :y 1=a (x +1)2+2与抛物线H :y 2=-(x -2)2-1交于点B (1,-2),且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.49.设二次函数y=a x+mx+m-k(a<0,m,k是实数),则()A.当k=2时,函数y的最大值为-4aB.当k=2时,函数y的最大值为-2aC.当k=4时,函数y的最大值为-4aD.当k=4时,函数y的最大值为-2a10.如图,已知点A-1,0,点B2,3.若抛物线y=ax2-x+2(a为常数,a≠0)与线段AB有两个不同的公共点,则a的取值范围是()A.a≥3B.a≤-3或34≤a<1C.-3<a<1或a≥3D.34≤a<1二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm3与温度t°C之间的关系满足二次函数V=18t2+104t>0,则当温度为4°C时,水的体积为cm3.12.已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P2,y1,Q3,y2在抛物线C 上,则y1y2(填“>”或“<”);13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y1=a1x2+b1x+c1,y2=a2x2+b2x+c2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y2与直线y=32x+7的交点坐标为.14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4.为顶点,且过点B2,-5(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.(1)求该函数的解析式;(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出飞机降落后滑行到停下来前进了多远?19.已知一次函数y=ax+b的图像上有两点A、B,它们的横坐标分别是2、-1,若二次函数y=x 2的图像经过A、B两点.(1)求一次函数解析式并在平面直角坐标系内画出两个函数的图像;(2)若P m,y1两点都在二次函数y=x 2的图像上,试比较y1与y2的大小. ,Q m+1,y220.在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A-1,0两点,交y轴于点C,点P m,n,B3,0在抛物线上.(1)求抛物线的表达式及顶点坐标;(2)若此抛物线点P右侧的部分(不含点P)上恰好有三个点到x轴的距离均为2,请直接写出m的取值范围.四、(本大题共3小题,每小题8分,共24分)21.如图,在平面直角坐标系xOy中,已知抛物线的解析式是y1=x2,直线l的解析式是y2=-14,点F0,1 4,点P是在该抛物线上的动点,连接PF,过P作PN⊥l.(1)求证:PF=PN;(2)设点E-2,6,求PE+PF的最小值及此时点P的坐标.22.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出,如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车,另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;在两公司租出的汽车数量相等且都为x(单位:辆,0<x≤50)的条件下,甲的利润用y1表示(单位:元),乙的利润用y2(单位:元)表示,根据上述信息,解决下列问题:(1)分别表示出甲、乙的利润,什么情况下甲、乙的利润相同?(2)甲公司最多比乙公司利润多多少元?(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且仅当两公司租出的汽车均为16辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.23.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的x,y描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a x-h2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a x-h2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B 的坐标为;②将点B 坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为h,k①此时点B的坐标为;②将点B坐标代入y=a x-h2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2x+h2+k和C2:y2=a x+h2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,求a的值.五、(本大题共2小题,每小题12分,共24分)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的270C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A3,10起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a x-h.2+k a<0(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=-5x2+40x-68,记她训练的入水点的水平距离为d1,比赛当天入水点的水平距离为d2,请通过计算比较d1与d2的大小;(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=-5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.综合与实践问题提出某兴趣小组开展综合实践活动,如图1,在正方形ABCD中,E,F分别是AB,AD上一点,且AF=2AE.点M从点E出发,沿正方形ABCD的边顺时针运动;点N同时从点F出发,沿正方形ABCD的边逆时针运动.若两动点的运动速度相同,都为每秒1个单位长度,相遇时M,N两点都停止运动,设点M运动的时间为t秒,△AMN的面积为S,探究S与t的关系.初步感知根据运动的变化,绘制了如图2所示的图象,按不同的函数解析式,图象可分为四段,还有最后一段未画出.(1)AE的长为,AB的长为.(2)a的值为,S的最大值为.延伸探究(3)请求出图2中未画出的最后一段图象对应的函数解析式,并将图象补充完整.(4)求b的值,并求出当S>3时,t的取值范围.第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米【答案】B【分析】本题考查了待定系数法求函数解析式的运用,求出函数的解析式是解答本题的关键.设y=kx2,由待定系数法就可以求出解析式,把y=3.2×105代入函数解析式就可以求出结论.【详解】解:设y=kx2,∵当x=3时,y=18,∴9k=18,k=2,∴y=2x2,当成本为3.2×105元时,有2x2=3.2×105,x2=1.6×105,x=4×102.故选:B.2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 2【答案】C【分析】本题考查了待定系数法求二次函数解析式,二次函数的图象和性质等知识点,学会根据表格中的信息求得函数的解析式是解题的关键.由表格中的几组数求得二次函数的解析式,然后通过函数的性质即可得出结果.【详解】解:设二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),由题意可知a-b+c=0c=-59a+3b+c=-8 ,解得a=1b=-4 c=-5 ,∴二次函数的解析式为y=x2-4x-5 =x-5x+1=x -2 2-9,∴函数的图象开口向上,顶点为2,-9 ,图象与x 轴的交点分别为-1,0 和5,0 ,∴图象的对称轴是x =2,函数有最小值-9,∴选项A 、B 、D 不符合题意,选项C 符合题意.故选:C .3.一次函数y =ax +b 和二次函数y =ax 2+bx 在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】B 【分析】本题考查抛物线和直线的性质,本题可先由一次函数y =ax +b 图象得到字母系数的正负,再与二次函数y =ax 2+bx 的图象相比是否一致.【详解】解:A 、由抛物线可知,a <0,x =-b 2a<0,得b <0,由直线可知,a >0,b >0,故本选项不符合题意;B 、由抛物线可知,a >0,x =-b 2a <0,得b >0,由直线可知,a >0,b >0,故本选项符合题意;C 、由抛物线可知,a <0,x =-b 2a <0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意;D 、由抛物线可知,a >0,x =-b 2a>0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意.故选:B4.坐标平面上有两个二次函数的图像,其顶点M 、N 皆在x 轴上,且有一水平线与两图像相交于A 、B 、C 、D 四点,各点位置如图所示,若AB =12,BC =4,CD =6,则MN 的长度是()A.8B.9C.10D.11【答案】B 【分析】本题考查了二次函数的图像与性质,线段长度的相关计算,熟练掌握以上知识点是解题的关键.由AB ,BC ,CD 的长度以及根据二次函数的对称性可以知道,M 和C ,N 和B ,C 和B 横坐标的差,从而推出M 和N 的横坐标之差,得到MN 的长度.【详解】由A、B、C、D四点在同一水平线,可以知道四点纵坐标相同∵AB=12,BC=4,CD=6,∴AC=AB+BC=16,BD=4+6=10∴x C-x M=AC2=8,x N-x B=BD2=5又∵x C-x B=BC=4∴MN=x N-x M=(x N-x B)+(x C-x M)-(x C-x B)=5+8-4=9.故选:B.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+ c=n-1有两个不相等的实数根;⑤若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个【答案】B【分析】本题主要考查了二次函数图象与其系数的关系,二次函数的性质等等,根据开口向下得到a<0,再根据顶点坐标结合对称轴公式得到b=-2a>0,即b+2a=0,则可判断②;由对称性可得当x=-1时,y=a-b+c>0,则可判断②;根据函数图象可知抛物线与直线y=n-1有两个交点,则可判断④;根据二次函数与一元二次方程之间的关系可判断④.【详解】解:∵抛物线开口向下,∴a<0,∵顶点坐标为1,n,∴抛物线对称轴为直线x=-b2a=1,∴b=-2a>0,即b+2a=0,∴3a+b=2a+b+a=a<0,②错误;∵当x=3时y>0,抛物线对称轴为直线x=1,∴当x=-1时,y=a-b+c>0,①正确;∵抛物线顶点纵坐标为n,∴4ac-b24a=n,∴b2=4ac-4an=4a c-n,③正确;由图象可得抛物线与直线y=n-1有两个交点,∴ax2+bx+c=n-1有两个不相等的实数根,④正确;∵抛物线对称轴为直线x=1,方程ax2+bx+c=0的两根分别为x1,x2,,∴x1+x22=1,∴x1+x2=2,⑤正确.故选:B .6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.43【答案】B【分析】本题考查二次函数与几何的综合应用,作BE ⊥x 轴,DF ⊥x 轴,证明△BEC ≌△CFD ,进而求出D 点坐标,代入解析式进行求解即可.【详解】解:如图所示,作BE ⊥x 轴,DF ⊥x 轴,则:∠BEO =∠CFD =90°,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴∠BCE =∠CDF =90°-∠DCF ,∴△BEC ≌△CFD ,∴CF =BE ,DF =CE ,∵点B ,C 的坐标分别是(-2,1),(2,0),∴BE =CF =1,OC =2,DF =CE =2+2=4,∴OF =3,∴D 3,4 ,∵点D 在抛物线y =13x 2+bx 的图像上,∴4=13×32+3b ,∴b =13;故选B .7.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界【答案】D【分析】本题主要考查了二次函数的实际应用.根据顶点式的特点可知球运行的最大高度为2.6m,由此即可判断A;求出当x=9时,y的值,再与2.43m进行比较即可判断B;求出当x=18时,y的值,再与0比较即可判断C、D.【详解】解:∵抛物线解析式为y=-160x-62+2.6,∴球运行的最大高度为2.6m,故A说法错误,不符合题意;在y=-160x-62+2.6中,当x=9时,y=-1609-62+2.6=2.45>2.43,∴球会过球网,故B说法错误,不符合题意;在y=-160x-62+2.6中,当x=18时,则y=-16018-62+2.6=0.2>0,∴球会过球网且会出界,故C说法错误,不符合题意,D说法正确,符合题意;故选D.8.如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】①先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;②根据非负数的相反数或者直接由图像判断即可;③先根据题意得出-3<x<1时,观察图像可知y1 >y2,然后计算y1-y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.【详解】①∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B1,-2,∴x=1,y=-2,即-2=a(1+1)2+2,解得a=-1,∴抛物线G:y1=-x+12+2,∴抛物线G的顶点(-1,2),抛物线H的顶点为(2,-1),将(-1,2)向右平移3个单位,再向下平移3个单位即为(2,-1),即抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到,故①正确;②∵(x-2)2≥0,∴-(x-2)2≤0,∴y2=-x-22-1≤-1,∴无论x取何值,y2总是负数,故②正确;③∵B1,-2,∵将y=-2代入抛物线G:y1=-x+12+2,解得x1=-3,x2=1,∴A(-3,-2),将y=-2代入抛物线H:y2=-x-22-1,解得x1=3,x2=1,∴C(3,-2),∵-3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6∴当-3<x<1,随着x的增大,y1-y2的值减小,故③不正确;④设AC与y轴交于点F,∵B1,-2,∴F(0,-2),由③可知∴A(-3,-2),C(3,-2),∴AF=CF,AC=6,当x=0时,y1=1,y2=-5,即D(0,1),E(0,-5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:C .【点睛】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.9.设二次函数y =a x +m x +m -k (a <0,m ,k 是实数),则()A.当k =2时,函数y 的最大值为-4aB.当k =2时,函数y 的最大值为-2aC.当k =4时,函数y 的最大值为-4aD.当k =4时,函数y 的最大值为-2a【答案】C【分析】此题考查了二次函数的图象和性质、求二次函数的最值,求出二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .得到二次函数的对称轴是直线x =-m -m +k 2=-2m +k 2.根据开口方向进一步求出最值即可.【详解】解:由题意,令y =0,∴a x +m (x +m -k )=0,∴x 1=-m ,x 2=-m +k .∴二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .∴二次函数的对称轴是:直线x =-m -m +k 2=-2m +k 2.∵a <0,∴y 有最大值.当x =-2m +k 2,y 最大,即y =a -2m +k 2+m -2m +k 2+m -k =-k 24a 当k =4时,函数y 的最大值为-4a ;当k =2时,函数y 的最大值为-a .综上,C 选项正确.故选:C .10.如图,已知点A -1,0 ,点B 2,3 .若抛物线y =ax 2-x +2(a 为常数,a ≠0)与线段AB 有两个不同的公共点,则a 的取值范围是()A.a ≥3B.a ≤-3或34≤a <1C.-3<a <1或a ≥3D.34≤a <1【答案】B【分析】本题考查了二次函数和一次函数的综合问题,先求出直线AB 的解析式,令x +1=ax 2-x +2,根据有两个交点求出a 的取值范围,再分a >0和a <0两种情况讨论即可得到答案;【详解】解:设AB 所在直线为y =kx +b ,∵A -1,0 ,B 2,3 ,∴-k +b =02k +b =3,解得:k =1b =1 ,∴y =x +1,当x +1=ax 2-x +2时,∵二次函数与线段AB 有两个不同的公共点,∴(-2)2-4a ×1>0,解得:a <1,①当0<a <1时,此时函数的开口向上,∴a ×(-1)2-(-1)+2≥0,a ×22-2+2≥3,解得:34≤a <1,②当a <0时此时函数的开口向下,∴a ×(-1)2-(-1)+2≤0,a ×22-2+2≤3,解得:a ≤-3,综上所述得:34≤a <1,a ≤-3,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm 3 与温度t °C 之间的关系满足二次函数V =18t 2+104t >0 ,则当温度为4°C 时,水的体积为cm 3.【答案】106【分析】本题考查二次函数的应用,细心计算是解题的关键.将t =4代入解析式求值即可.【详解】解:∵V =18t 2+104t >0 ,当t =4°C 时,V =18×42+104=106cm 3 ,∴水的体积为106cm 3.故答案为:106.12.已知二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,点P 2,y 1 ,Q 3,y 2 在抛物线C 上,则y 1y 2(填“>”或“<”);【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为y =x +1 2,再利用二次函数图象的性质可得出答案.【详解】解:y =x 2-2x +1=x -1 2,∵二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,∴抛物线C 的解析式为y =x +1 2,∴抛物线开口向上,对称轴为x =-1,∴当x >-1时,y 随x 的增大而增大,∵2<3,∴y 1<y 2,故答案为:<.13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y 1=a 1x 2+b 1x +c 1,y 2=a 2x 2+b 2x +c 2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y 2与直线y =32x +7的交点坐标为.【答案】关于点-32,0 成中心对称-1,112 ,8,19 【分析】本题主要考查了二次函数的图像和性质,以及二次函数与一次函数的交点等知识.(1)根据抛物线图像可求出y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,根据点坐标与二次函数的图像可得出答案.(2)用待定系数法求出抛物线y 2的函数解析式,再令32x +7=12x -2 2+1,进一步求解即可求出y 2与直线y =32x +7的交点坐标.【详解】解:由图象可得抛物线y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,∵点-5,-1 与点2,1 关于点-32,0对称,∴抛物线y 1与抛物线y 2关于点-32,0成中心对称.设抛物线y 2解析式为y 2=a x -2 2+1,由图象可得抛物线经过(4,3),将(4,3)代入y 2=a x -2 2+1得3=4a +1,解得a =12,∴y 2=12x -2 2+1,令32x +7=12x -2 2+1,解得x 1=-1,x 2=8,将x 1=-1代入y =32x +7得y =112,把x 2=8代入y =32x +7得y =19,∴y 2与直线y =32x +7的交点坐标为-1,112 ,8,19 ,故答案为:-1,112 ,8,19 .14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.【答案】b >134或-3<b <1【分析】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,也考查了抛物线与直线的交点问题.解决本题的关键是利用数形结合的思想的运用.通过解方程x 2-2x -3=0得到A 、B 的坐标,利用二次函数的性质得到顶点的坐标,可写出图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,然后求出直线y =x +b 与y =-x 2+2x +3-1<x <3 相切b 的值,直线y =x +b 过A 和过B 点所对应的b 的值,再利用图象可判断直线y =x +b 与此图象有且只有两个公共点时b 的取值范围.【详解】解:当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,则A -1,0 ,B 3,0 ,y =x 2-2x -3=x -1 2-4,则顶点坐标为1,-4 ,把图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,如图,当直线y =x +b 与y =-x 2+2x +3-1<x <3 相切时,直线与新函数图象有三个交点,此时x +b =-x 2+2x +3有两个相等的实数解,方程整理得x 2-x +b -3=0,Δ=(-1)2-4(b -3)=0,解得b =134,∴当b >134时,直线y =x +b 与图像C 1恰有两个公共点,当直线y =x +b 过A -1,0 时,-1+b =0,解得b =1,当直线y =x +b 过B 3,0 时,3+b =0,解得b =-3,所以,当-3<b <1时,直线y =x +b 与此图象有且只有两个公共点.综上可知,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是b >134或-3<b <1.故答案为:b >134或-3<b <1.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.【答案】-32≤t ≤2【分析】本题考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,先求出点A ,点B ,点C 坐标,分三种情况讨论,由两点间距离公式和三角形三边关系可求解.【详解】解:∵二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C 当x =0时,y =3,当y =0时,33x 2-433x +3=0,解得:x 1=1,x 2=3∴A 1,0 ,B 3,0 ,C 0,3 ,对称轴为直线x =2如图所示,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等∴P A =PB 或PB =PC 或PC =P A ,∵段DE 在直线y =32上移动,∴点P 的纵坐标为32,设P x ,32①若PC =P A ,∴x 2+3-322=x -1 2+32 2解得:x =12∴P 12,32∴P A =PC =1,PC =7∵P A +PB =2<7∴不能构成三角形,舍去;②若PB =PC ,∴x 2+3-322=x -3 2+32 2解得:x =32∴P 32,32∵PB =PC =3,P A =1∴能构成三角形,③若P A =PB∴x-12+322=x-32+322解得:x=2∴P A=PB=72,PC=194∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为3的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为32-3≤t≤2,即-32≤t≤2故答案为:-32≤t≤2.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4为顶点,且过点B2,-5.(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.【答案】(1)与y轴的交点坐标为(0,3);与x轴的交点坐标为(-3,0),(1,0)(2)向左平移1个单位,该函数图象恰好经过原点【分析】本题考查了二次函数的图象和性质,待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.(1)设顶点式y=a(x+1)2+4,然后把(2,-5)代入求出a的值即可得出二次函数解析式;通过解方程-(x+1)2+4=0可得抛物线与x轴的交点坐标,通过计算自变量为0时的函数值可得到抛物线与y轴的交点坐标;(2)由于抛物线与x轴的交点坐标为(-3,0),(1,0),把点(1,0)向左平移1个单位到原点,所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.【详解】(1)解:设抛物线解析式为y=a(x+1)2+4,把(2,-5)代入得9a+4=-5,解得a=-1,所以抛物线解析式为y=-(x+1)2+4;当x=0时,y=-(x+1)2+4=-1+4=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,-(x+1)2+4=0,解得x1=1,x2=-3,则抛物线与x轴的交点坐标为(-3,0),(1,0);(2)解:因为抛物线与x轴的交点坐标为(-3,0),(1,0),所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.。
二次函数单元测试题(卷)(含答案)
![二次函数单元测试题(卷)(含答案)](https://img.taocdn.com/s3/m/f34457cc05a1b0717fd5360cba1aa81144318f8b.png)
二次函数单元测试题(卷)(含答案) 二次函数单元测试卷一、选择题(每小题3分,共30分)1.当-2≤x≦1,二次函数y=-(x-m)^2+ m+1有最大值4,则实数m值为()A.-7/4B.3或-3C.2或-3D.2或3或-7/42.函数y=mx+x-2m(m是常数)的图像与x轴的交点个数为()A.0个B.1个C.2个D.1个或2个3.关于二次函数y=ax^2+bx+c的图像有下列命题:①当c=0时,函数的图像经过原点;②当c>0,并且函数的图像开口向下时,方程ax^2+bx+c=0必有两个不相等的实根;③函数图像最高点的纵坐标是4ac-b^2/4a;④当b=0时,函数的图像关于y轴对称。
其中正确命题的个数是()A.1个B.2个C.3个D.4个4.关于二次函数y=2mx+(8m+1)x+8m的图像与x轴有交点,则m的范围是()A.m-1/16且m≠0 D。
m≥-1/165.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A.y=x^2B.y=x+4C.y=3x^2-2x+5D.y=3x+5x-16.若二次函数y=ax+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()A.a+cB.a-cC.-cD.c7.下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是()A.y=x^2-2B.y=x+4C.y=x^2-2x+1D.y=3x+5x-18.抛物线y=-3x^2+2x-1的图象与坐标轴交点的个数是()A.没有交点B.只有一个交点C.有且只有两个交点D.有且只有三个交点9.函数y=ax^2+bx+c的图象如图所示,那么关于x的一元二次方程ax^2+bx+c-3=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根10.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x-2x+1)可以由E(x,x)怎样平移得到?A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位二、填空题11.抛物线y=2x-8-3x与x轴有2个交点,因为其判别式b^2-4ac=2,相应二次方程3x-2x+8=0的根的个数为2.12.关于x的方程mx^2+mx+5=m有两个相等的实数根,则相应二次函数y=mx^2+mx+5-m与x轴必然相交于两点,此时m=0和(x,0),若x+1/x=7,要使抛物线经过原点,应将它向右平移1个单位。
二次函数单元测试题及答案
![二次函数单元测试题及答案](https://img.taocdn.com/s3/m/f913388ecf2f0066f5335a8102d276a200296036.png)
二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。
答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。
答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。
答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。
答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。
10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。
答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。
二次函数单元测试题及答案
![二次函数单元测试题及答案](https://img.taocdn.com/s3/m/60bf7247cd7931b765ce0508763231126fdb774d.png)
二次函数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = (x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx答案:C2. 若二次函数y = ax^2 + bx + c的图像开口向上,则a的值是:A. 正数B. 负数C. 零D. 任意实数答案:A3. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/a, c)D. (-b/2a, 4ac - b^2 / 4a)答案:D4. 二次函数y = ax^2 + bx + c的对称轴是:A. x = -bB. x = -b/2aC. x = b/2aD. x = b/a答案:B5. 若二次函数y = ax^2 + bx + c与x轴有两个交点,则判别式Δ的值是:A. Δ > 0B. Δ < 0C. Δ = 0D. Δ ≤ 0答案:A二、填空题(每题2分,共10分)6. 二次函数y = 2x^2 - 4x + 3的顶点坐标是________。
答案:(1, 1)7. 若二次函数y = ax^2 + bx + c的图像与y轴交于(0, k),则k等于________。
答案:c8. 当a > 0时,二次函数y = ax^2 + bx + c的图像开口________。
答案:向上9. 二次函数y = -3x^2 + 6x + 5的对称轴方程是________。
答案:x = 110. 若二次函数y = ax^2 + bx + c与x轴相交于两点,则判别式Δ必须________。
答案:大于0三、解答题(每题5分,共20分)11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。
解答:将点(1, 2)代入函数得:a + b + c = 2将点(-1, 0)代入函数得:a - b + c = 0两式相减得:2b = 2,即b = 1将b代入任一式得:a + c = 1由于题目条件不足,无法唯一确定a和c的值。
北师大版九年级数学下册第二章 二次函数 单元测试训练卷(word 含答案)
![北师大版九年级数学下册第二章 二次函数 单元测试训练卷(word 含答案)](https://img.taocdn.com/s3/m/525d9e4a9a6648d7c1c708a1284ac850ad0204ed.png)
北师大版九年级数学下册第二章 二次函数单元测试训练卷一、选择题(共8小题,4*8=32)1. 下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 2 2. 如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h <0,k >03. 已知二次函数y =x 2-4x +a ,下列说法错误的是( )A .当x<1时,y 随x 的增大而减小B .若图象与x 轴有交点,则a≤4C .当a =3时,不等式x 2-4x +3>0的解集是1<x<3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-34. 下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+12x +1的对称轴是直线x =3B .对于抛物线y =x 2-2x -3,点A(3,0)不在它的图象上C .二次函数y =(x +3)2-3的顶点坐标是(-3,-3)D .函数y =2x 2+4x -3的图象的最低点是(-1,-5)5. 点P(m ,n)在以y 轴为对称轴的二次函数y =x 2+ax +4的图像上.则m -n 的最大值等于( )A .154B .4C .-154D .-1746. 函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象可能是( )7. 如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .48. 如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )二.填空题(共6小题,4*6=24)9.抛物线y =-x 2+15有最________点,其坐标是________.10. 若二次函数y =x 2+2x +a 的图象与x 轴有两个不同的交点,则a 的取值范围是__________.11. 如图,已知二次函数y =x 2+bx +c 的图象的对称轴是直线x =1,过抛物线上两点的直线AB 平行于x 轴,若点A 的坐标为⎝⎛⎭⎫0,32,则点B 的坐标为 .12. 已知二次函数y =x 2+2mx +2,当x>2时,y 随x 的增大而增大,则实数m 的取值范围是________.13. 抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________.14. 如图,二次函数y =ax 2+bx +c 的对称轴在y 轴的右侧,其图象与x 轴交于点A(-1,0),点C(x 2,0),且与y 轴交于点B(0,-2),小强得到以下结论:①0<a <2;②-1<b <0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.三.解答题(共5小题,44分)15.(6分) 已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值.16.(8分)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的表达式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)17.(8分) 抛物线y=-x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)在如图所示的平面直角坐标系中画出抛物线并写出它与y轴的交点C的坐标;(3)根据图像直接写出:点C关于直线x=2的对称点D的坐标为________;若E(m,n)为抛物线上一点,则点E关于直线x=2的对称点的坐标为________(用含m、n的式子表示).18.(10分) 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.19.(12分) 如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴的距离OK=10.从点A处向右上方沿抛物线L:y=-x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的表达式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE 沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]参考答案1-4 DBCB 5-8CCCA9.高,(0,15)10.a <111.⎝⎛⎭⎫2,32 12.m≥-213.014.①④15.解:把(-1,0),(3,0)分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧0=a -b -3,0=9a +3b -3,解得⎩⎪⎨⎪⎧a =1,b =-2. 即a 的值为1,b 的值为-2.16.解: (1)∵直线y =x +m 经过点A(1,0),∴0=1+m .∴m =-1.∴y =x -1.∵抛物线y =x 2+bx +c 经过点A(1,0),B(3,2),∴⎩⎪⎨⎪⎧0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2.∴抛物线的表达式为y =x 2-3x +2 (2)x<1或x>317.解:(1)∵抛物线y =-x 2+bx +c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0).∴抛物线为y =-(x -2)2=-x 2+4x -4,∴b =4,c =-4.(2)画出抛物线如图:点C 的坐标为(0,-4).(3)(4,-4);(4-m ,n)18.(1)将点A(1,0)代入y =(x -2)2+m 中得(1-2)2+m =0,解得m =-1,所以二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,所以点C 坐标为(0,3),由于点C 和点B 关于对称轴对称,而抛物线的对称轴为直线x =2,所以点B 坐标为(4,3),将A(1,0),B(4,3)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =1,b =-1.所以一次函数的表达式为y =x -1 (2)当kx +b≥(x -2)2+m 时,1≤x≤419.解:(1)对于抛物线y =-x 2+4x +12,令y =0,则-x 2+4x +12=0,解得x =-2或x =6,∵OA =2,∴A(-2,0),∴点A 的横坐标为-2.补画y 轴,如图所示,由题意知台阶T 4左边的端点坐标为(4.5,7),右边的端点为(6,7).当x =4.5时,y =9.75>7,当x =6时,y =0<7,对于y =-x 2+4x +12,当y =7时,7=-x 2+4x +12,解得x =-1或x =5,∴抛物线与台阶T 4有交点,∴点P 会落在台阶T 4上.(2)设抛物线C 的表达式为y =-x 2+bx +c ,抛物线y =-x 2+4x +12与台阶T 4的交点为R ,则R(5,7).由题意知抛物线C :y =-x 2+bx +c 经过R(5,7),最高点的纵坐标为11,∴⎩⎪⎨⎪⎧-4c -b 2-4=11,-25+5b +c =7,解得⎩⎪⎨⎪⎧b =14,c =-38或⎩⎪⎨⎪⎧b =6,c =2(舍去),∴抛物线C 的表达式为y =-x 2+14x -38,∴抛物线C 的对称轴为直线x =7,易知台阶T 5的左边的端点为(6,6),右边的端点为(7.5,6),∴抛物线C 的对称轴与台阶T 5有交点.(3)对于抛物线C :y =-x 2+14x -38,令y =0,得到-x 2+14x -38=0,解得x =7+11或x =7-11(舍去),∴抛物线C 交x 轴于(7+11,0),当y =2时,2=-x 2+14x -38,解得x =4(舍去)或x =10,∴抛物线经过(10,2),在Rt △BDE 中,∠DEB =90°,DE =1,BE =2,∴当点D 与(7+11,0)重合时,点B 的横坐标最大,最大值为8+11,当点B 与(10,2)重合时,点B 的横坐标最小,最小值为10,∴点B 横坐标的最大值比最小值大11-2.。
《二次函数》单元测试卷 (含答案)
![《二次函数》单元测试卷 (含答案)](https://img.taocdn.com/s3/m/e0337c825ebfc77da26925c52cc58bd630869372.png)
《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。
二次函数单元测试题及答案
![二次函数单元测试题及答案](https://img.taocdn.com/s3/m/020c510e86c24028915f804d2b160b4e767f81ef.png)
二次函数单元测试题及答案The document was prepared on January 2, 2021二函数单元测试一含答案一、选择题:1.下列函数中,是二次函数的是 A. 28xy =B.18+=x yC.x y 8=D. 182+=x y2. 二次函数12)12(2+--=x k x y ,当1>x 时,y 随着x 的增大而增大,当1<x 时,y 随着x 的增大而减小,则k 的值应取A .12B .11C .10D .93.2A. B. C. D.4.在函数,自变量x 的取值范围是 A. x ≥-2且x ≠±3 B. x ≥-2且x ≠3 C. x >-2且x ≠-3 D. x >-2且x ≠35.无论m 为何实数,二次函数m x m x y +--=)2(2的图象总是过定点A.-1,3B.1,0C.1,3D.-1,06.在直角坐标系中,坐标轴上到点P-3,-4的距离等于5的点共有 个 个 个 个7. 下列四个函数中,y 的值随着x 值的增大而减小的是A .x y 2=B .()01>=x x y C .1+=x y D .()02>=x x y 8.抛物线c bx ax y ++=2的图象如图,OA=OC,则 A .b ac =+1 B .c ab =+1 C .a bc =+1 D .以上都不是9.在同一坐标系中,一次函数和二次函数c ax y +=2的图象大致为10.若0>b ,则二次函数12-+=bx x y 2的图象的顶点在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:11.已知二次函数解析式为562+-=x x y ,则这条抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 ,将抛物线562+-=x x y 向 平移 个单位,则得到抛物线962+-=x x y .12.请写出一个开口向上,对称轴为直线2=x ,且与y 轴的交点坐标为0,3的抛物线的解析式 .13. c bx ax y ++=2中,0<a ,抛物线与x 轴有两个交点A2,0B-1,0,则02>++c bx ax 的解是____________,02<++c bx ax 的解是____________.14.已知抛物线y ax bx c =++2经过点A-2,7,B6,7,C3,-8,则该抛物线上纵坐标为-8的另一点的坐标是________.15.如右图所示,长方体的底面是边长为x cm 的正方形,高为6cm,请你用含x 的代数式表示这个长方体的侧面展开图的面积S=________,长方体的体积为V=__________,各边长的和L=__________,在上面的三个函数中,_______是关于x 的二次函数.16.抛物线22++=x x y 与直线4=y 有___个交点,交点坐标是_________________.三、解答题: 17.当二次函数图象与x 轴交点的横坐标分别是1,321=-=x x ,且与y 轴交点为0,-2,求这个二次函数的解析式.18.求抛物线3522--=x x y 与坐标轴的交点坐标,并求这些交点所构成的三角形面积.19. 一男生推铅球,铅球出手后运动的高度)(m y ,与水平距离)(m x 之间的函数关系是35321212++-=x x y ,那么这个男生的铅球能推出几米20.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m 件与每件的销售价x 元满足一次函数关系x m 3162-=,请写出商场卖这种商品每天的销售利润y 元与每件销售价x 元之间的函数关系式.21. 心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x单位:分钟之间满足函数关系-+=xxy,y的值越大,表示接受能力越强.+x30)≤0(431.02≤6.21若用10分钟提出概念,学生的接受能力y的值是多少2如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了通过计算来回答.22.如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20米,水位上升3m就达到警戒线CD,这是水面宽度为10米,1在如图的坐标系中求抛物线的解析式;2若洪水到来时,水位以每小时米的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶参答案一、选择题:;;;;;;;;; .二、填空题:新课标第一网xkb11. 3 , 51<<x ,上 , 4 ; 12. 342+-=x x y 答案不唯一;13. 21<<-x , 1-<x 或2>x ; 14. )8,1(-;15. x 24,26x ;248+x ,26x V =; 16. 两,-2,4和1,4.三、解答题:新 课标 第一 网 17. 234322-+=x x y . 18. )0,3( ,),(021- ,)3,0(- , 面积421. 19. 10米.提示:令0=y ,横坐标正值即为所求.20. )5430(486025232≤≤-+-=x x x y . 21.159=y ;2用8分钟与用10分钟相比,学生的接受能力减弱了;用15分钟与用10分钟相比,接受能力增强了.新 课 标第 一网x kb 22. 1 2251x y -=;25小时 .。
二次函数单元测试(附答案)
![二次函数单元测试(附答案)](https://img.taocdn.com/s3/m/9455377d6edb6f1aff001fd3.png)
二次函数单元测试卷一、选择题(20分)1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( )A.B.C.D.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( )A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于04.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.16.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.258.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m二、填空题(20分):11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为__________.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为__________.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是__________.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=__________.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是__________.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为__________.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是__________.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为__________.19.当n=__________,m=__________时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口__________.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是__________.三、解答题(60分):21.(5分)求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.22.(6分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.23.(7分)下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?24.(8分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.25.(7分)二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?26.(7分)有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)27.(10分)某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?28.(10分)在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.《二次函数》单元测试卷一、选择题1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定【考点】抛物线与x轴的交点.【分析】利用“二次函数的图象和性质与一元二次方程之间的关系”解答即可.【解答】解:判断二次函数图象与x轴的交点个数,就是当y=0时,方程x2﹣x+1=0解的个数,∵△=(﹣1)2﹣4×1×1=﹣3<0,此方程无解,∴二次函数y=x2﹣x+1的图象与x轴无交点.故选A.【点评】主要考查了二次函数的图象和性质与一元二次方程之间的关系,这些性质和规律要求掌握.2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( ) A.B.C.D.【考点】抛物线与x轴的交点.【分析】根据函数图象上所有点都在x轴下方可知,函数图象开口向下且顶点纵坐标小于0,列出不等式.【解答】解:由题意得:,解得:,故选A.【点评】本题考查了二次函数的图象在x轴下方的性质:开口向下,且与x轴无交点.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( )A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于0【考点】二次函数图象与系数的关系.【分析】根据函数图象可以得到以下信息:a<0,b>0,c>0,再结合函数图象判断各选项.【解答】解:由函数图象可以得到以下信息:a<0,b>0,c>0,A、错误;B、错误;C、正确;D、错误;故选C.【点评】本题考查了二次函数图象与系数的关系,应先观察图象得到信息,再进行判断.4.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.【考点】二次函数图象上点的坐标特征.【分析】由抛物线y=ax2﹣6x经过点(2,0),求得a的值,再求出函数顶点坐标,求得顶点到坐标原点的距离.【解答】解:由于抛物线y=ax2﹣6x经过点(2,0),则4a﹣12=0,a=3,抛物线y=3x2﹣6x,变形,得:y=3(x﹣1)2﹣3,则顶点坐标M(1,﹣3),抛物线顶点到坐标原点的距离|OM|==.故选B.【点评】本题考查了二次函数图象上点的坐标特征,先求解析式,再求顶点坐标,最后求距离.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.1【考点】二次函数综合题.【专题】压轴题.【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【解答】解:在y=x2﹣4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:×2×3=3;故选C.【点评】本题考查根据解析式确定点的坐标.6.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根【考点】抛物线与x轴的交点.【专题】压轴题.【分析】把抛物线y=ax2+bx+c向下平移8个单位即可得到y=ax2+bx+c﹣8的图象,由此即可解答.【解答】解:∵y=ax2+bx+c的图象顶点纵坐标为8,向下平移8个单位即可得到y=ax2+bx+c ﹣8的图象,此时,抛物线与x轴有一个交点,∴方程ax2+bx+c﹣8=0有两个相等实数根.【点评】考查方程ax2+bx+c+2=0的根的情况与函数y=ax2+bx+c的图象与x轴交点的个数之间的关系.7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.25【考点】二次函数的性质.【分析】因为当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么可知对称轴就是x=﹣2,结合顶点公式法可求出m的值,从而得出函数的解析式,再把x=1,可求出y的值.【解答】解:∵当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大,∴对称轴x=﹣=﹣=﹣2,解得m=﹣16,∴y=4x2+16x+5,那么当x=1时,函数y的值为25.故选D.【点评】主要考查了如何根据函数的单调性确定对称轴,并根据对称轴公式求字母系数从而求得函数值.8.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴【考点】二次函数图象与系数的关系.【分析】由直线y=ax+b不经过二、四象限,则a>0,b=0,再判断抛物线的开口方向和对称轴.【解答】解:∵直线y=ax+b不经过二、四象限,∴a>0,b=0,则抛物线y=ax2+bx+c开口方向向上,对称轴x==0.故选A.【点评】本题考查了一次函数和二次函数与其系数的关系,由一次函数判断出a、b的正负,在判断二次函数的性质.9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+【考点】二次函数的应用.【专题】应用题.【分析】求最大高度,就要把抛物线解析式的一般形式改写成顶点式后,求顶点的纵坐标.【解答】解:y=﹣x2+4x+2=﹣(x﹣2)2+6,∵﹣1<0∴当x=2时,最大高度是6.故选C.【点评】注意抛物线的解析式的三种形式,在解决抛物线的问题中的作用.10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m【考点】二次函数的应用.【专题】几何图形问题.【分析】本题考查二次函数最小(大)值的求法.【解答】解:设长为x,则宽为,S=x,即S=﹣x2+2x,要使做成的窗框的透光面积最大,则x=﹣=﹣==1.5m.于是宽为==1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m.故选A.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.二、填空题:11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为4.【考点】抛物线与x轴的交点.【专题】压轴题.【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并熟练运用.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为(3,0).【考点】抛物线与x轴的交点.【分析】解方程﹣x2+6x﹣9=0即可求得函数图象与x轴的交点坐标的横坐标.【解答】解:当y=0时,﹣x2+6x﹣9=0,解得:x=3.∴交点坐标是(3,0).【点评】考查二次函数与一元二次方程的关系.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是1.【考点】抛物线与x轴的交点.【分析】抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形中:底边长为与x轴的两交点之间的距离,高为抛物线的顶点的纵坐标的绝对值,再利用三角形的面积公式即可求出b的值.【解答】解:由题意可得:抛物线的顶点的纵坐标为=﹣1,∴底边上的高为1;∵x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴的交点为(1,0)、(3,0);由题意得:底边长=|x1﹣x2|=2,∴抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积为:×2×1=1.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并能与几何知识结合使用.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=﹣3.3.【考点】图象法求一元二次方程的近似根.【专题】压轴题.【分析】先根据图象找出函数的对称轴,得出x1和x2的关系,再把x1=1.3代入即可得x2.【解答】解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣3.2),则对称轴为x=﹣1;所以=﹣1,又因为x1=1.3,所以x2=﹣2﹣x1=﹣2﹣1.3=﹣3.3.故答案为:﹣3.3【点评】考查二次函数和一元二次方程的关系.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是(0,0).【考点】二次函数的性质.【分析】此题可以先将点A的坐标代入抛物线和直线,求得a、b的值,再将两个函数联立成一元二次方程求得另一个交点坐标B.【解答】解:抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点A代入y=ax2,解得a=1;代入y=2x+b,解得:b=0;将两方程联立得:x2=2x,解方程得:x=0或2,则另一交点坐标B为(0,0).【点评】本题考查了待定系数法解函数及两函数图象的交点问题.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为y=﹣4(x﹣2)2+3.【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及所给的坐标可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向右平移2个单位,再向上平移3个单位,那么新抛物线的顶点为(2,3);可设新抛物线的解析式为y=a(x﹣h)2+k,把(3,﹣1)代入得a=﹣4,∴y=﹣4(x﹣2)2+3.【点评】题中由抛物线的顶点求解析式一般采用顶点式;解决本题的关键是得到新抛物线的顶点坐标.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是m>.【考点】抛物线与x轴的交点.【分析】由题意二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,可知(m+5)x2+2(m+1)x+m=0,方程二次项系数(m+5)>0,方程根的判别式△<0,根据以上条件从而求出m的取值范围.【解答】解:∵二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,∴(m+5)>0,△<0,∴m>﹣5,4(m+1)2﹣4(m+5)×m<0,解得m>.故m>【点评】此题主要考查一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为y=﹣3x2﹣12x﹣9.【考点】待定系数法求二次函数解析式.【分析】由题知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),将点代入抛物线解析式,再根据待定系数法求出抛物线的解析式.【解答】解:抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),∴对称轴x=﹣=﹣2…①,又∵抛物线过点P(﹣2,3),且过A(﹣3,0)代入抛物线解析式得,由①②③解得,a=﹣3,b﹣12,c=﹣9,∴抛物线的关系式为:y=﹣3x2﹣12x﹣9.【点评】此题考查二次函数的基本性质及其对称轴和顶点坐标,运用待定系数法求抛物线的解析式,同时也考查了学生的计算能力.19.当n=2,m=2时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口向上.【考点】二次函数的性质;二次函数的定义.【分析】对y=(m+n)x n+(m﹣n)x的图象是抛物线的判定,需满足n=2,又其顶点在原点,需满足m﹣n=0,则m、n的值即可求出,根据解得的函数解析式判断抛物线的开口方向.【解答】解:若函数y=(m+n)x n+(m﹣n)x的图象满足是抛物线,且其顶点在原点,则,解得,,故函数y=4x2,又由于a=4>0,则抛物线的开口向上.【点评】本题考查了二次函数的性质,需掌握抛物线函数需满足的条件及开口方向的判定.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是﹣1<a<0.【考点】二次函数的性质.【分析】抛物线经过(0,1)可得c的值,又经过(2,﹣3)可得a和b的关系,又开口向下,对称轴在y轴左侧,则需满足a<0,x=<0,解得a的取值范围.【解答】解:抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,则c=1,4a+2b+c=﹣3,即4a+2b=﹣4,化简得:2a+b=﹣2,又抛物线开口向下,对称轴在y轴左侧,则需满足:,解得:﹣1<a<0.【点评】本题综合考查了二次函数的各种性质,并与不等式结合体现出来.三、解答题:21.求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.【考点】二次函数的性质;抛物线与x轴的交点.【分析】本题已知二次函数的一般式,求顶点,可以通过配方法把解析式写成顶点式,求它与x轴的交点坐标,可以设y=0,求方程x2﹣2x﹣1=0的解.【解答】解:∵y=x2﹣2x﹣1=x2﹣2x+1﹣2=(x﹣1)2﹣2∴二次函数的顶点坐标是(1,﹣2)设y=0,则x2﹣2x﹣1=0∴(x﹣1)2﹣2=0(x﹣1)2=2,x﹣1=±∴x1=1+,x2=1﹣.二次函数与x轴的交点坐标为(1+,0)(1﹣,0).【点评】本题考查求二次函数的顶点坐标及x轴交点坐标的求法.22.已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)此题首先要将函数右边的式子化为完全平方式,才能知道顶点坐标和对称轴;(2)令y=0,求得抛物线在x轴上的交点坐标,那么长度就很快就能求出.【解答】解:(1)∵y=x2+x﹣=(x+1)2﹣3,∴抛物线的顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)当y=0时,x2+x﹣=0,解得:x1=﹣1+,x2=﹣1﹣,AB=|x1﹣x2|=.【点评】考查求抛物线的顶点坐标的方法及与x轴交点坐标特点.23.下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?【考点】二次函数图象与几何变换;待定系数法求二次函数解析式;二次函数与不等式(组).【专题】图表型.【分析】根据与x轴的交点坐标得到什么时候y>0.讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.【解答】解:(1)这个代数式属于二次函数.当x=0,y=3;x=4时,y=3.说明此函数的对称轴为x=(0+4)÷2=2.那么﹣=﹣=2,b=﹣4,经过(0,3),∴c=3,二次函数解析式为y=x2﹣4x+3,当x=1时,y=0;当x=3时,y=0.(每空2分)(2)由(1)可得二次函数与x轴的交点坐标,由于本函数开口向上,可根据与x轴的交点来判断什么时候y>0.当x<1或x>3时,y>0.(3)由(1)得y=x2﹣4x+3,即y=(x﹣2)2﹣1.将抛物线y=x2﹣4x+3先向左平移2个单位,再向上平移1个单位即得抛物线y=x2.【点评】常由一些特殊点入与y轴的交点,对称轴等得到二次函数的解析式.24.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【考点】待定系数法求二次函数解析式;二次函数图象与几何变换;抛物线与x轴的交点.【专题】压轴题;分类讨论.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识.不规则图形的面积通常转化为规则图形的面积的和差.25.二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?【考点】二次函数图象与几何变换;二次函数的图象;抛物线与x轴的交点.【专题】压轴题;开放型.【分析】(1)由平移规律求出新抛物线的解析式;(2)令y=0,求出x的值,即可得交点坐标.抛物线开口向上,当x的值在两交点之外y 的值大于0.【解答】解:(1)画图如图所示:依题意得:y=(x﹣1)2﹣2=x2﹣2x+1﹣2=x2﹣2x﹣1∴平移后图象的解析式为:x2﹣2x﹣1(2)当y=0时,x2﹣2x﹣1=0,即(x﹣1)2=2,∴,即∴平移后的图象与x轴交于两点,坐标分别为(,0)和(,0)由图可知,当x<或x>时,二次函数y=(x﹣1)2﹣2的函数值大于0.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)【考点】二次函数的应用.【专题】几何图形问题.【分析】设窗框的宽为x米,窗框的高为,则窗框的面积为S=x•,再求得面积的最大值即可.【解答】解:设窗框的宽为x米,则窗框的高为米.则窗的面积S=x•S=.当x==1.2(米)时,S有最大值.此时,窗框的高为=1.8(米)【点评】本题考查了二次函数在实际生活中的运用.27.某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?【考点】二次函数的应用.【专题】应用题;图表型.【分析】(1)设所求函数关系式为y=ax2+bx+c,代入三点求出a、b、c,(2)由利润看成是销售总额减去成本和广告费列出关系式,(3)把二次函数化成顶点坐标式,观察S随x的变化.【解答】解:(1)设所求函数关系式为y=ax2+bx+c,把(0,1),(1,1.5),(2,1.8)分别代入上式,得解得∴y=﹣x2+x+1(2)S=(3﹣2)×10y﹣x=(﹣x2+x+1)×10﹣x=﹣x2+5x+10.(3)∵S=﹣x2+5x+10=﹣.∴当0≤x≤2.5时,S随x的增大而增大.因此当广告费在0﹣2.5万元之间时,公司的年利润随广告费的增大而增大【点评】本题考查的是二次函数在实际生活中的应用,比较简单.28.在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)欲求抛物线的解析式,需求出m、n的值,根据抛物线的解析式,易得顶点A 的坐标,然后将x=1代入抛物线的解析式中,可得点C的坐标,即可根据AC的长得到第一个关于m、n的等量关系式;由于抛物线的顶点在x轴上,即抛物线与x轴只有一个交点,即根的判别式△=0,联立两个关于m、n的式子即可求出m、n的值,从而得到该抛物线的解析式.(2)根据(1)的抛物线解析式可求得点B的坐标,即可得到OB的长;过O作OM⊥BD于M,根据题意可知OM=,进而可利用勾股定理求得BM的长;在△EOF中,OM⊥EF,易证得△OBM∽△FOM,根据相似三角形所得比例线段即可求得OF的长,也就得到了F 点的坐标,进而可利用待定系数法求得直线BD的解析式,联立抛物线的解析式即可求出点D的坐标.【解答】解:(1)根据题意,画出示意图如答图所示,过点C作CE⊥x轴于点E;∵抛物线上一点C的横坐标为1,且AC=3,∴C(1,n﹣2m+2),其中n﹣2m+2>0,OE=1,CE=n﹣2m+2;∵抛物线的顶点A在x轴负半轴上,∴A(m,0),其中m<0,OA=﹣m,AE=OE+OA=1﹣m;由已知得,由(1)得n=m2﹣1;(3)把(3)代入(2),得(m2﹣2m+1)2+(m2﹣2m+1)﹣90=0,∴(m2﹣2m+11)(m2﹣2m﹣8)=0,∴m2﹣2m+11=0(4)或m2﹣2m﹣8=0(5);对方程(4),∵△=(﹣2)2﹣4×11=﹣40<0,∴方程m2﹣2m+11=0没有实数根;由解方程(5),得m1=4,m2=﹣2,∵m<0,∴m=﹣2.把m=﹣2代入(3),得n=3,∴抛物线的关系式为y=x2+4x+4(2)∵直线DB经过第一、二、四象限;设直线DB交x轴正半轴于点F,过点O作OM⊥DB于点M,∵点O到直线DB的距离为,∴OM=,∵抛物线y=x2+4x+4与y轴交于点B,∴B(0,4),∴OB=4,∴BM=;∵OB⊥OF,OM⊥BF,∴△OBM∽△FOM,∴,∴,∴OF=2BO=8,F(8,0);∴直线BF的关系式为y=﹣x+4;∵点D既在抛物线上,又在直线BF上,∴,解得,∵BD为直线,∴点D与点B不重合,∴点D的坐标为.【点评】此题是二次函数的综合题,涉及到勾股定理、根的判别式、二次函数解析式的确定、相似三角形的判定和性质以及函数图象交点坐标的求法等重要知识,综合性强,难度较大.。
二次函数单元测试卷(答案)
![二次函数单元测试卷(答案)](https://img.taocdn.com/s3/m/975fe13d7dd184254b35eefdc8d376eeaeaa172d.png)
二次函数单元测试卷(答案)1.已知函数y=2x^2+3x-1的自变量x取值范围为[-2,1],则在该范围内,该函数的最大值为_____,最小值为_____。
答案:最大值为3,最小值为-1.2.已知二次函数y=ax^2+bx+c的图象经过点(1,2)和点(3,4),则a+b+c的值为_____。
答案:a+b+c的值为6.3.抛物线y=-x^2+2x+3的顶点坐标为_____。
答案:(1,4)。
4.已知函数y=x^2-4x+5,则将其表示成y=a(x-h)^2+k的形式为_____。
答案:y=(x-2)^2+1.5.抛物线y=ax^2+bx+c的对称轴方程为x=2,且经过点(0,1),则a+b+c的值为_____。
答案:a+b+c的值为1.6.已知二次函数y=ax^2+bx+c的图象与x轴交于点(1,0)和点(3,0),则a的值为_____。
答案:a的值为-1/4.7.抛物线y=2x^2-4x+1的最小值为_____。
答案:最小值为-3.8.已知二次函数y=ax^2+bx+c的图象经过点(1,1),且在x=2处取得最大值,最大值为2,则a、b、c的值分别为_____。
答案:a=1,b=-6,c=7.11.二次函数 $y=(x-2)^2+3$ 的一般形式为 $y=ax^2+bx+c$,其中 $a=1$,$b=-4$,$c=7$。
12.一个开口向上,顶点坐标是 $(-2,1)$ 的函数解析式为$y=a(x+2)^2+1$,其中 $a>0$。
13.由于该二次函数的顶点坐标为 $(2,4)$,因此解析式为$y=a(x-2)^2+4$,其中 $a>0$。
又因为该函数的形状与抛物线$y=4x^2$ 相同,所以 $a=4$,最终得到 $y=4(x-2)^2+4$。
14.将原点代入抛物线方程 $y=x^2+kx+(k+3)$,得到$k=0$。
15.由于抛物线 $y=-2x^2-8x+m$ 经过点 $(-1,y_1)$,$(-2,y_2)$,$(-4,y_3)$,因此可以列出以下方程组:begin{cases}-2(-1)^2-8(-1)+m=y_1 \\ -2(-2)^2-8(-2)+m=y_2 \\ -2(-4)^2-8(-4)+m=y_3\end{cases}$$解得 $m=-6$,$y_1=-2$,$y_2=2$,$y_3=10$,因此$y_3>y_2>y_1$。
(完整word)九年级_数学二次函数单元测试题及答案(精品),推荐文档
![(完整word)九年级_数学二次函数单元测试题及答案(精品),推荐文档](https://img.taocdn.com/s3/m/a11fc212f8c75fbfc67db205.png)
九年级数学二次函数单元测评(试时间:60分钟,满分:100分)一、选择题(每题3分,共30分)1. 下列关系式中,属于二次函数的是(x为自变量)()_1 . 、- 1A「B, J 「D;-;2. 函数y=x2-2x+3的图象的顶点坐标是()A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在()A.第一象限B.第二象限C. x轴上D. y轴上_ 1 ^2十龙4A. x=-2B.x=2C. x=-4D. x=44. 抛物线°「的对称轴是()5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()6.第7.如图所示,已知二次函数y=ax2+bx+c(a工的图象的顶点P的横坐标是4,图象交x轴于点A(m , 0)和点B,且m>4,那么AB 的长是A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,9. 已知抛物线和直线I 在同一直角坐标系中的图象如图所示,抛物 线的对称轴为直线x=-1,P i (x i, y i ),P 2(X 2, y 2)是抛物线上的点,P 3(X 3, y 3)是直线'上的点,且-1<x i <X 2, X 3V-I ,则y i ,y 2,y 3的大小关系是 ()A. y i <y 2<y 3B. y 2<y 3<y iC. y 3<y i <y 2D. y 2<y i <y 310. 把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A 卩=-2(疋一I): + ED y = -2(x^y-6二、填空题侮题4分,共32分)11. 二次函数y=x 2-2x+1的对称轴方程是 _______________ . 12. 若将二次函数y=x 2-2x+3配方为y=(x-h )2+k 的形式,则则二次函数y=ax 2+bx 的图象只可能是()RCDy= _______13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,贝S AB的长为14. 抛物线y=x2+bx+c,经过A(-1 , 0), B(3, 0)两点,则这条抛物线的解析式为______________ .15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ ABC是直角三角形,请写出一个符合要求的二次函数解析式______________________ .16. 在距离地面2m高的某处把一物体以初速度v o(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: $ _ t 1 i '1 -(其中g是常数,通常取10m/s2).若v o=10m/s,则该物体在运动过程中最高点距地面_______________ m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为_______________ .(乩-$和帥J18. 已知抛物线y=x2+x+b2经过点 - ,则y1的值是三、解答下列各题(19、20每题9分,21、22每题10分,共38分)319. 若二次函数的图象的对称轴方程是•-,并且图象过A(0,-4)和B(4,0)3(1)求此二次函数图象上点A关于对称轴.-对称的点A的坐标;(2)求此二次函数的解析式;20. 在直角坐标平面内,点0为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x 轴于点A(x i, 0)、B(X2, 0),且(x什1)(X2+1)=-8.(1) 求二次函数解析式;(2) 将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y 轴的交点为C,顶点为卩,求厶POC的面积.21. 已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;22. 某商店销售一种商品,每件的进价为2.50 元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50 元时,销售量为500件,而单价每降低1 元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.答案与解析: 一、选择题1•考点:二次函数概念•选A.2. 考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求 •法二,将二次函数解析式由 一般形式转换为顶点式,即 y=a(x-h)2+k 的形式,顶点坐标即为 (h , k), y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3. 考点:二次函数的图象特点,顶点坐标•解析:可以直接由顶点式形式求出顶点坐标进行判断,函数 y=2(x-3)2的顶 点为(3, 0),所以顶点在x 轴上,答案选C.4. 考点:数形结合,二次函数 y=ax 2+bx+c 的图象为抛物线,其对称轴为b 1 3 ,y =-——y = ——x +s — 4二.解析:抛物线F ,直接利用公式,其对称轴所在直线为5. 考点:二次函数的图象特征 解析:由图象,抛物线开口方向向下,> 0, a < 0, i b …ab U 0, 2a '抛物线与y 轴交点坐标为(0,c)点,由图知,该点在x 轴上方,"八 答案选 C.6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数 的符号特征•解析:由图象,抛物线开口方向向下,-1抛物线对称轴在y 轴右侧,> 0, X <0,. > 0,2a '抛物线与y 轴交点坐标为(0,c)点,由图知,该点在 x 轴上方,I石e > 0,— < 0. a(畀)门在第四象限,答案选D.7. 考点:二次函数的图象特征.解析:因为二次函数y=ax 2+bx+c(a 工(的图象的顶点P 的横坐标是4,所以 抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称, 因为点 A(m ,=2,答案选B.抛物线对称轴在y 轴右侧,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8. 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状•解析:因为一次函数y=ax+b的图象经过第二、三、四象限,c < 05c 0, —-^― < 0所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线X=-1,且-1VX1VX2,当X>-1时,由图象知,y随X的增大而减小,所以y2<y i;又因为X3<-1,此时点P3(X3,y3)在二次函数图象上方,所以y2<y i<y3.答案选D.10. 考点:二次函数图象的变化抛物线—1- ' 的图象向左平移2个单位得到1 " ■,再向上平移3个单位得到丿二-工0 + 1) +&.答案选C.二、填空题11. 考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线b -2 .x = —————= 1方程^ .答案x=1.12. 考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0 的两个根,求得x1=-1,x2=3,则AB=|X2-X1|=4答案为 4.14. 考点:求二次函数解析式.1 —b +<? = 0 解析:因为抛物线经过A(-1,0),B(3, 0)两点,庄+比= 0解得b=-2,c=-3,答案为y=x2-2x-3.15. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16. 考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯.解析:如:y=x2-4x+3.18. 考点:二次函数的概念性质,求值.目(提a3+1^ 』十鱼十2+卫=0「.也十丄尸十/=0)答案:三、解答题19. 考点:二次函数的概念、性质、图象,求解析式解析:⑴A ',-4)b 3—---- ==——.2a 2* 16a+4bH- G= Qc= —4% +© 二一(k_ 5)(2)由题设知:-龙円= _(k十4)又T (x 什1)(X2+1)=-8••• X1X2+(X1+X2)+9=O••• -(k+4)-(k-5)+9=0•k=5•y=X2-9为所求(2)由已知平移后的函数解析式为:y=(X-2)2-9且X=0时y=-5•C(0,-5),P(2, -9)解得b=4今抛物线的解祈式为尸-X 2-H Z +5⑵令 y=0,得(x-5)(x+1)=0 , x i =5, x 2=-1••• B(5, 0)由.,得 M(2 , 9)作ME 丄y 轴于点E ,贝y j-丄 '■ I 厂 H I 可得 S A MCB =15.■-=-x5x2=521.解: ⑴依题意: a-b 十匚二。
二次函数单元测试题及答案
![二次函数单元测试题及答案](https://img.taocdn.com/s3/m/7bfe5d927d1cfad6195f312b3169a4517723e52a.png)
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()。
A. a>0B. a<0C. a=0D. a≠0答案:A2. 抛物线y=x^2-4x+3的顶点坐标是()。
A. (1,0)B. (2,1)C. (2,-1)D. (4,3)答案:C3. 若抛物线y=-2x^2+4x-1与x轴有两个交点,则这两个交点的坐标是()。
A. (1/2,0) 和 (3/2,0)B. (1,0) 和 (3,0)C. (1,0) 和 (-3,0)D. (-1,0) 和 (3,0)答案:B4. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值是()。
A. -2aB. 2aC. -aD. a答案:B5. 抛物线y=x^2-6x+8与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C6. 二次函数y=-x^2+2x+3的图象与y轴的交点坐标是()。
A. (0,3)B. (0,-3)C. (0,2)D. (0,-2)答案:A7. 二次函数y=x^2-2x-3与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C8. 抛物线y=-2x^2+4x+1的顶点坐标是()。
A. (1,3)B. (2,5)C. (-1,3)D. (-2,5)答案:A9. 二次函数y=x^2-4x+c的图象经过点(2,0),则c的值是()。
A. 0B. 4C. 8D. 16答案:C10. 抛物线y=x^2-6x+8与直线y=2x-4的交点坐标是()。
A. (2,0) 和 (4,4)B. (2,0) 和 (4,0)C. (2,4) 和 (4,0)D. (0,2) 和 (4,4)答案:A二、填空题(每题3分,共15分)11. 二次函数y=2x^2-4x+1的顶点坐标是()。
答案:(1,-1)12. 二次函数y=-3x^2+6x-3与x轴的交点坐标是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数单元测试卷
一、选择题(每小题3分,共30分)
1. 当-2≤ x ≦1,二次函数y=-(x-m )2
+ m 2
+1有最大值4,则实数m 值为( ) A.-4
7 B. 3或-3 C.2或-3 D. 2或3或-
4
7 2. 函数
2
2y mx x m =+-(m 是常数)の图像与x 轴の交点个数为( )
A. 0个 B .1个 C .2个 D .1个或2个
3. 关于二次函数
2
y ax bx c =++の图像有下列命题:①当0c =时,函数の图像经过原点;②当0c >,且函数の图像开口向下时,方程2
0ax bx c ++=必有两个不相等の实根;③函数图像最高点の纵坐标是
2
44ac b a -;④当0b =时,函数の图像关于y 轴对称.其中正确命题の个数是(
)
A. 1个
B .2个
C .3个
D .4个
4. 关于x の二次函数
2
2(81)8y mx m x m =+++の图像与x 轴有交点,则m の范围是( )
A .
1
16m <-
B .
116m -
≥且0m ≠ C .
1
16m =-
D .
1
16m >-
且0m ≠
5. 下列二次函数中有一个函数の图像与x 轴有两个不同の交点,这个函数是( ) A .2
y x =
B .24y x =+
C .2325y x x =-+
D .2
351y x x =+-
6. 若二次函数2
y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )
A .a c +
B .a c -
C .c -
D .c
7. 下列二次函数中有一个函数の图像与坐标轴有一个交点,这个函数是( ) A .1x y 2
—=
B .24y x =+
C .1x 2x y 2+=—
D .2
351y x x =+-
8. 抛物线2
321y x x =-+-の图象与坐标轴交点の个数是( )
A .没有交点
B .只有一个交点
C .有且只有两个交点
D .有且只有三个交点
9. 函数2
y ax bx c =++の图象如图所示,那么关于x の一元二次方程2
30ax bx c ++-=の根の情况是(
)
A .有两个不相等の实数根
B .有两个异号の实数根
C .有两个相等の实数根
D .没有实数根
10..若把函数y=x の图象用E (x ,x )记,函数y=2x+1の图象用E (x ,2x+1)记,……则 E (x ,122+-x x )可以由E (x ,2
x )怎样平移得到?
A .向上平移1个单位
B .向下平移1个单位
C .向左平移1个单位
D .向右平移1个单位 二、填空题(每小题3分,共24分) 11. 抛物线2
283y x x =--与x 轴有
个交点,因为其判别式2
4b ac -=
0,相应二次方
程2
3280x x -+=の根の个数为
.
12. 关于x の方程2
5mx mx m ++=有两个相等の实数根,则相应二次函数2
5y mx mx m =++-与x 轴必
然相交于
点,此时m =
.
13. 抛物线2
(21)6y x m x m =---与x 轴交于两点1(0)x ,
和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移
个单位.
14.
如图所示,函数2
(2)(5)y k x k =-+-の图像与x 轴只有一个交点,则交点の横坐标0x =
.
15. 已知二次函数212y x bx c =-
++,关于x の一元二次方程21
02
x bx c -++=の两个实 根是1-和5-,则这个二次函数の解析式为
16. 若函数y=(m ﹣1)x 2
﹣4x+2m の图象与x 轴有且只有一个交点,则m の值为 17.
y =x
2-k 2与抛物线y =x 2+2x +2-2k の交点在第 象限.
18. 将二次三项式x 2+16x+100化成(x+p )2+q の形式应为 三、解答题(本大题共7小题,共66分)
19..(7分)已知一个二次函数の图象经过点(0,0),(1,﹣3),(2,﹣8),求函数解析式。
20. (8分)已知抛物线2
1()3
y x h k =--+の顶点在抛物线2
y x =上,且抛物线在x 轴上截得の线段长是
h 和k の值.
21. (8分)已知函数2
2y x mx m =-+-.
(1)求证:不论m 为何实数,此二次函数の图像与x 轴都有两个不同交点; (2)若函数y 有最小值5
4
-,求函数表达式.
22.(9分) 已知二次函数2
2
24y x mx m =-+.
(1)求证:当0m ≠时,二次函数の图像与x 轴有两个不同交点;
(2)若这个函数の图像与x 轴交点为A ,B ,顶点为C ,且△ABC の面积为表达式
23. (10分)下图是二次函数2
y ax bx c =++の图像,与x 轴交于B ,C 两点,与y 轴交于A 点. (1)根据图像确定a ,b ,c の符号,并说明理由;
(2)如果A 点の坐标为(03)-,,45ABC ∠=,60ACB ∠=,求这个二次函数の函数表达式.
24.(12分) 已知抛物线22
2m y x mx =-+与抛物线2234
m y x mx =+-在直角坐标系中の位置如图所示,
其中一条与x 轴交于A ,B 两点.
(1)试判断哪条抛物线经过A ,B 两点,并说明理由; (2)若A ,B 两点到原点の距离AO ,OB 满足条件112
3
OB OA -=,求经过A ,B 两点の这条抛物线の函数式.
25. (12分)已知抛物线2
y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,
,212(0)()B x x x <,两点,顶点M の纵坐标为4-,若1x ,2x 是方程22
2(1)70x m x m --+-=の两根,且221210x x +=.
(1)求A ,B 两点坐标; (2)求抛物线表达式及点C 坐标;
(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积の2倍,若存在,求出P 点坐标;若不存在,请说明理由.
参考答案
一、选择题(每选对一题得3分,共30分)
1.C 2.C 3.D 4.B 5.D 6.D 7.B 8.B 9.C 10.D 二、填空题(每填对一题得3分,共24分) 11.0 < 0 12.一 6
25
13.4或9 14.-27 15.2
5-x 3-x 21-
y 2= 16.-1或1或2 17.2 18.()368x 2
++ 三、解答题( 7小题,共66分)
19.(7分)解:x 2--x y 2
=
20.⎩
⎨
⎧==⎩⎨⎧==4k 2
-h 4k 2h 或 21.(1)略 (2)13x -x y 1-x -x y 2
2
+==或
22.(1)略 (2)48x x 2y 48x -x 2y 2
2
++=+=或
23.(1)a>0,b>0,c<0
(2)A(0,-3), B(-3, 0 ) C(0 , -3 )
3-x 1-3x 3
3y 2)(+=
24.(1)4
m 3-mx x y 2
2
+= (2)设A (x 1 ,0),B(x 2 ,0), 则有
3
2
x 1x 121=+
解得3-x 2x y 2
+=
25. (1)A(-1,0), B(3, 0 ) (2)3-x 2-x y 2
=,C (0,-3)
(3)存在。
P1()()
9,131P29,131-+,.。