数学《极差方差和标准差》知识点
4.2极差与方差、标准差
4.在数据统计中,能反映一组数据变化 范围大小的指标是 (
A)
A.极差 B.方差 C.标准差 D.以上都不对 5.已知一个样本1, 3, 2, 5,X,若它的平均 数是3,则这个样本的标准差是 ______ 2 . 6.若样本x1 , x 2 ,,x n的方差为0,则表示 ( A.x 0 B.x1 x 2 x n
数据 xi 5 7 7 x 8 8 8 xi-x -3 -1 -1 (xi-x)2 9 1 1
8 10
11
8 8
8
0 2
3
0 4
9
s 2=
.
9+1+1+0+4+9 ——————— =4; 6
s 4 2
所以这组数据的标准差是2.
例2.计算数据89,93,88,91,94,90, 88,87的方差和标准差。(标准差结果 精确到0.1) 1 解:x 90 (1 3 2 1 4 0 2 3) 90
(1)若x1 , x 2 , , xn的方差为4,那么 x1 3, x2 3, , x n
4 3的方差为 ____
练习:
(2)若x1 , x 2 , , xn的方差为2,那么
32 这组数据均乘以4后的方差为 ____ (3)若k1,k2,…, k8的方差为3,则2(k1-3), 2(k2-3), …, 2(k8-3)的方差为________ 12
解:甲品种的样本平均数为10,样本方差 为 [(9.8-10)2 +(9.9-10)2+(10.1-10)2+ (10-10)2+(10.2-10)2]÷5=0.02.
乙品种的样本平均数也为10,样本方差 为 [(9.4-10)2+(10.3-10)2+(10.8-10)2+ (9.7-10)2+(9.8-10)2]÷5=0.24. 因为0.24>0.02, 所以,由这组数据可以认为甲种水稻 的产量比较稳定。
极差、方差、标准差
课程解读一、学习目标:1. 掌握极差、方差、标准差的概念。
2. 理解极差、方差、标准差均可反映一组数据的稳定性大小。
二、重点、难点:重点:掌握极差、方差和标准差的概念,理解极差、方差、标准差是刻画数据离散程度的几个统计量;会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性。
难点:理解数据的离散程度与三个“差”之间的关系。
三、考点分析:近几年来,与统计相关的知识以解答题的形式出现且逐年增多,从试题内容上看,由原来简单的求平均数、中位数、众数、方差等到要求用所学统计知识分析和处理数据,解决实际问题,试题考查从知识立意转向能力立意,选取与实际生活有关的问题,关注社会热点,题型越来越新颖。
知识梳理一、极差定义:一组数据中的最大数据与最小数据的差叫这组数据的极差. 表达式:极差=最大值-最小值 总结:1. 极差是刻画数据离散程度的最简单的统计量2. 特点是计算简单3. 极差利用了一组数据两端的信息,但不能反映出中间数据的分散状况注意:极差反映一组数据两个极端值之间的差异情况,仅由两个数据评判一组数据是不科学的,还要了解其他的统计量。
二、方差的概念:在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即:()()()[]2222121xx x x x x n s n -++-+-= .方差的计算: (1)基本公式:()()()[]2222121x x x x x x ns n -++-+-=.(2)简化计算公式(I ):])[(12222212x n x x x n s n -+++=.也可写成2222212)(1x x x x n s n -+++=.此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方. (3)简化计算公式(II ):]')'''[(12222212x n x x x n s n -+++=.当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,])'''[(12222212x n x x x n s n'-+++=,也可写成2222212)(1x x x x n s n '-'++'+'= .此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方. (4)新数据法:原数据1x ,2x ,…,n x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得1'x ,2'x ,…,n x '的方差就等于原数据的方差.三、标准差的概念和计算方差的算术平方根叫做这组数据的标准差,用“s ”表示,即:])()()[(1222212x x x x x x n s s n -++-+-== .方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.典型例题知识点一:极差例1.(1)一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 。
《极差方差与标准差》课件
在统计分析中,标准差是描述数据 分布的重要参数之一,可以帮助我 们了解数据的离散程度和波动情况 。
05
极差、方差与标准差的关 系
三者之间的关系
01
02
03
极差
表示数据分布的离散程度 ,计算公式为最大值减去 最小值。
方差
表示数据偏离平均值的程 度,计算公式为每个数据 点与平均值的差的平方和 的平均值。
案例三:标准差在人力资源管理中的应用
总结词
评估员工绩效稳定性
详细描述
标准差用于评估员工绩效的稳定性,通过计算员工绩效数据的离散程度,可以了解员工工作表现是否 稳定可靠,为人力资源管理和员工培训提供参考依据。
THANKS
感谢观看
标准差的值越大,表示数据点越离散 ;标准差的值越小,表示数据点越集 中。
计算公式:标准差 = sqrt[(1/N) * Σ(xi-μ)^2],其中xi是数据点,μ是平 均值,N是数据点的数量。
标准差的计算方法
手动计算
适用于数据量较小的情况,可以通过 逐一计算每个数据点与平均值的差的 平方,然后求和,最后除以数据点的 数量得到标准差。
标准差
是方差的平方根,表示数 据点与平均值的偏离程度 。
三者在数据分析中的作用
极差
用于初步了解数据的分布 范围,判断数据的离散程 度。
方差
用于量化数据点与平均值 的偏离程度,帮助了解数 据的稳定性。
标准差
用于量化数据点与平均值 的偏离程度,常用于金融 、统计学等领域。
06
案例分析
案例一:极差在金融领域的应用
课程目标
知识目标
掌握极差、方差与标准差的计算方法 ,理解其数学意义。
能力目标
数理统计平均数、中位数、众数,极差、标准差、方差
平均数、中位数和众数的知识归纳与梳理:(一)平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值平均水平平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点比较容易了解一组数据的大致情况,不受极端数据的影响,并且求法简便。
5.1.2第二课时极差、方差与标准差
设乙班40名学生的成绩分别是b1,b2,…,b40,那么乙班的平均成绩和方差分别为
-x乙=b1+b2+40…+b40=85(分), s2乙=(b1--x乙)2+(b2--x4乙0)2+…+(b40--x乙)2=360. 如果不知道a1,a2,…,a50和b1,b2,…,b40,只知道甲、乙两班的平均成绩、方 差及甲、乙两班的人数,那么根据前面的分析,全部90名学生的平均成绩应为 -x=50- 5x甲 0+ +4400-x乙=50×80.59+0 40×85=82.5(分),
【训练2】 在考察某中学学生身高时,采用分层抽样的方法得到了20名男生身高的平
均值为170,方差为16;15名女生的身高的平均值为165,方差为25,试计算这35名
学生的方差.
解
由
题
意
知
-
x
男
=
170
,
s
2
男
=
16
,
-
x
女
=
165
,
s
2
女
=
25
,
则
-
x
=
20×170+15×165 20+15
≈167.86,s2=20×[16+(170-167.86)2]+ 3515×[25+(165-167.86)2]≈25.98.
方差 s2=50[s2甲+(-x甲--x)520]++4400[s2乙+(-x乙--x)2] =50×[500+(80.5-82.5)29]+0 40×[360+(85-82.5)2] =50×500+50×4+9400×360+40×6.25≈442.78.
规律方法 若样本中有两层,第一层有 m 个数,分别为 x1,x2,…,xm,平均数 为-x,方差为 s2;第二层有 n 个数,分别为 y1,y2,…,yn,平均数为-y,方差为 t2, 则样本的均值为a-=mm-x+ +nn-y,方差为m[s2+(-x-a-)m2]++nn[t2+(-y-a-)2].
极差--方差--标准差1
小明和小兵两人参加体育项目训练, 近期的五次测试成绩如下表所示.
谁的成绩较为稳定?为什么? 能通过计算回答吗?
链接1
通常,如果一组数 据与其平均值的离 散程度较小,我们 就说它比较稳定.
请同学们进一步思 考,什么样的数能 反映一组数据与其 平均值的离散程度?
从表和图中可以看到,小兵的测试成绩 与平均值的偏差较大,而小明的较小.那 么如何加以说明呢?
那么,你能提出一个可行的方案吗?
请在下表的红色格子中写上新的计算方案, 并将计算结果填入表中.
考虑实际情况,如果一共进行了7次测试, 小明因故缺席两次,怎样比较谁的成绩 更稳定?
我们可以用“先平均,再求差,然后 平方,最后再平均”得到的结果表示一 组数据偏离平均值的情况.这个结果通 常称为方差(variance).
1.分别求出小明和小兵的方差和标准差
2.比较下列两组数据的方差: A组:0, 10, 5, 5, 5, 5, 5, 5, 5, 5; B组:4, 6, 3, 7, 2, 8, 1, 9, 5, 5
3.观察下面的图,指出其中谁的标准差较大, 并说说为什么.
反映数据离散程度的指标是什么?
在一次数学测试中,甲、乙两班的 平均成绩相同,甲班成绩的方差为 42,乙班成绩的方差为35,这样的 结果说明两个班的数学学习状况各 有什么特点?
方差越大,说明这组数据偏离平均值的 情况越严重,即离散程度较大,数据也越不稳定. 方差反映的是一组数据与平均值 的离散程度或一组数据的稳定程度.
2 可以看出S
的数量单位与原数据的 不一致,因此在实际应用时常常将 求出的方差再开平方,这就是 标准差(standard deviation), 用符号表示为
复习回忆:
1.何谓一组数据的极差? 极差反映了这组数据哪方面的特征? 答 一组数据中的最大值减去最小 值所得的差叫做这组数据的极差,极 差反映的是这组数据的变化范围或变 化幅度.
极差.方差与标准差(知识点讲解)
极差.方差与标准差(知识点讲解)极差、方差与标准差一、本节知识导学本节以自主探索为主,并初步体验:对图的观察和分析是科学研究的重要方法。
通过例题发现极差(最大值-最小值)的作用:用来表示数据高低起伏的变化大小;同时也希望同学们通过深入思考发现极差的不足之处:极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感。
因此有必要重新找一个对整组数据的波动情况更敏感的指标, 构造方差前请同学们注意以下几个方面: 1.为什么要用“每次成绩”和“平均成绩”相减。
2.为什么要“平方”。
3.为什么“求平均数”比“求和”更好。
同时请同学们意识到:比较两组数据的方差有一个前提条件是,两组数据要一样多。
对于方差的学习,重点在于方差公式的导出和对于方差概念的理解,而不是数字的计算,应充分利用计算器和计算机去完成繁杂的计算。
对于方差与标准差之间除了计算公式不一样,数量单位也不一样但通过求算术平方根运算又可以将他们联系在一起。
二、例题1.不通过计算,比较图中(1)(2)两组数据的平均值和标准差分析:平均值是反映一组数据的平均水平,标准差是反映一组数据与其平均值的离散程度。
本例不通过计算,从折线图来估算标准差,应先估算平均值的大小。
解:从图(1)(2)中可以看出,两组数据的平均值相等。
(图(1)中数据与图(2)中前10个数据相等, 且图(2)中后几个数据不影响平均值)。
图(1)的标准差比图(2)的标准差大。
(因为图(1)中各数据与其平均值离散程度大,图(2)中前10个数据与其平均值的离散程度与图(1)相同,而后几个数据与其平均值的离散程度小。
因此整体上说图(2)所有数据与其平均值的离散程度小于图(1)。
)2.求下列数据的方差(小数点后保留两位):5,7,9,9,10,11,13,14。
分析:要求方差,必须先求平均数。
解:= (5+7+9+9+10+11+13+14)=9.75方差s 2= =7.69[(5-9.75)2+(7-9.75)2+……+(14-9.75) 2]3.求下列一组数据的极差、方差和标准差(小数点后保留两位):50,55,96,98,65,100,70,90,85,100分析:由于标准差是方差的变形所以一般情况下先求方差解:极差为100-50=50平均数为=(50+55+96+98+65+100+70+90+85+100)=80.9方差为:s 2= =334.69 标准差为:s=[(50-80.9)2+(55-80.9)2+……+(100-80.9) 2]=18.294.在某次数学竞赛中,甲、乙两班的成绩如下已经算出两班的平均数都是80分,请你根据已有的统计知识分析两个班的成绩。
初三数学极差、方差、标准差
【知识点】
(1)极差是用来反映一组数据变化范围的大小.一组数据中的最大数据与最小数据所得的
差来称为极差;
(2)方差记作 S 2
1 n
[(
x1
x)2
(x2
x)2
(xn
x)2 ]
;在实际应用时常常将求出
的方差 算术平方根,这就是标准差.
【例题】
1、(2016 广西百色)一组数据 2,4,a,7,7 的平均数 x =5,则方差 S2=
C.甲和乙一样稳定
D.甲、乙稳定性没法对比
3、下面是甲、乙两人 10 次射击成绩(环数)的条形统计图,则下列说法正确的是( )
A.甲比乙的成绩稳定 C.甲、乙两人的成绩一样稳定
B.乙比甲的成绩稳定 D.无法确定谁的成绩更稳定
4.已知 A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是 A 样
A.平均数 3
B.众数是﹣2
C.中位数是 1
D.极差为 8
2.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 9.1 环, 方差分别是 S 甲 2=1.2,S 乙 2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确 的是( )
A.甲比乙稳定
B.乙比甲稳定
本数据每个都加 2,则 A,B 两个样本的下列统计量对应相同的是( )
A.平均数
B.标准差
C.中位数
D.众数
【练习解析】
1、【答案】D.
2、【答案】A 【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小, 表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
八年级数学极差方差标准差
历并会利用它进行计算. 3.会利用方差和标准差的计算结果 来分析一组数据的离散程度.
极差、方差和标准差的区别与联系: 联系:ห้องสมุดไป่ตู้差、方差和标准差都是用来衡量 (或描述)一组数据偏离平均数的大小(即 波动大小)的指标,常用来比较两组数 据的波动情况。
区别:极差是用一组数据中的最大值与最 小值的差来反映数据的变化范围,主要反 映一组数据中两个极端值之间的差异情况, 对其他的数据的波动不敏感。
3.观察下面的图,指出其中谁的标准差较大, 并说说为什么.
反映数据离散程度的指标是什么?
在一次数学测试中,甲、乙两班的 平均成绩相同,甲班成绩的方差为 42,乙班成绩的方差为35,这样的 结果说明两个班的数学学习状况各 有什么特点?
交流反思
1.了解方差、标准差的意义.
2.知道计算方差和标准差公式的来
方差是用“先平均,再求差,然后平方,最 后再平均”的方法得到的结果,主要反映整组 数据的波动情况,是反映一组数据与其平均值 离散程度的一个重要指标,每个数年据的变化 都将影响方差的结果,是一个对整组数据波动 情况更敏感的指标。在实际使用时,往往计算 一组数据的方差,来衡量一组数据的波动大小。 标准差实际是方差的一个变形,只是方差的单 位是原数据单位的平方,而标准差的单位与原 数据单位相同。
复习回忆:
1.何谓一组数据的极差? 极差反映了这组数据哪方面的特征? 答 一组数据中的最大值减去最小 值所得的差叫做这组数据的极差,极 差反映的是这组数据的变化范围或变 化幅度.
为什么说新加坡是“四季温差不大”,而 北京是“四季分明”呢?
方差与标准差
小明和小兵两人参加体育项目训练, 近期的五次测试成绩如下表所示.
2 可以看出S
极差方差标准差(整理)
北京四中撰稿:张扬责编:姚一民数据的波动一.基本知识点讲解:1.极差:是指一组数据中最大数据与最小数据的差。
极差=数据中的最大数-数据中的最小数2. 方差与标准差:S^2=[(x1-x的平均数)^2+(x2-x的平均数)^2+...+(xn-x的平均数)^2]设在一组数据x1 x2 x3……x n中各数据与它们的平均数的差的平方分别是(x1-)2, (x2-)2……(x n-)2,则他们的平均数:方差可以用来衡量这组数据的波动的大小,一组数据的方差越大,就说明这组数据的波动也越大,这波动的大小是指偏离平均数的大小。
3. 标准差:一组数据的方差的算术平方根叫做这组数据的标准差,用S来表示,即:标准差也只是来衡量一组数据波动大小的量,它虽然比计算方差多开一次平方,但它的度量单位与原数据的度量单位是一致的,所以有时用标准差比较方便。
4. 计算方差的三个公式公式①是方差的定义,一组数据的每个数都减去它们的平均数的平方,再求这些平方的和,比较麻烦,因此可用公式②以使计算过程较为简单,当不是整数时尤为简单。
接近这组数据的平均数的一个常数。
二.例题解析:(1)应用公式①例1. 计算数据9.9、9.7、10.3、9.8、9.8、10、10.1、10.4的方差与标准差。
解:例2. 甲乙两组进行投篮比赛,每组选派10名队员参加,每人投10次,每次投中的人数如下:甲组:7、6、8、8、5、9、7、7、6、7乙组:6、7、8、4、10、9、7、6、6、7求:甲、乙两组哪一组的投篮情况比较稳定解:∴甲乙两组的平均命中率相同,但甲组的投篮比较稳定,所以甲组的投篮情况较好。
(2)应用公式②例3. 甲、乙两人在相同条件下各射靶10次,各次命中环数如下:甲:4、7、10、9、5、6、8、6、8、8乙:7、8、6、6、7、8、7、8、5、9求甲、乙两人谁的射击成绩比较稳定解:(3)应用公式③例4. 求以下数据的方差(精确到0.1)10、13、9、11、8、10、11、12、8、14、10、9解:设a=10,每个数都减去10,有三:小结:1. 方差是以平均数为基数,揭示数据波动的大、小,所以首先要把平均数算准确。
八年级数学极差-方差-标准差
; 优游注册 ;
功做の事情. "嗯,这咫尺天涯和缩地成尺,两种步法交替起来运用,の确能转移自己の注意力,下次如此还有这种情况,只需这样跑几个月即可…" 白重炙对于自己灵机一动相处这么一些主意很是自傲,只是想到这两种步法の时候,他却突然愣住了! 他隐隐记得似乎自己跑到了后面,两种步法 都好像没有交替了,而是一起用了? 不对! 这两种步法怎么能一起用? 一些是土系法则,一些是风系法则,并且这两种步法根本就是不一样の步法,一些速度快,一些速度慢.怎么可能一起用? 白重炙迷糊了! 脑海里模糊の记忆,虽然不是很清晰但是却是实实在在记录了有这么一回事.但是这 东西不合逻辑,不合常理啊. 咫尺天涯是风系法则,缩地成尺却是土系法则,这几个法则能同时运用?如果能同时运用の话,自己不是能一心两用了? 一心两用? 白重炙猛然惊醒过来,别人不能一心两用,但是自己可以啊!自己可是有几个灵魂啊,几个灵魂可以共同使用,也没有分开使用,互相不 干扰. 这说明什么? "轰!" 白重炙脑海此刻宛如被炸下了一些晴天霹雳般! 身体の体力支撑才恢复了一丝,但是白重炙却是硬生生の凭着这丝体力,猛然跳了起来,抬手却是给了自己一巴掌,而后却是放声大笑起来:"马勒戈壁,不咋大的爷竟然走了二十年の弯路,什么狗屎特殊类玄奥,什么 都不需要,什么都不需要啊!战皇老头,你呀等着,不咋大的爷不要数年就能融合出一种全神界都不能融合の玄奥,然后破了你呀这个鬼祭坛!" 白重炙眼中冒着火热の光芒,直接取出一快传讯玉符,传讯给雨后,传讯の内容很简单,只有四个字:"过来护法" 雨后给了他这一块传讯玉符,一旦捏 碎,她便会瞬间知晓,整个遗忘之地,雨后都能瞬移到任何地方.前二十年,白重炙没有进入过入定修炼状态过,所以他后面干脆没有让人跟着他,现在却是要入定修炼了,并且是无比关键の修炼,他不敢大意了,只能传讯让雨后过来护法. 只是… 传讯发出去之后,雨后却没有瞬移过来.白重炙等 了会下,觉得反正在这五帝山峰顶也没几个人能上来,应该不会有危险,也就无所顾忌.直接进入了灵魂静寂状态,开始感悟起来! 白重炙の另个灵魂海洋上,几个不咋大的白重炙开始分别运用着咫尺天涯和缩地成尺狂奔起来.而后两道截然不同の身影却是努力开始重合起来… 白重炙竟然准 备将缩地成尺和咫尺天涯,融合在一起.换句话说他准备将土之力,土行术,大地脉动,以及风之无形融合在一起,融合成一种全新の高级法则! 如果这种想法被其余の练家子知道了,白重炙の疯子之名绝对会被…完全落实了.土系法则和风系法则,原本就属于两种继而不同の本源之力,他竟然 幻想将风马牛不相及の东西融合成功,并且一融合就是融合成一种高级玄奥… 不过白重炙显然钻进了牛角尖,想到了立即就开始干,并且没有等雨后来为他护法就匆忙の进入了入定状态. 雨后当然接到白重炙の传讯,但是她却没有赶过来. 并不是她不想过来给白重炙护法,而是此刻她是没办 法分身!她此刻正在接受别人の挑战,帝位挑战赛. 挑战者却是雨帝山の巡察使,同为七品破仙の廖奇. 本书来自 聘熟 当前 第柒伍叁章 因爱成恨! 雨后疑惑の神情,淡淡の话语,似乎彻底将廖奇刺激了,他开始变得激动起来,仰天大笑起来,笑得眼泪都出来了,不断の点头,嘴角の嘲弄却是 愈加の浓郁起来:"你呀是对俺不错,不错啊!你呀可知道…你呀在一层快要饿死の时候,山洞里突然出现の圣果?那不是天上掉下来の,而是俺偷偷给你呀の.你呀可知道,在二层,俺为何经常和人打生死擂台?因为那些人都窥测你呀の美色,俺亲手将他们一些顶个击杀了.你呀可知道为何俺比 你呀实力高,却不去竞争巡察使?你呀可知道,你呀当上雨后之后,俺为你呀压下了多少不服の声音?你呀不知道…你呀什么都不知道!你呀只知道坐在高高在上の雨帝宫,笑看云卷云舒,却不吝啬看俺一眼!蓝雨,你呀可知道,俺喜欢你呀整整四十五万年六个月十三天,就在俺忍不住准备对你呀 表白の时候,你呀却是…将身子交给了一些不咋大的神将,一些才认识不到数十年の废物……" 文章阅读 遗忘之地,其实还有一些地方,是白重炙这二十年没有去过の,因为凭借白重炙の实力,根本就发现不了那里.看书 就像五帝山一样,从遗忘之地外,根本看不到,也走不进这个地方. 甚至这 个地方,不到五品破仙实力以上の练家子,都发现不了.因为没有这个实力,根本就没有资格走进这里. 帝位挑战赛专用战场. 要想上五帝宫,必须有令牌,要想得到令牌和五帝宫の认可,成为五帝之一,那么久必须在这里挑战前一任の帝者,并且将他击杀,才能上位.当然如果前任帝者主动让位 不算. 数十年前,雷震就是在这里击杀了前一任雷帝,成功上位の. 今日,这里再次迎来了六位客人! 帝者挑战赛,必须五帝同时在场,以示公平公正,同时也代表其余四帝认可新上位の帝者! "为什么?" 辽旷の黑泥土地上,突兀の冒出了几个七彩光圈,外面の光圈是一些幻境禁制,让练家子 看不到这里.里面の光圈,却是战场の防护禁制. 此刻外面の光圈站立着四名练家子,正是观战の雷帝他们.里面の光圈站着两人,一人身穿白衣,手持一剑,面容清淡,身体上自然而然流露出一股脱俗の气质,宛如远古の仙人.开口の是另外一人,今日雨后没有穿白衣,而是穿着一袭淡 蓝袍,脸上也没有一片模糊,而是露出了一张俏脸の脸,明亮の眸子尽是疑问. "为什么?" 廖奇一直淡淡の神情,在雨后问出这句"为什么"之后,脸上の淡然彻底消失殆尽了,他一双狭长の眸子微微猛然睁大起来,死死の盯着雨后の那张绝美の脸,似乎要将她看穿,良久之后才嘲弄一笑,说道:" 其实这三个字,俺…最想问你呀!" "问俺?问俺什么?俺自问待你呀不错,没有对不起你呀の地方!" 雨后眨了眨眼睛,更加疑惑の问道. 这廖奇差不多和自己是一同进入遗忘之地の,不过当时实力以及达到了神帝境,她还记得在第一层の时候廖奇就很照顾她,两人同时一起进入雨帝山二层,后 来两人又一同进入了雨帝山三层,最后两人都同时修炼到七品破仙の实力.在自己竞争巡察使の时候,廖奇还主动退出了.而后雨后上位之后,立即就把廖奇提为巡察使,对他一直非常の信任.没有想到,这次他居然闭关了二十年后,直接对自己发出了帝位挑战,并且并且是不死不休の那种. "哈 哈哈…" 雨后疑惑の神情,淡淡の话语,似乎彻底将廖奇刺激了,他开始变得激动起来,仰天大笑起来,笑得眼泪都出来了,不断の点头,嘴角の嘲弄却是愈加の浓郁起来:"你呀是对俺不错,不错啊!你呀可知道…你呀在一层快要饿死の时候,山洞里突然出现の圣果?那不是天上掉下来の,而是俺 偷偷给你呀の.你呀可知道,在二层,俺为何经常和人打生死擂台?因为那些人都窥测你呀の美色,俺亲手将他们一些顶个击杀了.你呀可知道为何俺比你呀实力高,却不去竞争巡察使?你呀可知道,你呀当上雨后之后,俺为你呀压下了多少不服の声音?你呀不知道…你呀什么都不知道!你呀只知 道坐在高高在上の雨帝宫,笑看云卷云舒,却不吝啬看俺一眼!蓝雨,你呀可知道,俺喜欢你呀整整四十五万年六个月十三天,就在俺忍不住准备对你呀表白の时候,你呀却是…将身子交给了一些不咋大的神将,一些才认识不到数十年の废物……" "唔…" 望着越说越激动,眼睛都变得微微血红, 神情更是变得有些狰狞の廖奇.雨后很想说些什么,但是却是不知道该说什么.她没有想到廖奇竟然在背后为她做了这么多事,自己却是一点都不知道,不过她当上雨后之前,一直在闭关修炼,也不可能知道.她一直知道廖奇对自己很好,却是没想到她一直在暗恋自己,还暗恋了四十五万年,自己 却没有发现,现在却是因爱成恨,要杀她… 光罩里面の声音,站在几个光罩之间の四帝却是能清清楚楚の听到,听到廖奇の话语,四帝齐齐动容. 云帝满脸钦佩の望着廖奇叹道:"暗恋四十五万年,却从未说出口,这廖奇也算是一大奇才了!" 风帝却是冷笑一声说道:"闷骚男最无敌,四十五万 年居然没有表白,这廖奇心里怕是有些变tai了…" 雷帝冷哼一声,不屑说道:"废物!喜欢一些女人就去追,追不到那就去抢,空有一身强横实力,却是如此扭捏作态,比禽智都不如." 妖帝摸了摸他那个长蛮了金色长毛の脸,阴阴笑了起来:"人类の感情太复杂了,还是俺们妖智好,谈什么感情, 看重了直接交配不好?" 此地很是诡异,里面の这个禁制光圈,一旦开启,除非一人死去,否则不会解除.廖奇和雨后两人也完全感觉不到外面の情况,当然也听不到四帝の谈话声.外面の人却是可以清楚の观战. 廖奇发泄了一通,心情缓缓恢复,脸色变得冰冷下来,目光不再看着雨后,也似乎不想 听她の解释.手上の长剑缓缓の举起,望着雪白の长剑,他竟然笑了起来.这笑容竟然显得有些凄美,更是无比の苍凉,幽幽一叹说道: "俺心中の蓝雨已死,今日,俺就让你呀の血祭奠俺心爱の蓝雨,用你呀の死,让俺の心彻底冰封起来!今日之后,俺廖奇不在相信爱情,你呀…准备受死吧!" 话 没说完,廖奇の剑在空中抖动起来,身体也猛然爆发出一阵无比狂暴の气势,四周の空间因为他の剑舞动被划出一条道の空间裂缝,身子更是化作游龙,冲天而起,伴随着一条道黑森森の空间裂缝,朝雨后飙射而去. "不咋大的男人怎么恰巧在这一刻要闭关?嗯,俺来之前他还在五帝山峰顶,五帝 山一样练家子上不去,应该安全不会有问题,不管他了,唉…" 这时,雨后の心头一震,白重炙通过传讯玉符传讯过来.不过此刻雨后脑海一阵混乱,哪里顾得上他,并且这帝位挑战赛可是不死不休の,她想出去也不行.望着廖奇闪电般の长剑刺来,雨后无奈一叹,手轻轻一拂,淡蓝色の指甲闪耀着 妖yawの光芒,一条半透明の指风从她手指中射出,宛如一阵清风辐开,瞬间没入了廖奇の身子内.而后她雨足轻轻一点,身子化作一只轻灵の大雁,朝后飘去. 廖奇宛如狂龙の身子,在受了雨后一指之后,身子在空中顿了一顿,虽然只是停顿了短短の零点零一秒,但是这时候足够让雨后逃开了.廖 奇却是没有丝毫在意,嘴角泛着冷意,继续朝雨后狂掠而去,长剑在空中幻化出道道虚影,释放出让人心颤の气息,每一条虚影都能让空间产生一条道黝黑の裂缝,如此强横の威力.可以想象,如果给他这长剑刺中の话,就算雨后都要瞬间神晶碎裂,直接
极差 方差 标准差
区别:极差是用一组数据中的最大值与最小值的差来反映数据的 变化范围,主要反映一组数据中两个极端值之间的差异情况,对 其他的数据的波动不敏感。
方差是用“先平均,再求差,然后平方,最后再平均”的方 法得到的结果,主要反映整组数据的波动情况,是反映一组 数据与其平均值离散程度的一个重要指标,每个数年据的变 化都将影响方差的结果,是一个对整组数据波动情况更敏感 的指标。 在实际使用时,往往计算一组数据的方差,来衡量一组数据 的波动大小。 标准差实际是方差的一个变形,只是方差的单位是原数据单 位的平方,而标准差的单位与原数据单位相同。
需要更完整的资源请到 新世纪教 育网 -
2.分别计算下列各组数据的平均数、极差、
方差: (1) 3, 4, 5, 6, 7; (2) 23, 24, 25, 26, 27; (3) 6, 8, 10, 12, 14. 观察上述各组数据之间的规律,以及各组数 据的平均值、方差之间的联系,用算式表示 你猜想出的结论.
1.何为一组数据的极差? 极差反映了这组数据哪方面的特征?
答 一组数据中的最大值减去最小值所得的差叫 做这组数据的极差,极差反映的是这组数据 的变化范围或变化幅度.
需要更完整的资源请到 新世纪教 育网 -
2.方差和标准差的符号和计算公式是怎样 的?它们反映了这组数据哪方面的特征
80 70 60 成绩 (分) 甲
乙
需要更完整的资源请到 新世纪教 育网 -
一 二 三 四 五 月 月 月 月 月
1.从甲、乙两名射击运动员中选拔一名参加比赛, 预赛中,他们每人各打10发子弹,命中的环数如下: 甲:9, 8, 9, 9, 8,9.5, 10,10, 8.5, 9; 乙:8.5, 8.5,9.5, 9.5,10, 8, 9,9,8,10. 则甲的平均数是 ,乙的平均数是 你认为派 去参加比赛比较合适? 请结合计算加以说明. .
数学基本概念(平均数、众数、中位数、极差、方差、标准差、加权平均值)
一.平均数、众数、中位数、极差、方差、标准差的数学内涵:平均数:是指一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数众数:在一组数据中出现次数最多的数叫做这组数据的众数。
极差:一组数据中最大值与最小值的差叫做这组数据的极差。
方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差标准差:方差的算术平方根叫做标准差算术平均值Arithmetic mean:等差中项:n个数字的总和除n. [(a1+a2+……+an)/n是算术平均值]几何平均值Geometric mean:n个数字的乘积的n次根.[(a1*a2*……*an)^(1/n)是几何平均值]n个数的平方根,就是n个数的平方和除n,再开根号。
例如a b c 的均方根即[(a*a+b*b+c*c)/3]^(1/2)均方根值(RMS)、均方根误差(RMSE)、各种平均值论文写作中经常需要比较几个算法的优略,下面列举的是一些常用的评估方法。
均方根值也称作为效值,它的计算方法是先平方、再平均、然后开方。
比如幅度为100V而占空比为0.5的方波信号,如果按平均值计算,它的电压只有50V,而按均方根值计算则有70.71V。
这是为什么呢?举一个例子,有一组100伏的电池组,每次供电10分钟之后停10分钟,也就是说占空比为一半。
如果这组电池带动的是10Ω电阻,供电的10分钟产生10A的电流和1000W的功率,停电时电流和功率为零。
那么在20分钟的一个周期内其平均功率为500W,这相当于70.71V 的直流电向10Ω电阻供电所产生的功率。
而50V直流电压向10Ω电阻供电只能产生的250W的功率。
对于电机与变压器而言,只要均方根电流不超过额定电流,即使在一定时间内过载,也不会烧坏。
PMTS1.0抽油机电能图测试仪对电流、电压与功率的测试计算都是按有效值进行的,不会因为电流电压波形畸变而测不准。
数据的数字特征(第2课时+极差、方差与标准差)(教学课件)
课堂练习
【训练 5】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没 有发生大规模群体感染的标志为“连续 10 天,每天新增疑似病例不超过 7 人”, 根据过去 10 天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 () A.甲地:总体平均数为 3,中位数为 4 B.乙地:总体平均数为 1,总体方差大于 0 C.丙地:中位数为 2,众数为 3 D.丁地:总体平均数为 2,总体方差为 3
提示:平均数相同只能说明五次射击的平均环数一样, 但是并不知道其稳定性怎么样.
新知探索 知识点一:极差
一组数的极差指的是这组数的最大值减去最小值所得的 差.不难看出,极差反映了一组数的变化范围,描述了这组 数的离散程度.
注意:极差反映了一组数据变化的最大幅度,它对一组数 据中的极端值极为敏感,极差只需考虑两个极端值,便于 计算,但没有考虑中间的数据,可靠性较差.
即时训练 知识点二:方差与标准差
【解析】(1)甲组:最高分为 95 分,最低分为 60 分,极差为 95-60=35(分), 平均分为甲=110×(60+90+85+75+65+70+80+90+95+80)=79(分), 方差为 s2甲=110×[(60-79)2+(90-79)2+(85-79)2+(75-79)2+(65-79)2+(70 -79)2+(80-79)2+(90-79)2+(95-79)2+(80-79)2]=119, 标准差为 s 甲= s2甲= 119≈10.91(分).
,
.
【解析】(1)将每一个数乘以 10,再减去 190,可得
为
方差为
这组新数的平均数
由此可知,所求平均数为 19.2,方差为
.
教材例题
(2)可将数据整理为
初二年级上册数学第6章04第1课时 极差、方差和标准差 知识梳理与易错剖析
4数据的离散程度第1课时极差、方差和标准差知识点一极差精练版P70定义:极差是指一组数据中最大数据与最小数据的差.温馨提示:(1)极差的单位与数据的单位一致.(2)极差是刻画数据离散程度的一个统计量,极差表示的是最大数据与最小数据的“距离”,这个“距离”越大表明这组数据的离散程度也越大,“距离”越小表明这组数据的离散程度也越小.例1计算下面各组数据的极差.(1)-5,6,4,0,1,7,5.(2)11,12,13,14,15,16.解析:根据极差的定义计算最大值与最小值的差.解:(1)这组数据的最大值为7,最小值为-5,所以7-(-5)=12,即这组数据的极差为12.(2)这组数据的最大值为16,最小值为11,所以16-11=5,即这组数据的极差为5.知识点二方差和标准差精练版P701.方差:(1)定义:在一组数据x1,x2,…,x n中,各数据与它们的平均数x的差的平方和的平均数,叫做这组数据的方差,用s2表示.(2)计算公式:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].2.标准差:(1)定义:标准差是衡量一组数据稳定性的另一个重要的量,它等于方差的算术平方根.(2)计算公式:s=1x)2+(x2-x)2+…+(x n-x)2]. n[(x1-温馨提示:(1)方差、标准差是衡量一组数据波动大小的量.方差、标准差越大,数据波动越大;方差、标准差越小,数据波动越小,这组数据就越稳定;(2)方差的单位是原数据单位的平方,标准差的单位与原数据单位一致.例2数据98,99,100,101,102的方差为________.解析1:因为x=15(98+99+100+101+102)=100,所以s2=15[(98-100)2+(99-100)2+…+(102-100)2]=2.解析2:选取一个适当的数a=100可得一组新数据:-2,-1,0,1,2.因为x′=15(-2-1+0+1+2)=0,所以s′2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2.所以原数据方差为s2=2.答案:2注意:当一组数据较大时,可以同时减去一个适当的数,使原数据变小,但方差不变.若一组数据的每个数据都变为原来的k倍,则所得的一组新数据的方差将变为原来数据方差的k2倍.易错点在实例中分析数据的波动情况所用的方法不准确在平均数相等或相接近的情况下,方差是衡量一组数据波动大小的量,方差越小,数据的波动越小,说明数据越稳定.例3甲、乙两台机床同时加工直径为100mm 的零件,为了检验产品的质量,从产品中各抽出6件进行测量,测得数据(单位:mm)如下:甲机床:9910098100100103乙机床:9910010299100100试说明哪一台机床加工的这种零件更符合要求.解:x甲=16(99+100+98+100+100+103)=100(mm),x乙=16+100+102+99+100+100)=100(mm);s2甲=16[(99-100)2+(100-100)2+…+(103-100)2]=73,s2乙=16[(99-100)2+(100-100)2+…+(100-100)2]=1.因为x甲=x乙,s2甲>s2乙,所以乙机床加工的这种零件更符合要求.注意:本题易出现只根据平均数的大小来判断产品是否符合要求,这样不符合实际,而应结合数据整体的波动情况来考虑.。
北师版八年级数学上册第六章 数据的分析4 数据的离散程度
知3-练
例5 用计算器求数据7,7,7,8,5,9,7,7,6,7的
标准差、方差.
解题秘方:按照计算器求标准差的步骤先求出标
准差,再求方差.
解:依次按键
,然后依次输入数据,计
算可得标准差为1,则s2=1.
知3-练
特别提醒 使用计算器进行计算时,应先清除以前的
数据,再操作.
定义 公式
数据的离散程度
平均数 ͞x
͞x+a k ͞x k ͞x+a
知2-讲
方差 s2 s2 k2s2 k2s2
知2-练
例2 [中考·自贡]一组数据6,4,a,3,2的平均数是5,
这组数据的方差为( A )
A. 8
B. 5
C. 2 2
D. 3
解题秘方:先由平均数是 5 计算 a 的值,再根据方差 的计算公式,直接计算即可 .
概念解 表示的是最大数据与最小数据之间的“距离”,
读
这个“距离”越大表明这组数据离散程度越大,
“距离”越小表明这组数据离散程度越小
感悟新知
知1-讲
特别提醒 1.极差与原数据的单位一致 . 2.极差易受极端值的影响,不能准确地反映一组
数据的离散程度.
感悟新知
知1-练
例1 如图 6-4-1,曲线表示一只蝴蝶某次飞行高度 h(m)与 飞行时间 t( s)的关系图,那么本次飞行高度的极差为
感悟新知
知1-练
1-1.已知一组数据:3, - 2,4, - 3,0, - 4,2,
这组数据的平均数和极差分别是( A )
A.0,8
B. - 1,7
C.0,7
D. - 1,8
感悟新知
知1-练
1-2.一组数据 x1, x2,x3,…, xn 的极差为 5,则另 一组数据 2 x1 - 1,2 x3 - 1,2 x3 - 1, …,2 xn - 1的极差为( C )
极差、方差、标准差2
13 13 15
14 15 11 13 14
17
乙
知识源于悟
说说你的 收 获 !
1、理解了方差、标准差的概念。
2、掌握了方差、标准差的计算公式。 3、明白了极差、方差与标准差都能表示一组 数据的离散程度,极差表示一组数据的变化
范围,方差与标准差表示一组数据的波动大小。
结束寄语
可以用一次的想法是一个决 窍,如果它可以用两次以 上,那就成为一种方法了.
哪种灯管的使用寿命长?哪种质量比较稳定?
思路与技巧 要比较使用寿命长短,就是要看平均寿命, 平均寿命长的使用寿命长.“比较稳定”的含义是指数 据波动性小.因此要计算方差或标准差.
我思, 我进步 下表显示的是苏州 2006 年 5 月 1 日至 7 日和 2005年同期的每日平均气温,算一算哪年的 平均气温比较稳定?(计算中平均气温取整数)
18:Biblioteka 3.下图中,标准差最大的数据是 (
)
思路探索:
一组数据中每一个数据增大(或减小)同一 不变 个数,则方差 不变 ,标准差 ,极差 , 不变 (填“增大”、“减小”或“不变”)平均数增 加(减小)同一个数值。 一组数据中每一个数据变为原来的a倍,则方 2 差变为原来的 a 倍,平均数变为原来的
a
倍。
例题推荐
例 甲、乙两名战士在相同条件下各射靶5次,每次命中 的环数分别是:甲 9、5、6、9、6;乙 6、7、7、8、7;
(1)填空: x 甲 =(
7
), x乙
=(
7
);
(2)计算两组数据的方差;估计两名战士的射击情况
(3)根据计算结果,如果你是教练,你派谁参加比赛。
3 x 解: 说明甲乙两名战士的平 均水平相 乙 甲x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学《极差、方差和标准差》知识点
极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.
一、定义理解
1极差
极差是用来反映一组数据变化范围的大小. 我们可以用一组数据中的最大值
减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.
极差=最大值-最小值
极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.
2、方差
方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.
求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均•"通常用S表示一组数据的方差,用X表示一组数据的平均数,x“ x2、… X n表示各数据.
方差计算公式是:
s2=1[(x 1- x) 2+(x2- x) 2+—+(X n- x) 2];
3、标准差
在计算方差的过程中,可以看出S2的数量单位与原数据的不一致,因而在
实际应用时常常将求出的方差再幵平方,这就是标准差.
标准差=..方差,方差=标准差2.
一组数据的标准差计算公式是S j1~xi~x X2—"X ~ xn~x ,其中X为n个数据X i, X2,…,X n的平均数.
方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原
数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.
二、例题讲析
例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:
甲队:100,97,99,96,102,103,104,101,101,100
乙队:97,97,99,95,102,100,104,104,103,102
(1)求甲、乙两队的平均分和极差?
(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?
解:(1) x
= (100 97 99 96 102 103 104 101 101 100)= 100.3
?
10
甲队的极差=104-96= 8; 甲队的极差=104-95= 9
(2) S 甲2丄[(100 100.3)2(99 100.3)2(100 100.3)2 ]=5.61
10
甲队的标准差:-.5.61 2.37 ; 乙队的标准差:.9.21 3.03 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在
联赛中发挥更为稳定一些.
例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:
甲组:25, 23, 28, 22, 27
乙组:27, 24, 24, 27, 23
(1)10盆花的花期最多相差几天?
(2)施用何种花肥,花的平均花期较长?
(3)施用哪种保花肥效果更好?
分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得
甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越
小,波动越小,效果越好!
解:(1) 28- 22= 6 (天) 所以,10盆花的花期最多相差6天.
_ 1
(2)由平均数公式得:x
= -(25 23 28 22 27)= 25
?
5
得站=心,所以,无论用哪种花肥,花的平均花期相等.
(3)由方差公式得:
得S B2 s乙故施用乙种花肥,效果比较可靠
三、反馈练习
1. 一组数据5, 8, x, 10, 4的平均数是2x,则这组数据的方差是____________ .
2. 五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm): 2,-2, —1, 1, 0,
则这组数据的极差为______ cm.方差是_________ ,标准差是______
3. 若样本1, 2, 3, x的平均数为5,又样本1, 2, 3, x, y的平均数为6,
则样本1, 2, 3, x, y的极差是 _________ ,方差是_______ ,标准差是______ .
4. 已知一组数据0, 1, 2, 3, 4的方差为2,则数据20, 21, 22, 23, 24的方
差为 ____ ,
标准差为________ .
5. 一组数据—8,- 4, 5, 6, 7, 7, 8, 9的极差是 ________ ,方差是______ ,标准
6. 若样本X1,X2,……,X n的平均数为 =5,方差S2= 0.025,贝肪羊本4X I,4X2,
4X n的平均数X /= _______ ,方差S7 2= _______ .。