单片机设计的远程实时温度监控系统方案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度检测采用DALLAS公司的数字化温度传感器,该芯片采用的是独特的“一线总线”的方式与单片机进行通信,一线总线独特而且经济的特点,是用户可以轻松的组建传感器网络,为测量系统的构建引入全新的概念。实时温度采用一线总线的方式传输大大的提高了信号的抗干扰性,源自文库辨率可通过软件设置,其小巧的体积为各种环境下测量温度提供了方便。
.(7)在9位分辨率时最多在 93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快
(8)测量结果直接输出数字温度信号,以"一 线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力
(9)负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。
显示器件采用数码管显示方便,完全能满足温度的显示要求。
系统中增加了串口通信功能,可以远端控制,
通过此次设计能够更加牢固的掌握单片机的应用技术,增强动手能力、硬件设计能力以及软件设计能力。
1.设计题目选择
设计的最初想法是由于实际需要,夏天风扇一直开着, 但晚上温度降低时已经没有人去关掉风扇了,既费电又容易感冒。所以是本着实际需要的想法去设计这个系统的。
3.1.2DS18B20的外形和内部结构
DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1:
DS18B20引脚定义:(1)DQ为数字信号输入/输出端;
(2)GND为电源地;
(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。
(3)DS18B20温度传感器的存储器 DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器 TH、TL和结构寄存器。 (4)配置寄存器 该字节各位的意义如下:
表2:配置寄存器结构
2.2系统原理框图
3.硬件电路设计
3.1温度采集模块
温度检测的方法很多,可以用热电阻测温,但还需要附加模数转换单元,增加硬件开销。所以我们选择了可以直接将温度转化为数字量的数字温度传感器,
3.1.1数字温度传感器DS18B20介绍
DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
DS18B20有4个主要的数据部件:(1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位 (28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用 是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 (2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。
2.系统设计思路及原理框图
2.1设计思路
用STC89C51单片机及DS18B20等元器件,设计制作一个远端温控风扇的系统。硬件材料利用以前制作的单片机实验板。尽量做到不乱投资,充分利用所学知识和手头资源,做出一个有意义的东西。该系统可对环境温度实时显示,测温范围-55~125℃。甲机做数据采集用,放置在人所在出。温度低于设置温度时,发送命令到下位机,触发继电器动作,关闭模拟风扇模块。
单片机课程设计报告
----远端温控报警及实时温度显示
学院:电控学院
班级:自动化0704
姓名: 樊徽
学号: 0706050412
远端温控报警及实时温度显示
摘 要
本设计采用的是STC89C51单片机,该单片机采用的MCU51内核,因此具有很好的兼容性,最突出特点是具有串口下载功能,使得烧写程序更加方便。
DS18B20的主要特性
(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数 据线供电
(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯
(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温
DS18B20内部结构图
3.1.3DS18B20工作原理
DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。 DS18B20测温原理是低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振 随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对 低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
(4)DS18B20在使用中不需要任何外围元件,全部 传感元件及转换电路集成在形如一只三极管的集成电路内
(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃
(6)可编程 的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温
表1:DS18B20温度值格式表
这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0, 这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际 温度。
相关文档
最新文档