高一数学必修一重点方法讲解
高一上数学必修一第一章《充分条件、必要条件》知识点梳理
高一上必修一第一章《集合与常用逻辑用语》知识点梳理1.2.3 充分条件、必要条件学习目标1.理解充要条件的概念,并会判断和证明p 是q 的充要条件.2.培养逻辑推理能力.重难点重点:掌握充要条件的概念和判断方法.难点:能利用命题之间的关系判定充要条件或进行充要性的证明.一、充分条件、必要条件我们已经接触过很多形如“如果p ,那么q”①的命题,例如:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)在直角三角形中,如果一个锐角等于30°,那么这个锐角所对的直角边等于斜边的一半;(3)如果x>2,那么x>3;(4)如果a>b 且c>0,那么ac>bc.在“如果p ,那么q”形式的命题中,p 称为命题的条件,q 称为命题的结论.若“如果p ,那么q”是一个真命题,则称由p 可以推出q ,记作p q读作“p 推出q”;否则,称由p 推不出q ,记作p q ,读作“p 推不出q”.例如,上述例子中,(1)是一个真命题,即“两条直线都与第三条直线平行”可以推出“这两条直线也互相平行”,这也可记作两条直线都与第三条直线平行这两条直线也互相平行;而(3)是一个假命题,即x>2推不出x>3,这也可记作x>2⇏x>3.①“如果p ,那么q”也常常记为“如果p ,则q”或“若p ,则q”,【尝试与发现】当p q 时,我们称p 是q 的充分条件,q 是p 的必要条件;当p q 时,我们称p 不是q 的充分条件,q 不是p 的必要条件.事实上,前述课前导读中的“充分”“必要”与这里的充分条件、必要条件表示的是类似的意思.因此, “如果p ,那么q”是真命题,⇒⇒⇒p q ,p 是q 的充分条件,q 是p 的必要条件,这四种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.例如,因为“如果x=-y ,则x 2=y 2”是真命题,所以x=-y x 2=y 2,x=-y 是x 2=y 2的充分条件,x 2=y 2是x=-y 的必要条件.再例如,因为命题“若A∩B≠∅,则A≠∅”是真命题,所以A∩B≠∅ A≠∅A∩B≠∅是A≠∅的 条件A≠∅是A∩B≠∅的 条件【思考与辨析】【典型例题】例1 判断下列各题中,p 是否是q 的充分条件,q 是否是p 的必要条件:(1)p:x ∈Z ,q:x ∈R ;(2)p:x 是矩形,q:x 是正方形。
高一数学必修一章节重点知识点1~4单元
高一数学必修一章节重点知识点1~4单元全文共5篇示例,供读者参考高一数学必修一章节重点知识点1~4单元篇1集合的运算运算类型交集并集补集定义域r定义域r值域>0值域>0在r上单调递增在r上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:○1 注意底数的限制,且;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数;○2 自然对数:以无理数为底的对数的对数 .指数式与对数式的互化幂值真数=n =b底数指数对数(二)对数的运算性质如果,且,,,那么:○1 +;○2 -;○3 .注意:换底公式:(,且;,且;).利用换底公式推导下面的结论:(1);(2) .(3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:,都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:,且 .2、对数函数的性质:a>时,开口方向向上,a0时,抛物线向上开口;当a1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
高一数学必修一集合公式知识点与学习方法
高一数学必修一集合公式知识点与学习方法高一数学必修一知识点集合【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素确实定性;(2)元素的互异性;(3)元素的无序性2、“属于〞的概念我们通常用大写的拉丁字母A,B,C, ??表示集合,用小写拉丁字母a,b,c, ??表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作 a?A3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作:N 某或 N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式某-3>2的解集是{某∈R| 某-3>2}或{某| 某-3>2}(3)图示法(Venn图)【重点】集合的根本概念和表示方法【难点】运用集合的三种常用表示方法正确表示一些简单的集合2高一数学必修一知识点:函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数某,在集合B中都有唯一确定的数f(某)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(某),某∈A.其中,某叫做自变量,某的取值范围A叫做函数的定义域;与某的值相对应的y值叫做函数值,函数值的集合{f(某)| 某∈A }叫做函数的值域.注意:2如果只给出解析式y=f(某),而没有指明它的定义域,那么函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数某的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各局部都有意义的某的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
高一上册数学必修《集合的基本关系》知识点梳理
高一上必修一第一章《集合与常用逻辑用语》知识点梳理1.1.2集合的基本关系学习目标1. 理解集合之间包含与相等的含义;2. 能识别给定集合的子集;3. 能判断给定集合间的关系. 重难点 重点:理解集合间包含与相等的含义.难点:包含关系的判断与证明.(空集与任意集合的关系).学习新知1.子集一般地,如果集合的任意一个元素都是集合的元素,那么集合称为集合的子集.(1)记作(或);(2)读作“包含于”(或“包含”);(3)不是的子集,记作(或).尝试与发现尝试(1)根据子集的定义判断,如果,那么吗?根据子集的定义,;发现(1):非空集合都是它自身的子集,即成立.尝试(2):是的子集吗?根据子集的定义,是的子集.发现(2):成立尝试(3):你认为可以规定空集是任意一个集合的子集吗?为什么?因为空集不包含任何元素,不会出现“内有元素不在集合”的可能,因此,这里的也可以是空集.发现(3):空集是任意一个集合的子集.2.真子集一般地,如果集合是集合的子集,并且中至少有一个元素不属于,那么集合称为集合的真子集,(1)记作(或);(2)读作“真包含于”(或“真包含”) .尝试与发现尝试(1):分析集合,之间的关系。
发现(1):.尝试(2):是任意任意一个集合的真子集吗?发现(2):是任意任意一个非空集合的真子集 .尝试(3): 能否借助图形来形象地表示两个集合的真子集关系?,,发现(3)如果用平面上一条封闭曲线的内部来表示集合,那么我们就可以作出示意图来形象地表示集合之间的关系,这种示意图通常称为维恩图.尝试(4):对于集合,,,如果,,那么, 之间有什么关系?发现(4):对于集合,,,如果,,则.尝试(5):对于集合,,,如果,,那么, 之间有什么关系?如何用维恩图来描述它们之间的关系?发现(5):对于集合,,,如果,,则.尝试(6):对于集合,,,如果,,那么, 之间有什么关系?发现(6):对于集合,,,如果,,则.例题讲解:例1 写出集合的所有子集和真子集.分析:该集合有3个元素,可以考虑从元素个数的不同选取入手,形成不同的集合。
高一数学必修一知识点重点归纳
高一数学必修一知识点重点归纳
高一数学必修一的重点知识点主要包括以下内容:
1. 点、线、面的基本概念和性质:包括点的坐标、直线的斜率和方程、平面的一般方
程等内容。
2. 函数及其图像:求函数的定义域、值域,讨论函数的奇偶性、单调性;掌握一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数等函数的性质和图像特点。
3. 二次函数的图像与性质:求二次函数的顶点、对称轴、零点、最值等;掌握二次函
数的图像变形、两二次函数的求交点、一次函数与二次函数的关系等。
4. 线性方程组:求解二元一次方程组和三元一次方程组;讨论线性方程组解的情况,
包括有唯一解、无解和无穷多解。
5. 不等式及其应用:解一元一次不等式、一元二次不等式、绝对值不等式等;应用不
等式解决实际问题,如求证不等式,求最值等。
6. 平面向量:掌握向量的定义、向量的加减、数量积和向量的夹角等基本运算,以及
平面向量的共线、共面的判定。
7. 三角函数和其应用:掌握正弦、余弦、正切函数的定义、性质和图像特点;解三角
方程,包括利用三角函数解决实际问题。
8. 数列与数列的相关概念:数列的定义、公式、通项公式及其求和;掌握等差数列和
等比数列的性质及其应用。
以上内容是高一数学必修一的重点知识点的一个概括,具体还可以根据教材的章节内容进行系统的学习。
高一数学必修一重点知识点总结
高一数学必修一重点知识点总结【一】一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{xR|x-3>2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)③如果AB,BC,那么AC④如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修一知识点梳理与总结
高一数学必修一知识点梳理与总结鹏博教育高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合是由一些元素组成的整体。
元素具有确定性、互异性和无序性。
例如,{a,b,c}和{a,c,b}表示同一集合。
集合可以用列举法和描述法表示。
例如,集合A可以表示为A={我校的篮球队员},或者用描述法表示为A={x R|x-3>2}。
常用的数集有非负整数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。
二、集合间的基本关系集合间有包含关系和相等关系。
如果集合A包含于集合B,则称A为B的子集,记作A B。
如果A与B是同一集合,则记作A=B。
空集是不含任何元素的集合,记为Φ。
空集是任何集合的子集,也是任何非空集合的真子集。
三、集合的运算集合的运算有交集、并集和补集。
交集是由所有属于A且属于B的元素所组成的集合,记作A B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A B。
补集是由S中所有不属于A的元素组成的集合,记作A的补集。
1.定义集合B为由集合A和集合B'中的元素组成的集合,即B={x|x∈A或x∈B'}。
如图1所示。
2.定义集合CSA为由集合S中属于A的元素和不属于A但属于S的元素组成的集合,即CSA={x|x∈S且(x∈A或x∉A)}。
如图2所示。
3.关于集合A的性质:A与自身的交集等于A本身,即A∩A=A。
A与空集的交集等于空集,即A∩Φ=Φ。
A与集合B的交集包含于A和B中元素共有的部分,即A∩B⊆A且A∩B⊆B。
A与集合B的并集包含于A和B中所有元素的集合,即A∪B包含于A和B的并集。
A与集合B的并集等于A和B中所有元素的集合加上A和B中共有的元素的集合,即A∪B=(A∖B)∪(B∖A)∪(A∩B)。
A与集合B的并集等于集合B与A的补集的补集的并集,即A∪B=(CuA')∩(CuB')。
4.选择题答案:A。
5.集合{a,b,c}的真子集共有7个。
数学高一必修一知识点归纳
数学高一必修一知识点归纳数学高一必修一知识点归纳如下:1. 集合的概念与表示:集合是由一组具有共同特征的元素组成的。
在集合中,每个元素都有其唯一的位置和属性。
集合通常用大括号{}表示,元素之间用逗号分隔。
2. 集合的运算:集合可以进行交集、并集、补集等基本运算。
交集表示两个集合中共有的元素组成的集合;并集表示两个集合中所有元素的集合;补集表示在某一集合中不属于该集合的元素组成的集合。
3. 不等式的解法:不等式是数学中比较基础的知识点之一。
解一元一次不等式时,需要掌握不等式的性质和解法,如移项、合并同类项、系数化为1等。
4. 函数的定义与性质:函数是描述两个数集之间关系的一个重要概念。
函数的定义包括定义域和对应法则,而函数的性质包括奇偶性、单调性、周期性等。
5. 幂的运算性质:幂运算是指一个数自乘若干次的运算。
在数学中,幂运算具有一些重要的性质,如幂的乘法法则、除法法则、指数的运算性质等。
6. 二次函数:二次函数是数学中的一个重要知识点,它的一般形式为y=ax^2+bx+c。
二次函数的图像是一个抛物线,其性质包括开口方向、顶点坐标、对称轴等。
7. 三角函数:三角函数是描述三角形边长与角度之间关系的一个重要概念。
三角函数包括正弦、余弦、正切等,它们的值可以通过三角形的边长和角度计算出来。
8. 向量:向量是一个既有大小又有方向的量,它可以用来表示物理量如力、速度、加速度等。
向量的加法、数乘、向量的模等运算是向量运算的基本内容。
9. 直线与圆:直线和圆是几何学中的基本图形。
直线的方程、圆的标准方程以及直线与圆的位置关系是解决几何问题的关键。
10. 算法与流程图:算法是解决问题的一种方法或步骤,流程图则是表示算法的一种工具。
理解算法的基本结构和流程图的绘制方法是理解和设计算法的重要手段。
这些知识点是数学高一必修一中的重点内容,需要熟练掌握和应用。
高一数学必修一各章知识点总结技巧解答
高一数学必修1各章知识点总结一、集合1.集合的中元素的三个特性:2.集合的表示方法: 列举法与描述法、图示法非负整数集(即自然数集)记作: N正整数集 N*或 N+ 整数集Z 有理数集Q 实数R二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分, ;(2)A与B 是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2. “相等”关系: A=B (5≥5, 且5≤5, 则5=5)实例: 设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即: ①任何一个集合是它本身的子集。
A(A②真子集:如果A(B,且A( B那就说集合A是集合B的真子集, 记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B◆ 3.不含任何元素的集合叫做空集, 记为Φ◆规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合, 含有2n个子集, 2n-1个真子集例题:1.下列四组对象, 能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a, b, c }的真子集共有个3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0}, 则M与N的关系是 .4.设集合A= , B= , 若A B, 则的取值范围是5.50名学生做的物理、化学两种实验, 已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人, 则这两种实验都做对的有人。
6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M.........7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ, A∩C=Φ, 求m的值二、函数的有关概念1. 定义域:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么, 它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法: ①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2. 值域 : 先考虑其定义域3.函数图象常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4. 映射可一对一、多对一补充: 复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f、g的复合函数。
高中数学高一数学必修一知识点与学习方法
高中数学高一数学必修一知识点与学习方法1. 引言高中数学作为高中阶段的必修学科之一,对于培养学生的逻辑思维、分析问题和解决问题的能力具有重要意义。
高一数学必修一内容涵盖了数学的基础知识,为后续学习奠定了坚实的基础。
本文将重点介绍高一数学必修一的主要知识点和相应的学习方法,希望能够帮助学生更好地理解和掌握这些知识。
2. 知识点与学习方法2.1 整式与分式在高一数学必修一中,整式与分式是重要的基础内容。
整式包括多项式、多项式的加减乘除以及乘方等。
学生应通过大量的练习来熟练掌握整式的运算规则和方法。
分式包括分式的化简、分式的加减乘除以及分式方程的解法等。
学生在学习分式时,要注重理解其背后的概念和意义,并通过实际问题的应用来加深理解。
学习整式与分式的方法包括: - 多练习,提高运算速度和准确性; - 理解运算规则和方法的原理,不仅死记硬背; - 注意分析和解决实际问题,加深对整式和分式的应用理解。
2.2 一次函数与二次函数一次函数和二次函数是高一数学必修一的重点内容。
一次函数是形如y = kx + b 的函数表达式,是一条直线。
学生应熟练掌握一次函数的图像特征、性质和变化规律。
二次函数是形如y = ax^2 + bx + c的函数表达式,是一条抛物线。
学生应理解二次函数的图像、顶点、对称轴等基本概念,并熟练掌握二次函数的图像特征和性质。
学习一次函数和二次函数的方法包括: - 理解函数的定义和基本概念; - 观察和分析函数的图像特征和性质; - 多做函数的图像绘制和解决实际问题的练习; -多进行数学模型的建立和求解。
2.3 几何与向量高一数学必修一还包括了几何和向量两个重要的内容。
几何主要涉及到平面几何中的几何图形、线段、角、三角形等的性质和计算。
向量主要涉及到向量的定义、加法、减法、数量积、向量积等相关概念和运算法则。
学习几何和向量的方法包括: - 理解几何和向量的基本概念和性质; - 注意观察形状和结构,理解几何图形的特点; - 多进行几何证明的练习和探究; - 理解向量的几何和物理意义,加深对向量运算法则的理解。
高中数学人教版必修1知识讲解讲义
高中数学必修1知识讲解讲义目录第一讲集合的概念 (1)第二讲集合的关系与运算 (6)第三讲映射与函数 (11)第四讲函数的表示方法——解析式法 (16)第五讲函数单调性 (20)第六讲函数奇偶性 (27)第七讲指数与指数幂的运算 (36)第八讲指数函数 (42)第九讲对数函数 (50)第十讲对数与对数运算 (56)第十一讲幂函数 (61)第十二讲方程的根与函数的零点 (66)第十三讲用二分法求方程的近似解 (71)第十四讲几类不同增长的函数模型 (76)第十五讲函数的图像 (85)第十六讲函数的综合应用 (93)第十七讲二次函数性质与函数的图像 (111)第一讲 集合的概念一. 知识思维导图二. 知识要点解读 (一)集合的概念1. 含义:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set)(简称为集)。
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大括号{ }或大写的拉丁字母表示,如A 、B 、C 、…… 元素通常用小写的拉丁字母表示,如a 、b 、c 、……2. 元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A 要注意“∈”的方向,不能把a ∈A 颠倒过来写. 3. 集合中元素的三个特性:集合集合的概念集合及元素集合的分类及表示集合的关系包含子集真子集集合的运算交集并集补集集合的应用(1)元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
高一必修一数学全册知识点
高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。
高一数学必修一知识点归纳总结
高一数学必修一知识点归纳总结
一、平面解析几何
1. 平面直角坐标系
- 坐标轴及坐标点的表示方法
- 点的坐标与距离公式的应用
2. 直线的方程
- 斜率的概念和计算方法
- 截距的概念和计算方法
- 一般式和标准式的相互转换
- 平行、垂直直线的关系及判定方法
3. 圆的方程
- 圆的定义及相关概念
- 圆的标准方程及一般方程
- 圆与直线的位置关系
- 相交弦和切线的性质
4. 配对法
- 二次曲线的配对法及示意图
- 配对法解题步骤与技巧
二、函数及立体几何
1. 函数的概念与性质
- 定义域和值域的计算方法- 函数的奇偶性判断
- 函数的单调性判断
- 函数图象与函数值的关系2. 一次函数和二次函数
- 一次函数的表示和性质
- 一次函数的图象和变换
- 二次函数的表示和性质
- 二次函数的图象和变换
3. 立体几何基础知识
- 空间几何体的定义及性质- 线段的长度和空间角的计算- 平行线与平面的关系
三、概率与统计
1. 随机事件与概率
- 随机事件的概念和表示方法- 概率的定义和性质
- 事件的联合、互斥与对立关系
2. 组合与样本空间
- 组合的概念和计算方法
- 样本空间的定义和计算方法
- 事件的排列组合与计数方法
3. 统计与抽样
- 总体、样本和样本均值的概念
- 随机抽样的方法和步骤
- 样本统计量的计算及应用
以上为高一数学必修一的知识点归纳总结,对于复复数学知识有一定的帮助。
需要注意理解概念和掌握计算方法,搞清楚基本原理,灵活运用到实际问题的解题中。
高一数学必修1知识点大全
高一数学必修1知识点大全一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成一个集合,每个自然数就是这个集合的元素。
- 集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。
- 元素与集合的关系:如果a是集合A的元素,就说a∈ A(读作“a属于A”);如果a不是集合A的元素,就说a∉ A(读作“a不属于A”)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如,集合A = {1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。
例如,{xx是大于2的整数}。
- 区间表示法:对于数集,还可以用区间表示。
- 开区间(a,b)={xa < x < b};- 闭区间[a,b]={xa≤slant x≤slant b};- 半开半闭区间(a,b]= {xa < x≤slant b},[a,b)={xa≤slant x < b};- 无穷区间(-∞,+∞)=R,(a,+∞)={xx > a},[a,+∞)={xx≥slant a},(-∞,b)={xx < b},(-∞,b]={xx≤slant b}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(读作“A包含于B”)或B⊇ A(读作“B包含A”)。
如果A⊆ B且B⊆ A,那么A = B。
- 真子集:如果A⊆ B,且存在元素x∈ B,x∉ A,那么集合A是集合B的真子集,记作A⊂neqq B。
- 空集:不含任何元素的集合叫做空集,记作varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A 与B的交集,记作A∩ B={xx∈ A且x∈ B}。
高一数学必修一知识点总结人教(3篇)
高一数学必修一知识点总结人教1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。
比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。
美国统计学家戴维穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。
数学地思考,是数学学习的更高目标。
数学学习过程中所倡导的思考方式是具有学科特点的。
看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。
这种量化、精确化的思考方式是数学教学最根本的目标价值所在。
高一数学必修一重难点讲解
高中必修一一些重点函数值域求法十一种 (2)复合函数 (9)一、复合函数的概念 (9)二、求复合函数的定义域: (9)复合函数单调性相关定理 (10)函数奇偶性的判定方法 (10)指数函数: (12)幂函数的图像与性质 (15)函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-〔1〕当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ 〔2〕当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-〔1〕 ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程〔1〕有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
高一数学必修一重点知识点解读
高一数学必修一重点知识点解读1. 集合与函数概念1.1 集合- 集合的定义与表示方法:理解集合的概念,掌握集合的表示方法(列举法、描述法)。
- 集合之间的关系:掌握集合之间的包含、相等、不相交等基本关系。
- 集合的基本运算:熟悉并、交、补集等基本集合运算。
1.2 函数概念- 函数的定义:理解函数的定义,即对于非空数集A、B,如果按照某个确定的对应法则f,使对于A中的任意一个数x,在B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的函数。
- 函数的表示方法:掌握函数的解析式表示法、列表表示法和图象表示法。
- 函数的性质:理解并掌握函数的单调性、奇偶性、周期性等基本性质。
2. 实数及其运算2.1 实数- 实数的分类:了解有理数、无理数、实数的分类,理解它们之间的关系。
- 实数的性质:掌握实数的加、减、乘、除和乘方等基本运算。
2.2 函数的性质- 单调性:理解函数单调性的概念,掌握单调增函数和单调减函数的性质。
- 奇偶性:理解函数奇偶性的概念,掌握奇函数和偶函数的性质。
- 周期性:理解函数周期性的概念,掌握周期函数的性质。
3. 方程与不等式3.1 方程- 一元一次方程:掌握一元一次方程的解法。
- 一元二次方程:掌握一元二次方程的解法,了解判别式的意义。
- 方程组:掌握二元一次方程组的解法,了解三元一次方程组和解法。
3.2 不等式- 一元一次不等式:掌握一元一次不等式的解法。
- 一元二次不等式:掌握一元二次不等式的解法。
- 不等式组:掌握不等式组的解法。
4. 函数的图像4.1 坐标系与直线- 坐标系:了解直角坐标系、极坐标系等基本概念。
- 直线方程:掌握直线方程的点斜式、截距式等表示方法。
4.2 函数图像- 一次函数图像:了解一次函数图像的特点。
- 二次函数图像:了解二次函数图像的特点,掌握顶点、开口方向等概念。
- 其他函数图像:了解指数函数、对数函数、三角函数等图像的特点。
5. 立体几何5.1 空间点、线、面- 点、线、面的基本概念:了解点、线、面的基本概念和性质。
高一数学必修一笔记知识点
高一数学必修一笔记知识点一、集合与命题1. 集合的概念及表示方法集合是由确定的元素构成的整体,常用大写字母表示集合,元素用小写字母表示。
例如,集合A={1,2,3,4}表示由元素1、2、3、4组成的集合A。
2. 命题的概念命题是陈述性语句,只能有真或假两种结果。
常用字母p、q、r等表示命题。
3. 命题联结词及逻辑运算命题联结词包括否定、合取、析取、条件和双条件等,分别用符号¬、∧、∨、→和↔表示。
二、集合的运算1. 集合的基本运算包括交集、并集、差集和补集等运算。
2. 集合运算的性质- 交换律:A∪B = B∪A,A∩B = B∩A- 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)- 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) =(A∩B)∪(A∩C)- 对偶律:(A∪B)的补集 = A的补集∩B的补集,(A∩B)的补集 = A的补集∪B的补集- 吸收律:A∪(A∩B) = A,A∩(A∪B) = A三、集合的关系与函数1. 集合的关系包括相等关系、包含关系、真包含关系等。
2. 函数的定义与性质函数用于描述两个集合之间的对应关系。
若集合X的每个元素都和集合Y的唯一元素对应,则称该对应关系为函数。
一个函数通常表示为f:X→Y,其中X为定义域,Y为值域。
3. 函数的图像与性质函数的图像是由函数的所有有序对组成的集合。
函数具有唯一性、单调性和奇偶性等性质。
四、直线与函数1. 直线的方程直线的方程包括一元一次方程、一元二次方程和一般形式方程等。
常见的直线方程有y = kx + b、y = ax² + bx + c和Ax + By + C = 0等形式。
2. 直线的性质直线的斜率、截距和倾斜角等是直线的重要性质,通过这些性质可以确定直线的方程。
3. 函数与坐标轴的交点函数与坐标轴的交点包括与x轴的交点和与y轴的交点,这些交点可以帮助我们确定函数的特点和性质。
数学高一必修一知识点
数学高一必修一知识点高中数学必修一是整个高中数学学习的基础,包含了众多重要的知识点。
接下来,让我们一起详细梳理一下。
集合是必修一中首先接触到的重要概念。
集合是由一些确定的、不同的对象所组成的整体。
集合中的元素具有确定性、互异性和无序性。
比如,一个班级的学生可以组成一个集合。
在表示集合时,常用的方法有列举法和描述法。
列举法就是将集合中的元素一一列举出来,而描述法则是通过描述元素所具有的共同特征来表示集合。
函数是另一个核心知识点。
函数是一种对应关系,给定一个自变量的值,通过函数关系就能确定唯一的因变量的值。
函数的三要素包括定义域、值域和对应法则。
定义域是自变量的取值范围,值域是因变量的取值范围。
函数的表示方法有解析式法、图像法和列表法。
函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某个区间上是递增还是递减。
如果对于区间内的任意两个自变量的值 x1 和 x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么函数在这个区间上就是单调递增的;反之,如果 f(x1) > f(x2),则函数在这个区间上是单调递减的。
奇偶性则是关于函数图像对称性的性质。
如果对于函数 f(x)定义域内的任意一个 x,都有 f(x) = f(x),那么函数 f(x)就是偶函数,其图像关于 y 轴对称;如果都有 f(x) = f(x),那么函数 f(x)就是奇函数,其图像关于原点对称。
函数的运算也是需要掌握的内容,包括函数的和、差、积、商。
指数函数和对数函数也是必修一中的重点。
指数函数的形式为 y =a^x(a > 0 且a ≠ 1),其性质与底数 a 的大小有关。
当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。
对数函数是指数函数的反函数,形式为 y = log_a x(a > 0 且a ≠ 1)。
对数的运算性质包括加法、减法和换底公式等,需要熟练掌握和运用。
幂函数是一类形式为 y =x^α 的函数,其中α 为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中必修一一些重点函数值域求法十一种 (2)复合函数 (9)一、复合函数的概念 (9)二、求复合函数的定义域: (9)复合函数单调性相关定理 (10)函数奇偶性的判定方法 (10)指数函数: (12)幂函数的图像与性质 (15)函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞Y例2. 求函数x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1) 解得:]2,0[22222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6. 求函数6x 54x 3++值域。
解:由原函数式可得:3y 5y 64x --=则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53,5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7. 求函数1e 1e y x x +-=的值域。
解:由原函数式可得:1y 1y e x -+= ∵0e x > ∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域。
解:由原函数式可得:y 3x cos x sin y =-,可化为: y 3)x (x sin 1y 2=β++ 即1y y3)x (x sin 2+=β+ ∵R x ∈∴]1,1[)x (x sin -∈β+即11y y 312≤+≤- 解得:42y 42≤≤- 故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,426. 函数单调性法例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x log y ,2y 325x 1-==- 则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112log 2y 33min =-+=-当x=10时,339log 2y 35max =+= 故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数1x 1x y --+=的值域。
解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数所以1y y =,2y 在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222=显然0y >,故原函数的值域为]2,0(7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例11. 求函数1x x y -+=的值域。
解:令t 1x =-,)0t (≥则1t x 2+= ∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知当0t =时,1y min =当0t →时,+∞→y故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域。
解:因0)1x (12≥+-即1)1x (2≤+故可令],0[,cos 1x π∈ββ=+ ∴1cos sin cos 11cos y 2+β+β=β-++β= 1)4sin(2+π+β= ∵π≤π+β≤π≤β≤4540,0 211)4sin(201)4sin(22+≤+π+β≤∴≤π+β≤-∴ 故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域。
解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯= 可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2β-=β⨯β-=∴4sin 412cos 2sin 21y 当82k π-π=β时,41y max = 当82k π+π=β时,41y min -= 而此时βtan 有意义。
故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41例14. 求函数)1x )(cos 1x (sin y ++=,⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域。
解:)1x )(cos 1x (sin y ++=1x cos x sin x cos x sin +++=令t x cos x sin =+,则)1t (21x cos x sin 2-=22)1t (211t )1t (21y +=++-= 由)4/x sin(2x cos x sin t π+=+= 且⎥⎦⎤⎢⎣⎡ππ-∈2,12x 可得:2t 22≤≤ ∴当2t =时,223y max +=,当22t =时,2243y += 故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243。
例15. 求函数2x 54x y -++=的值域。
解:由0x 52≥-,可得5|x |≤ 故可令],0[,cos 5x π∈ββ= 4)4sin(10sin 54cos 5y +π+β=β++β=∵π≤β≤04544π≤π+β≤π∴当4/π=β时,104y max +=当π=β时,54y min -=故所求函数的值域为:]104,54[+-8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例16. 求函数22)8x ()2x (y ++-=的值域。
解:原函数可化简得:|8x ||2x |y ++-=上式可以看成数轴上点P (x )到定点A (2),)8(B -间的距离之和。
由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延长线或反向延长线上时,10|AB ||8x ||2x |y =>++-=故所求函数的值域为:],10[+∞例17. 求函数5x 4x 13x 6x y 22++++-=的值域。
解:原函数可变形为: 2222)10()2x ()20()3x (y ++++-+-=上式可看成x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和,由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==, 故所求函数的值域为],43[+∞例18. 求函数5x 4x 13x 6x y 22++-+-=的值域。
解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可看成定点A (3,2)到点P (x ,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差。
即:|BP ||AP |y -=由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ∆,根据三角形两边之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<-即:26y 26<<-(2)当点P 恰好为直线AB 与x轴的交点时,有26|AB |||BP ||AP ||==-综上所述,可知函数的值域为:]26,26(-注:由例17,18可知,求两距离之和时,要将函数式变形,使A 、B 两点在x 轴的两侧,而求两距离之差时,则要使A ,B 两点在x 轴的同侧。
如:例17的A ,B 两点坐标分别为:(3,2),)1,2(--,在x 轴的同侧;例18的A ,B 两点坐标分别为(3,2),)1,2(-,在x 轴的同侧。
9. 不等式法利用基本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。
例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域。
解:原函数变形为: 52x cot x tan 3xcot x tan 3xsec x ces 1x cos 1x sin 1)x cos x (sin y 22322222222=+≥++=++=+++=当且仅当x cot x tan =即当4k x π±π=时)z k (∈,等号成立 故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域。
解:x cos x sin x sin 4y =x cos x sin 42=2764]3/)x sin 22x sin x [(sin 8)x sin 22(x sin x sin 8xcos x sin 16y 322222224=-++≤-== 当且仅当x sin 22x sin 22-=,即当32x sin 2=时,等号成立。