高中数学不等式知识点总结
高一数学知识点不等式
![高一数学知识点不等式](https://img.taocdn.com/s3/m/de907e55b94ae45c3b3567ec102de2bd9605de93.png)
高一数学知识点不等式不等式是数学中的一个重要概念,它在高一数学学习中占据着重要的地位。
本文将讨论高一数学中的不等式知识点,包括不等式的基本概念、解不等式的方法等内容。
1.不等式的基本概念不等式是指包含不等号(>、<、≥、≤)的数学表达式。
它描述了两个数之间的相对大小关系。
在不等式中,我们称表达式的两边为左边和右边,其中,不等号左侧的表达式通常称为不等式的“左端”,不等号右侧的表达式通常称为不等式的“右端”。
2.不等式的表示形式不等式可以有多种表示形式,下面是一些常见的表示形式:- 一元一次不等式:形如ax+b>0的不等式,其中a和b为已知实系数,x为未知实数。
- 一元二次不等式:形如ax^2+bx+c>0的不等式,其中a、b和c为已知实系数,x为未知实数。
- 绝对值不等式:形如|ax+b|<c的不等式,其中a、b为已知实系数,c为已知正实数,x为未知实数。
3.不等式的解集表示解不等式是指找出满足不等式条件的数的集合。
解集可以使用不等式符号表示,也可以使用区间表示。
下面是一些常见的解集表示形式:- 不等式符号表示:例如,解集{x | x>2}表示满足不等式x>2的所有实数x的集合。
- 区间表示:例如,解集(-∞, 2)表示所有小于2的实数的集合。
4.不等式的性质和运算规则不等式有一些特殊的性质和运算规则,包括以下几点:- 不等式两边同时加(减)一个相同的数,不等式方向不变。
- 不等式两边同时乘(除)一个正数,不等式方向不变。
- 不等式两边同时乘(除)一个负数,不等式方向改变。
- 对于绝对值不等式,需要考虑绝对值的正负情况来确定解集。
5.不等式的解法方法解不等式的方法主要包括代入法、图像法和数轴法等。
在解题过程中,我们可以运用不等式的性质和运算规则,根据具体题目的要求采取不同的解题方法。
6.不等式的应用不等式在高一数学中有广泛的应用,常见的应用场景包括以下几个方面:- 解决实际问题中的数量关系,如寻找最大值、最小值等。
高中数学不等式知识点归纳
![高中数学不等式知识点归纳](https://img.taocdn.com/s3/m/7c0a47ab69eae009581becf6.png)
高中数学不等式知识点归纳什么是不等式一般地,用纯粹的大于号“>”、小于号“,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
高中数学基本不等式知识点数学知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0数学知识点2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
数学知识点3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。
(完整word版)高中数学不等式知识点总结(word文档良心出品)
![(完整word版)高中数学不等式知识点总结(word文档良心出品)](https://img.taocdn.com/s3/m/ab236d7cd4d8d15abf234e18.png)
选修4--5知识点 1不等式的基本性质 ① (对称性)a ■ b := b - a ② (传递性)a b,b • a c ③ (可加性)a • b= a c b c (同向可加性)a . b , c = a c b d (异向可减性)a b ,c . d = a - c b - d ④ (可积性)a ■ b , c ■ Q = ac . bc a . b , c ::: 0 二 ac ::: bc ⑤ (同向正数可乘性) a .b . 0,c d .0=- ac . bd a b 0,0 ::: c :::d 二 a £ c d ⑥(平方法则)a b 0= a n b n (N,且n 1) ⑦(开方法则) a >b 苗 >V b (n E N,且n>1) 1 1 1 a b 0 ; a :: b :: 0 二 a b a 2、几个重要不等式用基本不等式求最值时(积定和最小,和定积最大) 三(异向正数可除性) ⑧(倒数法则) 2 2 ①a b -2ab a ,b ・R ,(当且仅当 ab -a 2b 2 号)变形公式:②(基本不等式)a b € R \,(当且仅当a =b 时取到等号)变形公式:ab -¥2,要注意满足三个条件“一正、二定、相等” •a b C 3 赢3 「- (a、b c R )(当且仅当2 2 2④a b c _ ab bc ca a, b 二R(当且仅当a =b =c时取到等号).3 3 3⑤a3b3c _3abc(a 0,b 0,c 0)(当且仅当a=b=c时取到等号).b a若ab 0,则--_2⑥ a b (当仅当a=b时取等号)b a右ab ::: 0,则■: 2a b (当仅当a=b时取等号)b b m a n a1 :::⑦ a a+m b+n b ,(其中a Rb>0, m^O, n A°)规律:小于1同加则变大,大于1同加则变小.⑧当a .0时,x .a:=x2.a2:=x”-a或x a;x <a 吕x2 <a2二-acxca.⑨绝对值三角不等式a_b兰a=b兰a + b.3、几个著名不等式¥^兰后兰整-兰J o云一+①平均不等式:a b 2■2,(a b R,当且仅当a=b时取"="号).(即调和平均 -几何平均-算术平均-平方平均).变形公式:ab 严仁士a2+b2’4I 2 丿2②幕平均不等式:a i2 a22 ' ... a*2—^(a i a? … an)2.n③(三个正数的算术一几何平均不等式)③二维形式的三角不等式:、xj y;M22y22-、(x i -X2)2(% -y?)2(x i’yzm R).④二维形式的柯西不等式:2 2 2 2 2 _(a +b )(c +d )3(ac + bd) (a,b,c,^ R).当且仅当ad = be时,等号成立.⑤ 三维形式的柯西不等式: 2 2 2 2 2 2 2 (Q a ? a 3 )(b b 2 b s ) _(aib a zd a s b s ). ⑥ 一般形式的柯西不等式: 2 2 2 2 2 2 2 (a i a ... - a n )(b b 2 ... b n ) - (ab azb …a n b n ). ⑦ 向量形式的柯西不等式:⑧ 排序不等式(排序原理) 设a i 兰a 2兰…兰a n , b i 兰b 2兰…兰b n 为两组实数 .C 1 , C 2 ,..., C n 是b 1 , b 2 ,..., b n 的任一排列,则 a i b n a 2bu ... a nd 乞• a 2$ ... a n C^ aQ a 2b ? ... a n b n (反序和岂乱序和 < 顺序和),当且仅当a i =吐二…二冇或b =b 2 = ... =0时,反序和等于顺序和 ⑨ 琴生不等式:(特例:凸函数、凹函数) f (X ),对于定义域中任意两点X 公2(人=X 2),有 f (X 十X 2) ^f (x ) +f (X 2)或 f (X i +X 2) > f (X i ) +f (X 2) (2 2 或 ( 2丿- 2 .则称f (X )为凸(或凹)函数 4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法) 、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等 常见不等式的放缩方法:(k N *,k i)5、一元二次不等式的解法2求一元二次不等式aX bX c °(或::°)2(a =0" =b -4ac 0)解集的步骤:一化:化二次项前的系数为正数 二判:判断对应方程的根. 三求:求对应方程的根.当且仅当 是零向量,或存在实数k ,使 时, 若定义在某区间上的函数 ①舍去或加上(a ¥ 2 3 +— 4 (a * 2②将分子或分母放大(缩小), 1 i i i 2 , 2如 k k (k -i ) k k (k i )i 22 “ k 、k 「k Jk 「k Jk=i 是两个向量,四画:画出对应函数的图象 •五解集:根据图象写出不等式的解集 •规律:当二次项系数为正时,小于取中间,大于取两边• 6、 高次不等式的解法:穿根法 .分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切) 写出不等式的解集•7、 分式不等式的解法:先移项通分标准化,则f(x) 0 f (x) g (x) 0 g(x)f(x) c f(x)g(x)—0g (x) g(x )=0 (“ :::或乞”时同理)规律:把分式不等式等价转化为整式不等式求解8无理不等式的解法:转化为有理不等式求解 [f(x “0,f(x) :: g(x) = g(x) 0I 2f(x)订g(x)]2!f(x^0 ,1 ---------------- I -----------------------------Jf(x) > Jg(x)二 g (x)Z0⑸ / (x^>g(x)规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解9、指数不等式的解法:⑴当 a>1 时,a f(x) Aa g(x) = f(x)>g(x)f (x) g(x) …、 彳、⑵当 0cav1 时,a >af(x)cg(x)规律:根据指数函数的性质转化10、对数不等式的解法 f(x) 0,结合原式不等号的方向, .f(x) a(a 0):=⑴ f(x) 一0 f(x) a 2f(x) :: a(a 0):=⑵ f(x) 一0 2 .f(x) ::.f(x) g(x)u ⑶f(x) 0 g(x)_O2 f(x) [g(x)] 或{ g;:):0lOg a f(X)- lOg a g(X):= g(x) 0⑴当a>1 时,l f(x)>g(x)f(x) 0 log a f (x) log a g(x) u g(x) . 0l⑵当0ca<1 时,l f(x)v g(x)规律:根据对数函数的性质转化•11、含绝对值不等式的解法:a (ax 0)a =《⑴定义法:—a (a :: 0)⑵平方法:f(x)| |g(x)二f2(x)乞g2(x).⑶同解变形法,其同解定理有:①x Ea= —aExEa(a^O);②x £a二x^a或xW—a(a£0);③| f (x)| 兰g(x)二—g(x)兰f (x)兰g(x) (g(x)色0)④ f (x) _g(x):= f(x) _g(x)或f(x)乞-g(x) (g(x) _0)规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集•13、含参数的不等式的解法2解形如ax bx c 0且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a与0的大小;⑵讨论二与0的大小;⑶讨论两根的大小.14、恒成立问题2⑴不等式ax bx c 0的解集是全体实数(或恒成立)的条件是:①当a = 0 时=b = 0,c 0;a 0=I②当a = 0时0 -2⑵不等式ax bx c ::: 0的解集是全体实数(或恒成立)的条件是:①当a = 0 时二b = 0, c :: 0;-l a ::: 00.②当a = 0时⑶ f(X)::a恒成立:=f(x)max ::a;f(X)一a 恒成立=f(X)max -a;⑷ f (x) a恒成立:=f (X)min a;f(X)— a 恒成立=f(x)min —a-15、线性规划问题常见的目标函数的类型:①“截距”型:Ax By;z y z y-b.z =_ z = ------------ .②“斜率”型:X或x-a2 丄 2 _2③“距离”型:z = x・y或z —X y .2 2 2 2z=(x-a) (y-b)或z = :,(x-a) (y-b).在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解, 题简单化.从而使问。
高中不等式知识点总结
![高中不等式知识点总结](https://img.taocdn.com/s3/m/15054219302b3169a45177232f60ddccdb38e64b.png)
高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结
![完整版)高中数学不等式知识点总结](https://img.taocdn.com/s3/m/a4508d5d793e0912a21614791711cc7931b778e3.png)
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
高一数学不等式知识点梳理
![高一数学不等式知识点梳理](https://img.taocdn.com/s3/m/3aa08c29876fb84ae45c3b3567ec102de3bddf42.png)
高一数学不等式知识点梳理在高中数学中,不等式是一个重要的概念和内容,在各个章节中都会涉及到不等式的相关知识和应用。
下面将对高一数学中的不等式知识点进行梳理和总结,以帮助同学们更好地理解和掌握不等式的相关内容。
一、不等式的基本概念1. 不等式的定义:不等式是数之间的大小关系的一种表示方式,用符号“<”、“>”、“≤”、“≥”等表示。
2. 不等式的解集:不等式的解集是使得不等式成立的所有实数的集合。
二、一元一次不等式1. 一元一次不等式的解法:(1) 通过绘制数轴法确定解集;(2) 利用性质将不等式转化为等价的形式求解。
2. 一元一次不等式的性质:(1) 加减性质:若a<b,则a±c<b±c(其中c为常数);(2) 倒置性质:若a<b,则-b<-a;(3) 倍增性质:若a<b,则ac<bc(c>0)或ac>bc(c<0);(4) 倒数性质:若a<b,则1/b<1/a(a>0,b>0)。
三、一元二次不等式1. 一元二次不等式的解法:(1) 使用根的性质来解决一元二次不等式;(2) 利用配方法将一元二次不等式转化成平方完全性质的形式求解。
2. 一元二次不等式的性质:(1) 零点性质:若x1、x2为一元二次不等式的解,则x1+x2=-b/a、x1*x2=c/a;(2) 符号性质:当a>0时,一元二次不等式y=ax²+bx+c的解集随x的增加而递增,当a<0时,解集随x的增加而递减;(3) 洛必达不等式:若0<a<b,则0<ln(a/b)<a/b<1。
四、绝对值不等式1. 绝对值不等式的解法:(1) 利用绝对值的定义进行讨论求解;(2) 利用绝对值的性质化简不等式,并得出解集。
2. 常见的绝对值不等式:(1) |x|<a(a>0)的解集为(-a, a);(2) |x|>a(a>0)的解集为(-∞, -a)∪(a, +∞);(3) |x-a|<b(b>0)的解集为(a-b, a+b);(4) |x-a|>b(b>0)的解集为(-∞, a-b)∪(a+b, +∞)。
高中数学知识点不等式的性质及解法
![高中数学知识点不等式的性质及解法](https://img.taocdn.com/s3/m/a538020032687e21af45b307e87101f69e31fbee.png)
高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。
它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。
下面将详细介绍不等式的性质及解法。
一、不等式的性质1.两边加减同一个数不等号方向不变。
2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。
3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。
4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。
5.无论何时,两边加上相等的数,不等式的大小不变。
二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。
具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。
2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。
3.解不等式:根据等价变形后的不等式,确定x的取值范围。
三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。
具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。
2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。
3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。
四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。
这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。
综上所述,不等式的性质及解法在高中数学中占据很重要的地位。
掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。
高中数学不等式知识点汇总
![高中数学不等式知识点汇总](https://img.taocdn.com/s3/m/3db9569c1711cc7930b71691.png)
不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:〔1〕a b b a <⇔> , a b b a >⇔< 〔反对称性〕 〔2〕c a c b b a >⇒>>, ,c a c b b a <⇒<<, 〔传递性〕 〔3〕c b c a b a +>+⇒>,故b c a c b a ->⇒>+ 〔移项法那么〕 推论:d b c a d c b a +>+⇒>>, 〔同向不等式相加〕 〔4〕bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的根底,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进展条件的放宽和加强。
3、常用的根本不等式和重要的不等式〔1〕0,0,2≥≥∈a a R a 当且仅当”取“==,0a 〔2〕ab b a R b a 2,,22≥+∈则 〔3〕+∈R b a ,,那么ab b a 2≥+〔4〕222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由〔1〕如积P y x P xy 2(有最小值定值),则积+=〔2〕如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。
运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:两个正数的均值不等式:ab ba ≥+2三个正数的均值不等是:33abc c b a ≥++ n 个正数的均值不等式:nn n a a a na a a 2121≥+++6、四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a ba ab ba +≤+≤≤+ 小结:在不等式的性质中,要特别注意下面4点:1、不等式的传递性:假设a>b,b>c, 那么a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否那么易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c 。
高中数学基本不等式知识点及练习题
![高中数学基本不等式知识点及练习题](https://img.taocdn.com/s3/m/7b75eb72bf1e650e52ea551810a6f524ccbfcbfb.png)
高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。
基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。
要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。
高一数学基本不等式知识点
![高一数学基本不等式知识点](https://img.taocdn.com/s3/m/48faf0c750e79b89680203d8ce2f0066f53364bb.png)
高一数学基本不等式知识点高一数学阶段,不等式的学习是一个重要的组成部分。
基本不等式是指一些关于数值的大小关系的基本规律,通过对这些不等式的掌握,学生不仅可以提升自己对数学的理解,还可以在解决实际问题时运用这些知识,从而提高数学思维能力和解决问题的能力。
一、基本不等式的意义1.定义:基本不等式是指在特定条件下,某些数之间存在的一种不可逆转的大小关系。
2.应用:这些不等式在几何、代数等个领域具有广泛应用,可以用来简化复杂问题的计算。
二、基本不等式的种类1.柯西-施瓦茨不等式:对任意实数a1, a2, ..., an和b1,b2, ..., bn都有(Σai*bi)² ≤ (Σai²)(Σbi²),这条不等式在线性代数和统计学中非常常用。
2.阿米尔-阿米尔不等式:对于非负实数a1, a2, ..., an,有(a1 + a2 + ... + an)² ≤ n(a1² + a2² + ... + an²),这为后续证明各种其他不等式打下了基础。
3.霍尔德不等式:如果p,q>1且p+q=1,则对于非负数a, b,有(ab)^(1/p) ≤ (a + b)/2,且在某些情况下等号成立。
三、基本不等式的推导1.推导方法:不等式的推导一般采用反证法或直接代入法,逻辑严谨,层次分明。
2.示例:推导柯西-施瓦茨不等式时,可以通过构造特定的向量来进行分析,细致分解可帮助理解不等式的成因。
四、不等式的应用1.数学竞赛:不等式在各类数学竞赛中均有应用,是解题的重要技巧之一。
2.证明题:在许多几何证明题中,基本不等式常常用来提供不等关系,为证明过程提供支撑。
五、解题技巧1.反证法:常用于不等式的证明,通过假设不等式的反面来推导出矛盾。
2.函数性质:利用单调性或凹凸性来处理不等式。
3.选取合适的变量:有时通过适当变换变量可以简化不等式,使问题变得更加直观。
(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档
![(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档](https://img.taocdn.com/s3/m/f17001b8a76e58fafbb0032b.png)
△>0
Байду номын сангаас
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
△=0
△<0
y=ax2+bx+c
y
的图象
(a>0)
x1 O
x2x
y
O x1
x
y x
O
ax2+bx+c=0 有两相异实根 (a>0)的根 x1, x2 (x1<x2)
有两相等实根
x1=x2=
b 2a
ax2+bx+c>0 {x|x<x1,或 x>x2} {x|x≠ b }
一.不等式知识要点
1.两实数大小的比较
a b a b 0 a b a b 0 a b a b 0
2.不等式的性质:8条性质.
3.基 本不 等式 定理
且且且且 且且且且 且且且且 且且且且
a 2 b 2 2ab
a2
b2
1 (a b)2 2
值。
z ax by z x2 y2
z y x
6
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的
个数。
2.且且且且且且且f
(x)
2
log2
x
1 log2
x
(0
x
1)
34.f(x)=x+ 1 且x4且且且且且 x1
4.求函数 f ( x) ( x 1)2 4 ( x 1) 的最小值.
(5)一元二次方程根的分布问题: 方法:依据二次函数的图像特征从:开口方向、判别式、对称 轴、
高中数学一元二次不等式知识点总结
![高中数学一元二次不等式知识点总结](https://img.taocdn.com/s3/m/edbdbd42dc36a32d7375a417866fb84ae45cc334.png)
高中数学一元二次不等式知识点总结一元二次不等式知识点总结(人教版)一、一元二次不等式的基本形式。
1. 定义。
- 一元二次不等式的一般形式为ax^2+bx + c>0或ax^2+bx + c<0(a≠0),其中a、b、c是实数。
- 例如x^2-3x + 2>0,这里a = 1,b=-3,c = 2。
二、一元二次方程与一元二次不等式的关系。
1. 一元二次方程ax^2+bx + c = 0(a≠0)的根与一元二次不等式解集的联系。
- 当Δ=b^2-4ac>0时,一元二次方程ax^2+bx + c = 0(a≠0)有两个不同的实根x_1,x_2(x_1。
- 对于不等式ax^2+bx + c>0(a>0),其解集为{xx或x>x_2};对于不等式ax^2+bx + c<0(a>0),其解集为{xx_1。
- 当Δ=b^2-4ac = 0时,一元二次方程ax^2+bx + c = 0(a≠0)有两个相同的实根x_0=-(b)/(2a)。
- 对于不等式ax^2+bx + c>0(a>0),其解集为{xx≠ x_0};对于不等式ax^2+bx + c<0(a>0),其解集为varnothing。
- 当Δ=b^2-4ac<0时,一元二次方程ax^2+bx + c = 0(a≠0)没有实根。
- 对于不等式ax^2+bx + c>0(a>0),其解集为R;对于不等式ax^2+bx +c<0(a>0),其解集为varnothing。
三、一元二次不等式的解法。
1. 因式分解法(当二次三项式容易因式分解时)- 例如解不等式x^2-3x + 2>0。
- 先将二次三项式因式分解为(x - 1)(x - 2)>0。
- 则有x - 1>0 x - 2>0或x - 1<0 x - 2<0。
- 解x - 1>0 x - 2>0得x>2;解x - 1<0 x - 2<0得x<1。
高考数学-基本不等式(知识点归纳)
![高考数学-基本不等式(知识点归纳)](https://img.taocdn.com/s3/m/6935a33bdf80d4d8d15abe23482fb4daa58d1dcf.png)
高考数学-基本不等式(知识点归纳) 高中数学基本不等式的巧用一、基本不等式1.若$a,b\in\mathbb{R}$,则$a+b\geq 2ab$,$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“=”)2.若$a,b\in\mathbb{R}$,则$\frac{a+b}{2}\geq\sqrt{ab}$(当且仅当$a=b$时取“=”)3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“=”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“=”);若$x\neq 0$,则$x+\frac{1}{x}\geq 2$或$x+\frac{1}{x}\leq -2$(当且仅当$x=1$或$x=-1$时取“=”)4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$或$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=b$时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。
2)求最值的条件“一正,二定,三取等”。
3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。
应用一:求最值例1:求下列函数的值域1.$y=3x+\frac{11}{2}$2.$y=x+\frac{1}{2x}$解:(1)$y=3x+\frac{11}{2}\geq 6$,所以值域为$[6,+\infty)$。
2)当$x>0$时,$y=x+\frac{1}{2x}\geq 2$;当$x<0$时,$y=x+\frac{1}{2x}\leq -2$;当$x=0$时,$y$无定义。
完整版高中数学不等式知识点总结3篇
![完整版高中数学不等式知识点总结3篇](https://img.taocdn.com/s3/m/6d9c1d44f342336c1eb91a37f111f18583d00cba.png)
完整版高中数学不等式知识点总结第一篇:基本不等式和二元平均数不等式一、基本不等式:基本不等式又称柯西不等式,是数学中重要的基本工具,对于解决不等式问题有重大意义。
基本不等式的形式如下:$$(a_1^2 + a_2^2 + … + a_n^2)(b_1^2 + b_2^2 + … + b_n^2) \geqslant (a_1b_1 + a_2b_2 + … + a_nb_n)^2$$其中$a_1,a_2,…,a_n$ 和$b_1,b_2,…,b_n$ 是任意实数。
基本不等式的证明过程多种多样,这里给出一种简单易懂的证明方法:设$x=a_1b_1+a_2b_2+…+a_nb_n$,则 $x^2$ 可以表示为:$$x^2={(a_1b_1+a_2b_2+…+a_nb_n)}^2$$$$={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^ 2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$又因为:$${a_1}^2+{a_2}^2+…+{a_n}^2\geqslant2a_1a_2+2a_1a_3+…+2a_{n-1}a_n$$$${b_1}^2+{b_2}^2+…+{b_n}^2\geqslant2b_1b_2+2b_1b_3+…+2b_{n-1}b_n$$因此:$${a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^2 \geqslant 2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$故:$$x^2={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_ n}^2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$$$\leqslant({a_1}^2+{a_2}^2+…+{a_n}^2)({b_1}^2+{ b_2}^2+…+{b_n}^2)$$即为所求基本不等式。
高中数学知识点归纳不等式的性质与求解方法
![高中数学知识点归纳不等式的性质与求解方法](https://img.taocdn.com/s3/m/91d1276b580102020740be1e650e52ea5518ce0a.png)
高中数学知识点归纳不等式的性质与求解方法高中数学知识点归纳——不等式的性质与求解方法不等式是数学中常见的一种关系表达式,它描述了两个数或者表达式之间大小的关系。
不等式是数学中重要且广泛应用的概念,在高中数学学习中,学生需要掌握不等式的性质及求解方法。
本文将对不等式的性质及求解方法进行归纳总结。
一、不等式的基本性质1. 不等式的传递性不等式的传递性是指如果a>b,b>c,则有a>c。
这个性质在求解不等式问题时经常会使用到。
2. 不等式的加减性对于不等式a>b和一个非负实数c,有以下结论:a+c > b+ca-c > b-c利用这个性质可以对不等式进行加减运算,从而简化不等式的形式。
3. 不等式的乘除性对于不等式a>b和一个正实数c,有以下结论:a*c > b*c (当c>0时)a*c < b*c (当c<0时)同样地,利用这个性质可以对不等式进行乘除运算,从而简化不等式的形式。
4. 不等式的倒置性对于不等式a>b,将不等式两边同时取负,得到-b>-a,即b<a。
这就是不等式的倒置性。
二、不等式的求解方法1. 图像法图像法是一种简单可行的不等式求解方法。
对于一元一次不等式,可以将其转化为一条直线,根据直线在数轴上的位置来判断不等式的解集。
2. 实数集合法通过观察不等式中的变量范围,结合实数集合的性质,可以得到不等式的解集。
例如,对于不等式2x-3<5,可以通过观察得到x的范围应该是(-∞, 4)。
3. 符号法符号法是一种常用的不等式求解方法,通过对不等式两边进行推导和变形,利用不等式的性质进行运算,最终得到不等式的解集。
4. 区间法对于一元一次不等式,可以通过构造不等式的区间来求解。
例如,对于不等式x+2>5,可以通过将不等式两边同时减去2,得到x>3,表示x的取值范围是(3, +∞)。
三、不等式的分类与求解1. 一元一次不等式一元一次不等式是最简单的一类不等式,通常形式为ax+b>c或者ax+b<c,其中a、b和c为已知实数,x为未知数。
(完整版)高中数学不等式知识点总结
![(完整版)高中数学不等式知识点总结](https://img.taocdn.com/s3/m/06c5eea8534de518964bcf84b9d528ea81c72f3b.png)
(完整版)高中数学不等式知识点总结高中数学中,不等式是一个重要的内容,它是解决数学问题的一种有力工具。
不等式是一种用于描述数值的大小关系的数学语句,它包含“大于”、“小于”、“大于等于”、“小于等于”等符号。
在数学考试中,不等式问题常常出现在基础知识和综合应用的部分,所以对不等式的学习是非常必要的。
下面我将为大家总结一下高中数学中关于不等式的知识点。
一、不等式的基本概念1. 不等式的定义:不等式是数值之间大小关系的表达式,由关系符号和数值构成。
2. 关系符号的含义:- 大于:表示前面的数比后面的数要大,如a>b。
- 小于:表示前面的数比后面的数要小,如a<b。
- 大于等于:表示前面的数比后面的数大或相等,如a≥b。
- 小于等于:表示前面的数比后面的数小或相等,如a≤b。
二、不等式的性质及常用规则1. 不等式的性质:- 若a>b,则-a<-b。
- 若a>b,则a+c>b+c。
- 若a>b,则ac>bc(当c为正数时)。
- 若a>b,则ac<bc(当c为负数时)。
- 若a>b,且c>0,那么a/c>b/c。
- 若a>b,且c<0,那么a/c<b/c。
2. 不等式的常用规则:- 加法规则:若a>b,则a+c>b+c。
- 减法规则:若a>b,则a-c>b-c。
- 乘法规则:若a>b(c>0),则ac>bc;若a<b(c<0),则ac<bc。
- 除法规则:若a>b(c>0),则a/c>b/c;若a<b(c<0),则a/c<b/c。
- 对称性:若a>b,则-b<-a。
三、一元一次不等式1. 一元一次不等式的解集表示法:- 解集用区间表示。
- 开区间:解集中的数不包括端点。
- 闭区间:解集中的数包括端点。
2. 不等式的性质应用举例:- 若a>0,则-1/a<0。
不等式知识点总结 高三数学一轮复习
![不等式知识点总结 高三数学一轮复习](https://img.taocdn.com/s3/m/c3f86329a517866fb84ae45c3b3567ec112ddc60.png)
知识点总结2 不等式一.一元二次不等式1.解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断对应方程Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).2.解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑: ①二次项系数决定开口方向;②判别式Δ决定根的情形,一般分Δ>0,Δ=0,Δ<0三种情况;③在有根的条件下,要比较两根的大小.3.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是{a >0,∆<0,(2)ax 2+bx +c <0(a ≠0)恒成立的条件是{a <0,∆<0,二.分式不等式()()f xg x >0(<0)⇔f (x )g (x )>0(<0); ()()f x g x ≥0(≤0)⇔ ()()0(0),()0f xg x g x ≥≤⎧⎨≠⎩. 三.基本不等式:1.高中阶段涉及的几个平均数:设()01,2,,i a i n >= (1)调和平均数:H n =n1a 1+1a 2+⋯+1a n ;(2)几何平均数:12n n n G a a a = ; (3)算术平均数:12n n a a a A n +++=;(4)平方平均数:22212n n a a a Q n+++ 2.均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a === 当2n =时,21a +1b≤√ab ≤a+b2≤√a 2+b 22; 特别的: √ab ≤a+b2为常用基本不等式3.基本不等式的几个变形:(1)a 2+b 2≥2ab (a ,b ∈R ).(2)a +b ≥2√ab(a,b >0);(3)b a +a b≥2(a ,b 同号);(4)ab ≤(a+b 2)2≤a 2+b 22(a ,b ∈R ).以上不等式等号成立的条件均为a =b .4.利用基本不等式求最值已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,和x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,积xy 有最大值p 24.(简记:和定积最大) 利用均值不等式求最值遵循的原则:“一正二定三等”。
高中数学不等式知识点
![高中数学不等式知识点](https://img.taocdn.com/s3/m/f978562d83d049649a665814.png)
不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性) (2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。
3、常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+(4)222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。
运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:两个正数的均值不等式:ab ba ≥+2三个正数的均值不等是:33abc c b a ≥++n 个正数的均值不等式:nn n a a a na a a 2121≥+++6、四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+ 小结:在不等式的性质中,要特别注意下面4点:1、不等式的传递性:若a>b,b>c, 则a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c 。
高中数学不等式知识点归纳
![高中数学不等式知识点归纳](https://img.taocdn.com/s3/m/81f30b49bfd5b9f3f90f76c66137ee06eef94e62.png)
高中数学不等式知识点归纳
高中数学不等式知识点归纳主要包括以下几个方面:
1. 不等式的概念和性质:不等式是数学中比较基础的概念,它表示两个数之间的大小关系。
不等式的性质包括:对称性、传递性、加法法则、乘法法则等。
这些性质在解决不等式问题时非常重要。
2. 一元一次不等式:一元一次不等式是只含有一个未知数,且未知数的次数为1的不等式。
解决这类不等式问题,可以通过移项、合并同类项、化系数为1等方法,将其转化为一元一次方程,然后求解。
3. 一元二次不等式:一元二次不等式是含有一个未知数,且未知数的最高次数为2的不等式。
解决这类不等式问题,可以通过因式分解、配方、判别式等方法,将其转化为一元二次方程,然后求解。
4. 分式不等式:分式不等式是含有分式的不等式。
解决这类不等式问题,可以通过通分、分子分母同号或异号等方法,将其转化为整式不等式,然后求解。
5. 绝对值不等式:绝对值不等式是含有绝对值符号的不等式。
解决这类不等式问题,可以通过绝对值的定义,将其转化为分段函数,然后分别求解每一段的情况。
6. 不等式的应用:不等式在实际生活中有广泛的应用,如优化问题、最值问题、范围问题等。
在解决这些问题时,需要根据问题的实际情况,建立相应的不等式模型,然后求解。
以上是高中数学不等式知识点的主要归纳,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性学制数学讲义不等式(4课时)★知识梳理1、不等式的基本性质①(对称性)abba②(传递性),ab bcac③(可加性)ab a cb c(同向可加性)d b c a d c b a ,(异向可减性)dbcad cb a,④(可积性)bcac cb a0,bcaccb a 0,⑤(同向正数可乘性)0,0abcdacbd(异向正数可除性)0,0a b abcdcd⑥(平方法则)0(,1)nnaba b nN n且⑦(开方法则)(,1)nnaba b nN n且⑧(倒数法则)bab a bab a 110;1102、几个重要不等式①222a b ab a bR,,(当且仅当ab 时取""号).变形公式:22.2ab ab②(基本不等式)2ababa b R,,(当且仅当ab 时取到等号).变形公式:2a b a b2.2a bab 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)33ab cabc()a b cR 、、(当且仅当ab c 时取到等号). ④222abc ab bc ca a b R,(当且仅当abc 时取到等号).⑤3333(0,0,0)abcabc a bc(当且仅当abc 时取到等号).⑥0,2b a aba b若则(当仅当a=b 时取等号)0,2b a ab ab若则(当仅当a=b 时取等号)⑦b anbn a mam b ab1,(其中000)abmn,,规律:小于1同加则变大,大于1同加则变小.⑧220;axaxaxa xa 当时,或22.x a x a a x a ⑨绝对值三角不等式.aba bab 3、几个著名不等式①平均不等式:2211222a b ab abab,,a b R (,当且仅当ab 时取""号).(即调和平均几何平均算术平均平方平均).变形公式:222;22a b ab ab222().2a b ab②幂平均不等式:222212121...(...).nn a a a a a a n③二维形式的三角不等式:22222211221212()()x yx y x x y y 1122(,,,).x y x y R ④二维形式的柯西不等式:22222()()()(,,,).ab cd ac bd a b c dR 当且仅当adbc 时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().aa a bb b a b a b a b ⑥一般形式的柯西不等式:2222221212(...)(...)n n aa ab b b 21122(...).n n a b a b a b ⑦向量形式的柯西不等式:设,是两个向量,则,当且仅当是零向量,或存在实数k ,使k时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b 为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n nn n n a b a b a b a c a c a c 1122....n n a b a b a b (反序和乱序和顺序和),当且仅当12...n a a a 或12...n b b b 时,反序和等于顺序和. ⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x 有12121212()()()()()().2222x x f x f x x x f x f x f f 或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131()();242aa②将分子或分母放大(缩小),如211,(1)kk k 211,(1)k k k 2212,21kkkkkk*12(,1)1kN kkkk等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c 或2(0,40)a bac解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根. 三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()()f x f xg x g x f x g x f x g x g x (“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0()(0)()f x f x a a f x a⑵2()0()(0)()f x f x a a f x a⑶2()0()0()()()0()()[()]f x f x f x g x g x g x f x g x 或⑷2()0()()()0()[()]f x f x g x g x f x g x ⑸()0()()()0()()f x f xg x g x f x g x 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a 时,()()()()f x g x aaf xg x ⑵当01a 时, ()()()()f xg x aaf xg x 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a 时,()0log ()log ()()0()()a a f x f x g x g x f x g x ⑵当01a 时,()0log ()log ()()0.()()a a f x f x g x g x f x g x 规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a aa a ⑵平方法:22()()()().f xg x f x g x ⑶同解变形法,其同解定理有:①(0);x a a x a a ②(0);xaxa xa a或③()()()()()(()0)f xg x g x f x g x g x ④()()()()()()(()0)f xg x f x g x f x g x g x 或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20axbx c且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c的解集是全体实数(或恒成立)的条件是:①当0a时0,0;bc②当0a时00.a⑵不等式20ax bx c 的解集是全体实数(或恒成立)的条件是:①当0a时0,0;bc②当0a时00.a⑶()f x a 恒成立max ();f x a ()f x a 恒成立max();f x a ⑷()f x a 恒成立min ();f x a ()f x a 恒成立min().f x a 15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By ②“斜率”型:y zx 或;y b zxa③“距离”型:22zxy 或22;zx y 22()()z x a y b 或22()().zx a y b 在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。