(完整版)大学物理学(课后答案)第5-6章

合集下载

大学物理第五章 习题解答

大学物理第五章 习题解答

第五章 习题解答5-1解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT 可得ΔT=W/νR ,ν=1mol ,ΔT=W/RW W i T R i T T C Q p 272222)(12=+=∆+=-=υυp 5-2 J T R i E 65.124131.823102=⨯⨯⨯=∆=∆υ5-3 解:等容过程有W=0,Q=ΔE J T R i E 747930031.82322=⨯⨯⨯=∆=∆=υ 5-4解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT=200JW i T R i T T C Q 2222)(12+=∆+=-=υυp 单原子分子 i =3,J Q 500200223=⨯+= 单原子分子 i =5,J Q 700200225=⨯+= 5-5. 一系统由如图所示的a 状态沿acb 到达b 状态,有334J 热量传入系统,系统做功J 126。

(1)经adb 过程,系统做功J 42,问有多少热量传入系统?(2)当系统由b 状态沿曲线ba 返回状态a 时,外界对系统做功为J 84,试问系统是吸热还是放热?热量传递了多少?解:由acb 过程可求出b 态和a 态的内能之差Q=ΔE+W ,ΔE=Q -W=334-126=208 Jadb 过程,系统作功W=42 J , Q=ΔE+W=208+42=250J 系统吸收热量ba 过程,外界对系统作功A=-84 J , Q=ΔE +W=-208-84=-292 J 系统放热 5-6解:ab 过程吸热,bc 过程吸热 cd 过程放热,da 过程放热取1atm=105Pa 根据等温、等压过程的吸热公式可得J V p V p i T T C Q a a b b ab 336)(2)(12=-=-=V υ J V p V p i Q b b c c bc 560)(22=-+= J V p V p i Q c c d d cd 504)(2-=-= J V p V p i Q d d a a da 280)(22-=-+= 整个过程总吸热J Q Q Q bc ab 8961=+=,总放热J Q Q Q da cd 7842=+=p净功J Q Q W 11221=-=,效率%5.128967841112=-=-=Q Q η 5-7 卡诺热机的效率为%4028011112=-=-=T T T 卡η,可得高温热源温度7.4661=T K 如果%50'28011112=-=-=T T T 卡η,可得560'1=T K ,温度提高了3.93'11=-T T K 5-8 %251068.11026.1117712=⨯⨯-=-=Q Q η。

大学物理A1习题册参考答案-第5-6章

大学物理A1习题册参考答案-第5-6章

A1r 2r ab1、 下列几个叙述中哪一个是正确的?A 、电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;C 、场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正可负; D 、以上说法都不正确。

[ ] 1. C解释:A 答案点电荷可能有正负;B 答案场强是矢量2、 关于高斯定理的理解有下面几种说法,其中正确的是 A 、如果高斯面内无电荷,则高斯面上E处处为零; B 、如果高斯面上E处处不为零,则该面内必无电荷;C 、如果高斯面内有净电荷,则通过该面的电通量必不为零;D 、如果高斯面上E处处为零,则该面内必无电荷。

[ ] 2. C解释:A 答案通量为零不一定场强为零;D 答案考虑等量异号电荷,可以使得处处为零。

3、 在静电场中,下列说法中哪一个是正确的?A 、带正电荷的导体,其电势一定是正值;B 、等势面上各点的场强一定相等;C 、场强为零处,电势也一定为零;D 、场强相等处,电势梯度矢量一定相等。

[ ] 3. D解释:A 答案电势是个相对值,要参考零电势的选择。

4、 如图所示,在电荷为Q -的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为1r 和2r ,则移动过程中电场力做的功为 A 、012114Q r r πε⎛⎫-- ⎪⎝⎭; B 、012114qQ r r πε⎛⎫- ⎪⎝⎭;C 、012114qQ r r πε⎛⎫-- ⎪⎝⎭; D 、()0214qQ r r πε-- [ ]4. C解释:电场力做功等于电势能差,注意正负号。

5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 5. D解释:由高斯定理依次求出各部分场强即可。

大学物理学 黄时中 袁广宇 朱永忠 中国科学技术大学出版社 课后答案第4、5、6章

大学物理学 黄时中 袁广宇 朱永忠 中国科学技术大学出版社 课后答案第4、5、6章

hd aw
Y Y

O
O
'
题图 4.3
x l 0 cos y l 0 sin
1
.c
X , X
om
z z
试证:在惯性系 K 中的观测者观测到该质点作椭圆运动,椭圆的中心以速度 u 运动。 提示:在惯性系 K 中的观测者观测到该质点的轨道方程为
细杆在 K 系中的两个坐标上的投影分别为
p mV
5E0 5 0.98 0.51Mev 2.5Mev 0.98c 2 c c c
2 4 E 2 p 2 c 2 m0 c ( E K m0 c 2 ) 2
p2
.c
(1) (2)
5
[提示:电子的静能为 E0 0.511MeV ]
om
由相对论动量守恒 p p 得到
2 2 x 1 u / c x l 0 1 u / c cos y y l 0 sin
在 K 系中细杆的长度为
l x 2 y 2 l 0 1 u / c cos 2 sin 2 l 0 1 u cos / c
E mc 2
m 5E0 c2
hd aw

m0
Mc 2 E K1 E K 2 m1c 2 m 2 c 2
其中
m
1 (v / c ) 2
联立(1)、(2)两式
V c 1
将(1)式代入动量公式
2 4 m0 c (9.1 10 31 ) 2 (3 108 ) 4 c 0.98c 1 25E02 25 (0.511 10 6 1.6 10 19 ) 2

大学物理第五章习题答案

大学物理第五章习题答案

大学物理第五章习题答案大学物理第五章习题答案第一题:题目:一个质量为m的物体以速度v水平运动,撞到一个质量为M的静止物体,两物体发生完全弹性碰撞,求碰撞后两物体的速度。

解答:根据动量守恒定律,碰撞前后动量的总和保持不变。

设碰撞后物体m的速度为v1,物体M的速度为V1,则有mv = mv1 + MV1。

由于碰撞是完全弹性碰撞,动能守恒定律也成立,即(mv^2)/2 = (mv1^2)/2 + (MV1^2)/2。

将第一个方程代入第二个方程,可得到关于v1和V1的方程组。

解方程组即可得到碰撞后两物体的速度。

第二题:题目:一个质量为m的物体以速度v1撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。

解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V2,则有mv1 = mv2 + MV2,以及(mv1^2)/2 = (mv2^2)/2 + (MV2^2)/2。

将第一个方程代入第二个方程,解方程组即可得到物体M的速度V2。

第三题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后两物体粘在一起,求粘在一起后的速度。

解答:根据动量守恒定律,碰撞前后动量的总和保持不变。

设碰撞后两物体的速度为V,则有mv = (m+M)V。

解方程即可得到粘在一起后的速度V。

第四题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。

解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V,则有mv = mv2 + MV,以及(mv^2)/2 = (mv2^2)/2 +(MV^2)/2。

将第一个方程代入第二个方程,解方程组即可得到物体M的速度V。

第五题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求碰撞后两物体的动能变化。

解答:碰撞前物体m的动能为(mv^2)/2,碰撞后物体m的动能为(mv2^2)/2,两者之差即为动能变化。

大学物理第六章课后习题答案

大学物理第六章课后习题答案

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt -π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.5φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量.[解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =图5.10声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--= 1768(Hz). 反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).`11331142133165B u u u νν==⨯--`1111331651421BBu u u u λννν--=-==`1`13311768u λν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-S 1 S 2S 125.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。

大学物理第五章课后习题答案

大学物理第五章课后习题答案

第五章课后习题答案5.1 解:以振动平衡位置为坐标原点,竖直向下为正向,放手时开始计时。

设t 时刻砝码位置坐标为x ,由牛顿第二定律可知: 220)(dtx d mx x k mg =+-其中0x 为砝码处于平衡位置时弹簧的伸长量,所以有 0kx mg = 解出0x 代入上式,有:022=+x mk dtxd 其中 mk =ω可见砝码的运动为简谐振动简谐振动的角频率和频率分别为: s r a d x g mk /9.90===ω Hz 58.12==πων振动微分方程的解为)c o s (ϕω+=t A x由起始条件 t =0 时,,1.00m x x -=-= 0=v得: A =0.1m ,πϕ=振动方程为:)9.9cos(1.0π+=t x5.2 证明:取手撤去后系统静止时m 的位置为平衡位置,令此点为坐标原点,此时弹簧伸长为x ,则有: 0sinkx mg =θ (1)当物体沿斜面向下位移为x 时,则有: ma T mg =-1sin θ (2) βJ R T R T =-21 (3) )(02x x k T += (4)R a β= (5) 将(2)与(4)代入(3),并利用(5),可得: k x R R kx mgR a RJ mg --=+0sin )(θ利用(1)式可得 x RJ mR kR dtx d a +-==22所以物体作简谐振动因为 R J mR kR +=ω 所以振动周期为 ωπ2=T5.3 解: 因为 mk ππων212==所以 :1221m m =νν22121)(m m νν==2 Kg5.4 解:(1) 由振动方程)420cos(01.0ππ+=t x 可知:振幅A =0.01m ;圆频率 πω20=; 周期 s T 1.02==ωπ频率Hz 10=ν ;初相40πϕ=(2)把t =2s 分别代入可得:2005.0)420cos(01.0|2=+==ππt x t m2314.0)420sin(2.0|2-=+-===πππt dt dx v t m/s)420sin(4|22πππ+===t dtdv a t5.5 解: T =2s ,ππω==T2设振动方程为:)cos(10ϕπ+=t x则速度为:)s i n (10ϕππ+-=t v加速度为: )c o s (102ϕππ+-=t a根据t =0 时,x =5cm ,v < 0 的条件,得振动的初相为 3πϕ=,故振动方程为:)3cos(10ππ+=t x设在 1t 时刻振子位于cm x 6-=处,并向x 轴负方向运动,则有:53)3'c o s (-=+ππt 54)3's i n (=+ππt故有 s cm t v /1.25)3'sin(10-=+-=πππ22/2.59)3'cos(10s cm t a =+-=πππ设弹簧振子回到平衡位置的时刻为2t ,则有πππ2332=+t ,从上述位置回到平衡位置所需时间为: st t 8.0/)]3)53(arccos()323[(12=----=-ππππ5.6。

大学物理第五章习题答案

大学物理第五章习题答案
R
L
o
y
x
22
在锥体上 z 坐标处任取半径为 r高为 dz 的小柱体,则
L z 2 dm dv r dz ( R ) dz L 根据质心定义得
2
z
1 zC M

L
0
1 zdm M
L

L
0
L z 2 z ( R ) dz L
r
dz
L
R ML2 0 L L R 2 L 2 2 3 x [ zL dz 2 Lz dz z dz ] 2 0 0 0 ML R 2 L4 2 L4 L4 R 2 2 3 M L [ ] L L 2 ML 2 3 4 12 M 12 M 4
11

如果一个长度已知的不规则物体的重量超过一个弹簧秤的最大 量度,问怎样用这弹簧秤称出该物体的重量? F 上图,根据合力矩为零得
Gx Fl

N
下图,根据合力矩为零得
F l G(l x )
x
F
l

整理可得:
G F F
G
N
G
课后习题

12
5-3:静止的电动机皮带轮半径为 5 cm,接通电源后做匀变速 转动,30 s 后转速达到152 rad / s,求: 1)30 s 内电动机皮带轮转过的转数; 2)通电后 20 s 时皮带轮的角速度; 3)通电后 20 s 时皮带轮边缘上一点的速度、切向加速度和法 向加速度。 解:皮带轮的角加速度为 152 t 0 t t 5 (rad/s 2 )
8

来复线的作用是增加炮弹的射程和准确性。由于炮弹射出时 绕自身轴线高速转动,空气阻力产生的对质心的力矩使炮弹 围绕前进方向产生进动效应,弹头的轴线始终围绕着弹道切 线向前且做锥形运动,从而能克服空气阻气,保证弹头稳定 地向前飞行,避免大的偏离,提高射程与准确性。

大学物理学(第五版)上册(马文蔚)课后答案及解析

大学物理学(第五版)上册(马文蔚)课后答案及解析

1-1 分析与解(1) 质点在t 至(t +Δt)时间内沿曲线从P点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但却不等于dr.故选(B).(2) 由于|Δr |≠Δs,故,即||≠ .但由于|dr|=ds,故,即||=.由此可见,应选(C).1-2 分析与解表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解.故选(D).1-3 分析与解表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D).1-4 分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 分析与解本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为,其中绳长l 随时间t 而变化.小船速度,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).1-6 分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据来确定其运动方向改变的时刻tp ,求出0~tp 和tp~t 内的位移大小Δx1 、Δx2 ,则t 时间内的路程,如图所示,至于t =4.0 s 时质点速度和加速度可用和两式计算.解(1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为(t=0不合题意)则,所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时,,1-7 分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图.解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为(匀加速直线运动), (匀速直线运动)(匀减速直线运动)根据上述结果即可作出质点的a-t 图[图(B)].在匀变速直线运动中,有由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].1-8 分析质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.对于r、Δr、Δr、Δs 来说,物理含义不同,可根据其定义计算.其中对s的求解用到积分方法,先在轨迹上任取一段微元ds,则,最后用积分求s.解(1) 由x(t)和y(t)中消去t 后得质点轨迹方程为,这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为,图(a)中的P、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得其中位移大小而径向增量*(4) 如图(B)所示,所求Δs 即为图中PQ段长度,先在其间任意处取AB 微元ds,则,由轨道方程可得,代入ds,则2s内路程为1-9 分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解(1) 速度的分量式为,当t =0 时, vox =-10 m?6?1s-1 , voy =15 m?6?1s-1 ,则初速度大小为设vo与x 轴的夹角为α,则α=123°41′(2) 加速度的分量式为,则加速度的大小为设a 与x 轴的夹角为β,则,β=-33°41′(或326°19′)1-10 分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1(1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y1 =y2 ,即(2) 螺丝相对升降机外固定柱子下降的距离为解2(1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有(2) 由于升降机在t 时间内上升的高度为则1-11 分析该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解(1) 如图(B)所示,在O′x′y′坐标系中,因,则质点P的参数方程为,坐标变换后,在Oxy 坐标系中有,则质点P 的位矢方程为(2) 5s时的速度和加速度分别为1-12 分析为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s=htgωt,下午2∶00 时,杆顶在地面上影子的速度大小为当杆长等于影长时,即s =h,则即为下午3∶00 时.1-13 分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由和可得和.如a=a(t)或v =v(t),则可两边直接积分.如果a 或v不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知,应有得(1)由得(2)将t=3s时,x=9 m,v=2 m?6?1s-1代入(1) (2)得v0=-1 m?6?1s-1,x0=0.75 m.于是可得质点运动方程为1-14 分析本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v的函数,因此,需将式dv =a(v)dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知(1)用分离变量法把式(1)改写为(2)将式(2)两边积分并考虑初始条件,有得石子速度由此可知当,t→∞时, 为一常量,通常称为极限速度或收尾速度.(2) 再由并考虑初始条件有得石子运动方程1-15 分析与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量ax 和ay分别积分,从而得到运动方程r的两个分量式x(t)和y(t).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即和,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解由加速度定义式,根据初始条件t0 =0时v0 =0,积分可得又由及初始条件t=0 时,r0=(10 m)i,积分可得由上述结果可得质点运动方程的分量式,即x =10+3t2 y =2t2消去参数t,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率,α=33°41′.轨迹如图所示.1-16 分析瞬时加速度和平均加速度的物理含义不同,它们分别表示为和.在匀速率圆周运动中,它们的大小分别为, ,式中|Δv|可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt→0 时的极限值.解(1) 由图(b)可看到Δv =v2 -v1 ,故而所以(2) 将Δθ=90°,30°,10°,1°分别代入上式,得,, ,以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度.1-17 分析根据运动方程可直接写出其分量式x =x(t)和y =y(t),从中消去参数t,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即,它与时间间隔Δt 的大小有关,当Δt→0 时,平均速度的极限即瞬时速度.切向和法向加速度是指在自然坐标下的分矢量at和an ,前者只反映质点在切线方向速度大小的变化率,即,后者只反映质点速度方向的变化,它可由总加速度a 和at得到.在求得t1 时刻质点的速度和法向加速度的大小后,可由公式求ρ.解(1) 由参数方程x =2.0t,y =19.0-2.0t2消去t 得质点的轨迹方程:y =19.0 -0.50x2(2) 在t1 =1.00s到t2 =2.0s时间内的平均速度(3) 质点在任意时刻的速度和加速度分别为则t1 =1.00s时的速度v(t)|t =1s=2.0i -4.0j切向和法向加速度分别为(4) t =1.0s质点的速度大小为则1-18 分析物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量vx 、vy求出,这样,也就可将重力加速度g 的切向和法向分量求得.解(1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt,y =1/2 gt2飞机水平飞行速度v=100 m?6?1s-1 ,飞机离地面的高度y=100 m,由上述两式可得目标在飞机正下方前的距离(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为1-19 分析这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v0cosβ和v0sinβ,其加速度分别为gsinα和gcosα.在此坐标系中炮弹落地时,应有y =0,则x =OP.如欲使炮弹垂直击中坡面,则应满足vx =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得(即图中的r 矢量).解1由分析知,炮弹在图(a)所示坐标系中两个分运动方程为(1) (2)令y =0 求得时间t 后再代入式(1)得解2做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和vx =0,则(3)由(2)(3)两式消去t 后得由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v0 的大小无关.讨论如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1-20 分析选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布解(1) 如图(a)所示坐标系中,雨滴落地的运动方程为(1) (2)由式(1)(2)可得由图(a)所示几何关系得雨滴落地处圆周的半径为(2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1-21 分析被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x、y 值代入即可求出.解取图示坐标系Oxy,由运动方程,消去t 得轨迹方程以x =25.0 m,v =20.0 m?6?1s-1 及3.44 m≥y≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1-22 分析在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量at,而加速度的法向分量为an=v2 /R.这样,总加速度为a =atet+anen.至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs=st -s0.因圆周长为2πR,质点所转过的圈数自然可求得.解(1) 质点作圆周运动的速率为其加速度的切向分量和法向分量分别为,故加速度的大小为其方向与切线之间的夹角为(2) 要使|a|=b,由可得(3) 从t=0 开始到t=v0 /b 时,质点经过的路程为因此质点运行的圈数为1-23 分析首先应该确定角速度的函数关系ω=kt2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k,ω=ω(t)确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解因ωR =v,由题意ω∝t2 得比例系数所以则t′=0.5s时的角速度、角加速度和切向加速度分别为总加速度在2.0s内该点所转过的角度1-24 分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解(1) 由于,则角速度.在t =2 s时,法向加速度和切向加速度的数值分别为(2) 当时,有,即得此时刻的角位置为(3) 要使,则有t =0.55s1-25 分析这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v1 为S′相对S的速度,v2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解以地面为参考系,火车相对地面运动的速度为v1 ,雨滴相对地面竖直下落的速度为v2 ,旅客看到雨滴下落的速度v2′为相对速度,它们之间的关系为(如图所示),于是可得1-26 分析这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v2′的方向)应满足.再由相对速度的矢量关系,即可求出所需车速v1.解由[图(b)],有而要使,则1-27 分析船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u的存在, v 与船在静水中划行的速度v′之间有v=u +v′(如图所示).若要使船到达正对岸,则必须使v沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解(1) 由v=u +v′可知,则船到达正对岸所需时间为(2) 由于,在划速v′一定的条件下,只有当α=0 时, v 最大(即v=v′),此时,船过河时间t′=d /v′,船到达距正对岸为l 的下游处,且有1-28 分析该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x,y)变换至系O′中的点(x′,y′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和O′x′两轴平行.在t =0 时,两坐标原点重合.由坐标变换得x′=x - v t =v t - v t =0 y′=y =1/2 gt2加速度由此可见,动点相对于系O′是在y 方向作匀变速直线运动.动点在两坐标系中加速度相同,这也正是伽利略变换的必然结果.2-1 分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2 分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3 分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4 分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m gcos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程可判断,随θ 角的不断增大过程,轨道支持力FN也将不断增大,由此可见应选(B).2-5 分析与解本题可考虑对A、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B 两物体受力情况如图(b)所示,图中a′为A、B 两物体相对电梯的加速度,ma′为惯性力.对A、B 两物体应用牛顿第二定律,可解得FT=5/8 mg.故选(A).讨论对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB 均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB 、a 和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6 分析动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f(t),然后运用对t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点O 位于斜面顶点,则由牛顿第二定律有(1)又物体在斜面上作匀变速直线运动,故有则(2)为使下滑的时间最短,可令,由式(2)有则可得,此时2-7 分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用―隔离体‖的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有FT-(m1 +m2 )g =(m1 +m2 )a (1) ,FN2 - m2 g =m2 a (2)解上述方程,得FT=(m1 +m2 )(g +a) (3) FN2 =m2 (g +a) (4)(1) 当整个装置以加速度a =10 m?6?1s-2 上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2 =-FN2 =-m2 (g +a) =-1.98 ×103 N(2) 当整个装置以加速度a =1 m?6?1s-2 上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2 =-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8 分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有mA g -FT=mA a (1)F′T1 -Ff=mB a′ (2)F′T-2FT1 =0 (3)考虑到mA=mB =m, FT=F′T, FT1 =F′T1 ,a′=2a,可联立解得物体与桌面的摩擦力讨论动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2-9 分析当木块B 平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.。

大学_大学物理教程上册(范仰才著)课后答案_1

大学_大学物理教程上册(范仰才著)课后答案_1

大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。

大学物理第五章习题及解答

大学物理第五章习题及解答

第五章 刚体力学一、填空1.刚体的基本运动包括 和 。

2.刚体的质心公式 。

3.质量为m,半径为R 的均匀薄圆环对过圆心且垂直圆环面的转动惯量是 ,对 圆环直径的转动惯量是 。

4.长度为L,质量为M 均匀细棒,对通过棒的一端与棒垂直轴的转动惯量是 ,对通过棒中点与棒垂直轴的转动惯量是 。

二、简答题1.什么是刚体?2.简述质心运动定理的内容。

3.简述刚体绕某轴转动时的转动惯量的定义式及影响转动惯量的因素。

4.简述转动惯量的平行轴定理和垂直轴定理。

5.简述转动定律的内容。

三、计算题5.1飞轮以转速{ EMBED Equation.3 |1min1500n -⋅=round n 转动,受到制动而均匀的减速,经而停止。

求:(1)角加速度的大小;(2)从制动算起到停止,转过的圈数;(3)制动后,第时角速度的大小。

5.2 已知飞轮的半径为,初速度为,角加速度为。

试计算时的(1)角速度;(2)角位移;(3)边缘上一点的速度;(4)边缘上一点的加速度。

5.3某发动机飞轮在时间间隔内的角位移为求:时刻的角速度和角加速度。

5.4如图所示,钢制炉门由两个长1.5m的平行臂AB和CD支撑,以角速率逆时针转动,求臂与铅直成45º时门中心G的速度和加速度。

5.5 桑塔纳汽车时速为166km/h,车轮滚动半径为0.26m,自发动机至驱动轮的转速比为0.909.问发动机转速为每分钟多少转?第五章刚体力学答案一、填空1.平动,定轴转动2.3.4.二、简答题1.什么是刚体?刚体是受力作用时不改变形状和体积的物体,是物体的理想化模型。

2.简述质心运动定理的内容。

质点系所受的合外力等于质点系的质量乘以质心加速度。

3.简述刚体转动惯量的定义式,并具体说明转动惯量与哪些因素有关答:转动惯量定义式:。

其与物体的总质量、质量的分布、转轴的位置有关。

4.简述转动惯量的平行轴定理和垂直轴定理。

答:平行轴定理:刚体对于某轴的转动惯量等于刚体对于通过其质心且和该轴平行的轴的转动惯量与刚体的质量和两轴间距平方的乘积之和。

大学物理第05章 静电场习题解答

大学物理第05章 静电场习题解答

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。

(B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。

(D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )(C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( d )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ D ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。

(完整版)大学物理学(第五版)上册课后习题选择答案_马文蔚

(完整版)大学物理学(第五版)上册课后习题选择答案_马文蔚

习题11-1 质点作曲线运动,在时刻t 质点的位矢为r r ,速度为v r ,t 至()t t +∆时间内的位移为r ∆r,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆r ),平均速度为v r,平均速率为v 。

(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆r(B )r s r ∆≠∆≠∆r ,当0t ∆→时有dr ds dr =≠r (C )r r s ∆≠∆≠∆r,当0t ∆→时有dr dr ds =≠r(D )r s r ∆=∆≠∆r ,当0t ∆→时有dr dr ds ==r(2)根据上述情况,则必有( C )(A ),v v v v ==r r (B ),v v v v ≠≠r r (C ),v v v v =≠r r(D ),v v v v ≠=rr1-2 一运动质点在某瞬间位于位矢(,)r x y r的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt r;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r r 表示位置矢量,v r 表示速度,a r表示加速度,s 表示路程,t a 表示切向加速度。

对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =r。

下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D)切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。

最新大学物理第5章习题答案复习课程

最新大学物理第5章习题答案复习课程

P
E1
习题答案
第五章 静电场
1 2p 1 2p
EE1E24πε0(zd)34πε0(zd)3
q 6d2
2p 4πε0
3 z 2 d2 d 3
[
(
z
2
d
2
4 )3
]
2
q 6d 2
[ 4πε0
z4
]
E [ 4πε0
z4
]k
4
z
d
d
+ q
p
-qq
p
+ q
2
1
. E 2
P
E1
Z
习题答案
第五章 静电场
5-9 若电荷均匀分布在长为L的细棒上,求证:
dE0
xdq 4 πε0R3
Rcos2R2sind
4 πε0R3
cossind
2ε0
E02ε0
2cossind
0
4ε0
习题答案
第五章 静电场
5-12 真空中两条平行的“无限长”均匀带电直线相
距为r,其电荷线密度分别为-和+.试求:
(1) 在两直线构成的平面上,任意一点的场强.
(2) 两带电直线上单位长度上的电场力.
Q
E
40L
L 2
dx
L 2
(r-x)2
1Q
0 4r 2 L2
第五章 静电场
y
r
dq
o x dx r
P dE x
dq dx Qdx
L r rx
习题答案
第五章 静电场
(2)
dq
d E 4π0r2
dEy
dq
4π0r2
sin

大学物理课后习题答案第五章

大学物理课后习题答案第五章

第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt -π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.5φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =图5.10声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--= 1768(Hz). 反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).`11331142133165B u u u νν==⨯--`1111331651421BBu u u u λννν--=-==`1`13311768u λν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-S 1 S 2S 125.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 机械振动一、选择题5-1 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A-,且向x 轴的正方向运动,代表这个简谐振动的旋转矢量图为[ ]分析与解 图中旋转矢量投影点的运动方向指向Ox 轴正向,同时矢端在x 轴投影点的位移为2A-,满足题意,因而选(D)。

5-2 作简谐振动的物体,振幅为A ,由平衡位置向x 轴正方向运动,则物体由平衡位置运动到32Ax =处时,所需的最短时间为周期的几分之几[ ] (A) 1 /2 (B) 1/4 (C) 1/6 (D) 1/12分析与解 设1t 时刻物体由平衡位置向x 轴正方向运动,2t 时刻物体第一次运动到32A x =处,可通过旋转矢量图,如图5-2所示,并根据公式2t T ϕπ∆∆=得31226t T T T ϕπππ∆∆===,,因而选(C)。

5-3 两个同周期简谐振动曲线如图5-3(a)所示,1x 的相位比2x 的相位[ ] O O OO A Axxx(A) (B)(D)(C)A /2-A /2 A /2 -A /2A Aωωωωx习题5-1图习题5-2图(A) 落后2π (B) 超前2π(C) 落后π (D) 超前π分析与解 可通过振动曲线作出相应的旋转矢量图(b ),正确答案为(B )。

5-4 一弹簧振子作简谐振动,总能量为E ,若振幅增加为原来的2倍,振子的质量增加为原来的4倍,则它的总能量为[ ](A) 2E (B) 4E (C) E (D) 16E 分析与解 因为简谐振动的总能量2p k 12E E E kA =+=,因而当振幅增加为原来的2倍时,能量变为原来的4倍,因而答案选(B)。

5-5 两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个简谐振动的相位差为[ ](A) 60 (B) 90 (C) 120 (D) 180分析与解 答案(C )。

由旋转矢量图可知两个简谐振动的相位差为120时,合成后的简谐运动的振幅仍为A 。

二、填空题5-6 一质量为m 的质点在力2F x π=-作用下沿x 轴运动,其运动的周期为 ________。

习题5-5图x 2 Ox 1 xt(a)习题5-3图(b)分析与解 由已知条件2F x π=-,可得2k π=,又可以根据公式kmω=求出角频率ω。

将结果代入可得22222T m k m mπππωπ====。

5-7 一物体作简谐振动,其运动方程为()50.04cos() m 32t x ππ=-。

(1)此简谐振动的周期T =________;(2)当0.6 s t =时,物体的速度v =________。

分析与解 将50.04cos() 32t x ππ=-与cos()x A t ωϕ=+比较后可得角频率53πω=,则周期2 1.2(s)T πω==。

物体的速度d 550.04sin()d 332x v t t πππ==-⨯-,当0.6 s t =时-0.209v =m/s 。

5-8 一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

若0t =时质点处于/2x A =处,且向x 轴负方向运动,则简谐振动方程为x =________。

分析与解 可得质点的角频率2Tπω=,再根据题意画出0t =时刻对应的旋转矢量图,可得初相位为3π,则简谐振动方程cos(2)T 3t A ππ+。

5-9 质量为m 的物体和一个弹簧组成的弹簧振子,其振动周期为T ,当它作振幅为A 的简谐振动时,此系统的振动能量E =________。

分析与解 简谐振动的总能量2221122E kA m A ω==。

根据题意可得2T πω=。

代入得222222221112=()=2222E kA m A m A m A T Tππω==。

5-10 已知弹簧的劲度系数为 1.3N/cm k =,振幅为2.4 cm ,这一弹簧振子的机械能为________。

习题5-8图分析与解 简谐振动的总能量2-213.7410 J 2E kA ==⨯三、计算题5-11 若简谐振动方程为0.10cos(20t+)4x ππ=,式中x 的单位为m ,t 的单位为s ,求:(1)振幅、角频率、周期和初相;(2)速度的最大值。

分析 可采用比较法求解。

将题目给的简谐运动方程与简谐运动方程的一般形式比较后可得振幅、角频率和初相。

再根据d d xv t=写出速度的表达式。

解 (1)将0.10cos(20t+)4x ππ=与cos()x A t ωϕ=+作比较,可得振幅0.10m A =,角频率20rad/s ωπ=,初相4πϕ=,则周期20.1s T πω==。

(2)速度d 200.01sin(20t+)d 4x v tπππ==-⨯,则速度的最大值max 200.012 m/s v ππ=⨯=。

5-12 一物体沿x 轴作简谐振动,振幅为10 cm ,周期为2 s ,在0t =时,5 cm x =,且向x 轴负方向运动,求运动方程。

分析 根据题中已给条件振幅A ,角频率2Tπω=均已知,初相ϕ可由题给初始条件由旋转矢量法方便求出。

解 由已知条件得0.1m A =,22rad/s 2T ππωπ===。

0t =时A 5 cm=2x =画出该简谐运动的旋转矢量图,如图5-12所示,可知3πϕ=。

则m )3cos(1.0ππ+=t x 。

5-13 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为29.810 m -⨯。

若使物体上下振动,且规定向下为正方向。

(1)当0t =时,物体在平衡位置上方28.010 m -⨯处,由静止开始向下运动,求运动方程;(2)当0t =时,物体在平衡位置并以0.60 m/s 的速度向上运动,求运动方程。

习题5-12图分析 振动的角频率是由弹簧振子系统得固有性质决定kmω=,其中k 可由物体受力平衡时弹簧得伸长计算,而振幅A 和初相ϕ则由初始条件给出。

解 (1)根据物体受力平衡,F G =,得k l mg ∆=,求出弹簧的劲度系数mgk l=∆ 角频率-110s k mg l gm m lω∆====∆ 由初始条件0t =时,208.010 m x -=⨯,00v =,得222008.010 m v A x ω-⎛⎫+=⨯ ⎪⎝⎭= 利用旋转矢量法,如图(a )所示可知初相ϕπ=,则运动方程为()28.010cos 10(m)x t π-=⨯+(2)当初始条件0t =时,00 m x =,00.60 m/s v =,求得222006.010 m v A x ω-⎛⎫+=⨯ ⎪⎝⎭=利用旋转矢量法,如图(b )所示可得初相2πϕ=,则运动方程为26.010cos(10)(m)2x t π-=⨯+5-14 有一条简谐振动曲线如图5-14(a )所示,求:(1)该简谐振动的角频率ω,初相位0ϕ;(2)该简谐振动的运动方程,振动速度和振动加速度的表达式。

习题5-13图(b)(a)分析 由已知的振动曲线可得样品的振幅A ,周期T ,角频率可由2Tπω=求得,并且从曲线中可得初始条件0t =时,00 cm x =,0v >0,通过旋转矢量可求得初相0ϕ,以上参数都得到后即可写出简谐振动方程及振动速度和振动加速度的表达式。

解 (1)由振动曲线可得样品的振幅2cm A =,周期4s T =,得角频率2rad /s 2T ππω== 当0t =时,00 cm x =,0v >0,通过旋转矢量,如图(b )所示,可求得初相02πϕ=-(2)简谐振动的运动方程2cos()(cm)22x t ππ=-振动速度d sin()(cm/s)d 22x v t tπππ==--振动加速度221a cos()(cm/s )222dv t dt πππ==-- 5-15 质量为10 g 的物体沿x 轴作简谐振动,振幅10 cm A =,周期 4.0 s T =,0t =时物体的位移为0 5.0 cm x =-,且物体朝x 轴负方向运动,求:(1) 1.0 s t =时物体的位移;(2) 1.0 s t =时物体所受的力;(3)0t =之后何时物体第一次到达 5.0 cm x =处;(4)第二次和第一次经过 5.0 cm x =处的时间间隔。

分析 根据题中已给条件振幅A ,角频率2Tπω=均已知,初相ϕ可由题给初始条件由旋转矢量法求出。

有了运动方程,t 时刻的位移和t 时刻物体的受力2F ma m x ω==-也可求出,后面两问可通过旋转矢量图并根据公式t ϕω∆=∆求出。

解 (1)由已知条件得0.1m A =,22rad/s 42T πππω===。

0t =时A 5 cm=2x =--(a )O24t /sx /cm 2 题5-14图(b )画出该简谐运动的旋转矢量图,如图5-15(a )所示,可知23πϕ=。

则20.10cos() cm 23x t ππ=+1.0 s t =时物体的位移20.10cos(0.1) cm 8.66 cm 23x ππ=⨯+=- (2) 1.0 s t =时物体的受力2-32.1410 N F ma m x ω==-=⨯(3)设0t =时刻后,物体第一次到达 5.0 cm x =处的时刻为1t ,由旋转矢量图,如图5-15(b )所示,在两个不同时刻相位差相差π,由12s t t ϕω∆=∆==(4)设0t =时刻后,物体第二次到达 5.0 cm x =处的时刻为2t ,由旋转矢量图,如图5-15(c )所示,在1t ,2t 两个不同时刻相位差相差23π,由214s 3t t t ϕω∆-=∆==5-16 如图5-16(a)所示,质量为21.0010kg -⨯的子弹,以500 m/s 的速度射入并嵌在木块中,同时使弹簧压缩从而作简谐振动,设木块的质量为4.99 kg ,弹簧的劲度系数为38.0010N/m ⨯,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐振动的运动方程。

分析 根据已知条件可用动量守恒定律求出子弹射入后和木块的共同速度。

vm 1m 2k习题5-16图(b)(a)(a)(b) (c)习题5-15图振动的角频率是由弹簧振子系统得固有性质决定ω=而振幅A 和初相ϕ则由初始条件给出。

以上参数都得到后即可写出简谐振动方程。

解 子弹和木块的共同速度10121m/s m vv m m角频率1240rad/s k m m振幅2220022.510v v A xm由旋转矢量,如图5-16(b)所示,确定初相2简谐振动方程22.510cos(40)2xtm5-17 一物块悬于弹簧下端并作简谐振动,当物块位移大小为振幅的一半时,这个振动系统的势能占总能量的多少?动能占总能量的多少?又位移大小为多少时,动能、势能各占总能量的一半?分析 简谐振动的总能量221122E m A kA ω2==,其中212p E kx =,212k E mv =,即可求出动能与势能的大小。

相关文档
最新文档