原核生物的基因表达与操作
分子生物学第七章原核生物基因表达调控
![分子生物学第七章原核生物基因表达调控](https://img.taocdn.com/s3/m/5a677301c950ad02de80d4d8d15abe23492f0340.png)
原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。
3原核生物基因表达与调控
![3原核生物基因表达与调控](https://img.taocdn.com/s3/m/f2b0c5596c85ec3a87c2c5d3.png)
另一个螺旋(由7~9个氨基酸组成),没有碱基特异性, 与DNA磷酸戊糖链骨架接触。在与DNA特异结合时, 靠蛋白质的氨基酸侧链与特异碱基对之间形成氢键、 疏水键和发生静电相互作用 。
二、lac操纵子的分解代谢产物阻遏
β-半乳糖苷酶在乳糖代谢中的作用是把前者 分解成葡萄糖及半乳糖。如果将葡萄糖和乳糖 同时加入培养基中,大肠杆菌在耗尽外源葡萄 糖之前不会诱发lac操纵子,这种现象称为葡萄 糖效应(glucose effect)。
原因:是葡萄糖的某些降解产物抑制了lac
mRNA的合成,科学上把葡萄糖的这种效应 称之为分解代谢产物阻遏效应(catabolite repression)。
基因表达调控(gene regulation or gene
control):任何影响基因转录过程和翻译过程 的开启、关闭和这两个过程速率的较为直接 的因素及其作用。
第一节 细菌的转录调控
一、细菌操纵子
操纵子学说———关于原核生物基因结构及其表达 调控的学说。
操纵子(operon): 细菌基因表达和调控的单位, 包括共转录到一条mRNA上的多个结构基因和这些基 因转录所需的顺式作用元件,这些元件包括启动子、 操作子和转录调控有关的序列。
能从合成地点扩散到其它场所对其他基因的表达起 调控作用的蛋白质因子(有时为RNA)。起作用的过 程称反式作用。
二、阻遏物和激活物
阻遏物(repressor): 阻止基因表达的蛋白质,可与操 作子结合来阻止转录,为负调控蛋白。
激活物(activator):促进基因转录的蛋白质 ,为正调控 蛋白。
原核生物基因表达调控分析
![原核生物基因表达调控分析](https://img.taocdn.com/s3/m/29cc097a783e0912a3162a06.png)
Co-repressor
(共阻遏物)
原核生物基因表达调控方式:
负控诱导调节
负控转录调 控系统
调节基因的产物是 阻遏蛋白 (repressor), 阻止了结构基因的 转录。
阻遏蛋白与效应物(诱 导物)结合,使阻遏蛋 白失活,结构基因转录; 阻遏蛋白与效应物(辅阻 遏物)结合,使阻遏蛋白 产生活性,结构基因不转 录。
operon on operon off operon off operon on
Neg.
i- or 不加入I基因产物 I+ or 加入I基因产物
(激活蛋白)
Pos.
●
Repressor binding on O site 阻遏蛋白 阻止转录启动
Expressor binding front p site
安慰诱导物:
如果某种物质能够诱导细菌产生某种酶而本身又不
被分解,这种物质被称为安慰诱导物,如IPTG(异
丙基- β –D-硫代半乳糖苷)。 相反,随环境条件变化而基因表达水平降低的现象 称为阻遏(repression),相应的基因被称为可阻遏的基 因(repressible gene)。 如果某种物质能够阻止细菌产生合成这种物质的酶, 这种物质就是辅阻遏物。(合成代谢)
第一讲 原核生物基因表达 调控
主要内容
一、基因表达调控的基本概念: 二、 基因表达调控的理论与模式;
一、基因表达调控的基本概念:
1、基因表达调控的意义: 原核生物对环境的适应、对营养条件改变适应的 相关应答,都是基因表达的结果;
真核生物的细胞分化, 组织特化 , 个体发育以及 环境对个体表型的影响都是通过基因表达实现的。
组成型突变: lacOc
iC mut. (iC O+P+) constitutive mut. (组成型)
原核生物真核生物基因表达比较
![原核生物真核生物基因表达比较](https://img.taocdn.com/s3/m/bbf2ab1abf1e650e52ea551810a6f524cdbfcb1a.png)
08
40s小亚基首先与Met-tRNA(Met上角标)相结合
09
再与模板mRNA结合
10
最后与60s大亚基结合生成起始复合物
肽链合成起始:
原核生物肽链合成的延长:
进位: 氨基酰-tRNA按照mRNA模板的指令进入并结合到核蛋白体A位 2. 成肽:转肽酶催化,核蛋白体P位上起始氨基酰-tRNA转移到A位,与A位上氨基酰-tRNA的α-氨基结合形成肽键 3. 转位转位酶催化,核蛋白体向3´-端移动一个密码子的距离,使mRNA上下一个密码子进入核蛋白体A位、而占据A位的肽酰-tRNA移入P位 延长因子: EF-Tu EF-Ts EF-G
真核生物:转录起始需要启动子 、RNA聚合酶和转录因子的参与。 少数几个反式作用因子的搭配启动特定基因的转录 真核生物RNA-pol不与DNA分子直接结合,而需依靠众多的转录因子,形成转录起始复合物。
转录延长:
转录终止:
依赖ρ因子的转录终止 非依赖ρ因子的转录终止 Ρ因子
真核生物的转录终止:在超出千百个核苷酸后停顿, 转录后修饰有多聚腺苷酸(poly A)尾巴结构加进去 。在读码框架下游常有一组公共序列AATAAA 及 GTGTGT序列,这些序列称为转录终止修饰点。
真核延长过程与原核基本相似 但有不同的反应体系和延长因子:eEF-1α eEF-1βγ eEF-2 真核细胞核蛋白体没有E位,转位时卸载的tRNA直接从P位脱落
核蛋白体A位出现mRNA的终止密码子后,多肽链合成停止,肽链从肽酰-tRNA中释出,mRNA、核蛋白体大、小亚基等分离。
原核生物终止阶段需要释放因子RF-1、 RF-2和 RF-3参与
核蛋白体包括 rRNA(核糖体RNA) 和蛋白质,直径为 20-25nm,真核细胞的核蛋白体比原核细胞的大。
第七、八章 原核生物、真核生物基因的表达调控
![第七、八章 原核生物、真核生物基因的表达调控](https://img.taocdn.com/s3/m/4dce44f77c1cfad6195fa72d.png)
阿拉伯糖操纵子的基因结构图 注:操纵子由结构基因B、A、D以及调控元件I1、I2、O1、O2和 启动子构成。AraC基因编码调节蛋白AraC。
21
阿拉伯糖操纵子(The ara Operon)
• 结构基因为:B、A、D,分别编码异构酶、 激酶、表位酶 • 功能:催化阿拉伯糖转变为5-磷酸木酮 糖,进入磷酸戊糖途径。 • 特点:调节基因为C基因,编码调控蛋白 C蛋白。
色氨酸操纵子的转录衰减作用
色氨酸丰富时,核蛋白体顺利沿引导序列移动直达最后一个密码子UGA,合 成完整的引导肽。UGA位于1区和2区之间,核蛋白体占据2区,使3区不能与2区互 补而与4区互补,形成终止子发夹结构,RNA 聚合酶停止在衰减子部位。 色氨酸缺乏时,核蛋白体因原料缺乏终止在1区Trp密码子部位,2区无法与1 区配对且在4区被转录出来之前与3区互补,4区处于单链状态,不能形成终止发 夹,RNA 聚合酶通过衰减子而继续转录。
(1)阻遏蛋白的负性调节—酶合成的诱导: • 无乳糖(no lactose): lac操纵子处于阻遏状态 (repression),即这类基因平时都是处于关闭状 态; • 有乳糖(presence of lactose):lac操纵子即可 被诱导(derepression,induction),即这类基因 由平时的关闭状态转变为工作状态。
止结构,所以转录可继续进行,直到将trp操纵子
中的结构基因RNATrp很多, 这样翻译通过两个相邻的色氨酸密码子的速 度就会很快,在4区被转录之前,核糖体就达 到2区,这时的前导区结构2-3不能配对,3-4 可以自由配对形成茎环状的终止结构,所以 转录停止, RNA聚合酶脱落,转录终止,trp 操纵子中的结构基因被关闭而不再合成色氨 酸。 原核生物基因表达特点—转录与翻译偶联。
原核生物基因表达
![原核生物基因表达](https://img.taocdn.com/s3/m/3709b7746294dd88d1d26b7c.png)
转录的起始有关,与链的延伸无关,一旦转录开始,σ 因子就被释放,而链
的延伸则由核心酶催化。所以,σ 因子的作用是识别转录的起始位置,并使
RNA聚合酶结合在启动子部位。
在此添加小标题
原核生物基因表达过程
基因表达Biblioteka 转录翻译模板识别 转录起始 氨基酸活化 翻译的起始
转录延伸 转录终止 肽链的延伸 肽链的终止
转录终止
RNA 链延伸到转录终止位点时,RNA 聚合酶不再形成新的磷酸二酯键 RNA--DNA 杂合物分离,DNA 恢复成双链状态,而 RNA 聚合酶和 RNA 链从模板上释放出来,原 核生物转录终止有两种模式:
1
2
依赖Rho因子的转录终止:
Rho 因子具有 RNADNA 杂合链的解螺旋酶, 可引发转录复合物与模板 解离而转录终止。
原核生物的基因表达
基因和基因表达
• 基因:产生一条多肽链或功能 RNA 所需的全部核苷酸序列。它包括编 码区和其上下游区域,以及在编码 片段(外显子)的间断切割序列 (内含子)。
• 基因表达:基因经过转录、 翻译,产生具有特异生物学 功能的蛋白质分子或 RNA 的 过程。
目 前 研 究 发 现 有 13 种 RNA , 在 转 录 时 , 信 使 RNA(mRNA) 、 转 运 RNA(tRNA)、核糖体 RNA(rRNA)和一些小 RNA(sRNA)等发挥作用。
对真核生物); 参与基因的调控,与生物生长发育密切相关,在某些病毒中RNA可作为遗传
物质。
在此添加小标题
三种 RNA 示意图
• RNA 聚合酶全酶:大多数原核生物的 RNA 聚合酶是相同的,由5种(α、β、
β'、σ、ω ) 不同的多肽组成,β 亚基含有核苷三磷酸的结合位点;β' 亚基含
第14章 原核生物基因表达调控
![第14章 原核生物基因表达调控](https://img.taocdn.com/s3/m/4c68990ade80d4d8d15a4f45.png)
第14章原核生物基因的表达调控重点:操纵子的结构特点和功能;乳糖操纵子的正负调控;色氨酸操纵子的衰减作用。
难点:色氨酸操纵子的衰减作用。
第一节基因调控的基本定律一、基因调控水平二、基因和调控元件三、DNA结合蛋白一、基因调控水平基因表达的调控可以发生在DNA到蛋白质的任意节点上,如基因结构、转录、mRNA 加工、RNA的稳定性、翻译和翻译后修饰。
二、基因和调控元件基因:是指能转录成RNA的DNA序列。
结构基因:编码代谢、生物合成和细胞结构的蛋白质。
调节基因:产物是RNA或蛋白质,控制结构基因的表达。
其产物通常是DNA结合蛋白。
调控元件:不能转录但是能够调控基因表达的DNA序列。
三、DNA结合蛋白调控蛋白通常含有与DNA结合的结构域,一般由60-90个氨基酸组成。
在一个结构域中,只有少数氨基酸与DNA接触。
这些氨基酸(包括天冬氨酸、谷氨酸、甘氨酸、赖氨酸和精氨酸)常与碱基形成氢键,或者与磷酸核糖骨架结合。
根据DNA结合结构域内的模体,可以将DNA结合分成几种类型(图16.2)。
第二节大肠杆菌的乳糖操纵子一、操纵子结构二、正负调控三、乳糖操纵子四、lac突变五、正控制一、操纵子结构原核和真核生物基因调控的主要差异在于功能相关的基因的组成。
细菌的功能相关的基因常常排列在一起,并且由同一启动子控制。
一群一起转录的细菌的结构基因(包括其启动子和控制转录的额外序列)称为操纵子。
二、正负调控转录水平上的调控主要有两种类型:负调控:gene ON 阻遏蛋白 OFF正调控:gene OFF 激活蛋白 ON诱导:活性阻遏蛋白 失活诱导因子+非活性激活蛋白 活性阻遏:失活阻遏蛋白 活性共阻遏蛋白+活性激活蛋白 失活三、乳糖操纵子乳糖操纵子是诱导型操纵子,当诱导物不存在时,阻遏蛋白结合到操纵序列上并阻止转录;当诱导物存在时,阻遏蛋白与诱导物结合后失去活性,转录才得以进行。
四、lac突变为了鉴定乳糖操纵子各个成分的功能,Jacob和Monod做了细菌的接合实验,其中供体菌的F’因子上也带有乳糖操纵子。
原核生物基因表达的调控
![原核生物基因表达的调控](https://img.taocdn.com/s3/m/e5138325eff9aef8941e0642.png)
操纵子学说的基本内容
1961年,法国科学家莫诺(J·L·Monod,1910-1976)与雅可布 (F·Jacob)发表“蛋白质合成中的遗传调节机制”一文,提出操纵子学 说,开创了基因调控的研究。四年后的1965年,莫诺与雅可布即荣获诺贝 尔生理学与医学奖。
莫诺与雅可布最初发现的是大肠杆菌的乳糖操纵子。这是一个十分巧妙的 自动控制系统,这个自动控制系统负责调控大肠杆菌的乳糖代谢。 乳糖可作为培养大肠杆菌的能源。大肠杆菌能产生一种酶(叫做“半乳糖 苷酶”),能够催化乳糖分解为半乳糖和葡萄糖,以便作进一步的代谢利 用。编码半乳糖苷酶的基因(简称z)是一个结构基因(structural gene)。这个结构基因与操纵基因共同组成操纵子。操纵基因受一种叫作 阻遏蛋白的蛋白质的调控。当阻遏蛋白结合到操纵基因之上时,乳糖会起 诱导作用,它与阻遏蛋白结合,使之从操纵基因上脱落下来。这时,操纵 基因开启,相邻的结构基因也表现活性,细菌就能分解并利用乳糖了,这 样,乳糖便成了诱导半乳糖苷酶产生的诱导物。
原核生物基因表达的调控
基因调控
生物体内的每个细胞都有全套的基因,但细胞中的基因并不是同 时表达的。因细胞的类型和执行的功能不同,细胞中有的基因开 启,有的基因关闭,如血红蛋白基因只在红细胞中表达,消化酶 只在消化腺细胞中表达。这其中存在着复杂的基因调控。 某些基因不断地进行转录和翻译,产生出各种蛋白质,通常称之 为基因表达。每个细胞都有一套完整的基因调控系统,使各种蛋 白质只有在需要时才被合成,这样就能使生物适应多变的环境, 防止生命活动中的浪费现象和有害后果的发生,保持体内代谢过 程的正常状态。但是,原核细胞和真核细胞的基因调控有着明显 的区别。 原核细胞表达的基因调控,比真核细胞要相对简单,这里以大肠 杆菌乳糖操纵子为例来说明。
生物学原核生物基因表达的调控
![生物学原核生物基因表达的调控](https://img.taocdn.com/s3/m/85759b8677eeaeaad1f34693daef5ef7ba0d128c.png)
第二节
原核生物基因表达的 转录水平调控
Regulation of Prokaryotic Gene Expression at Transcription Level
目录
一、转录调控是以特定的DNA序列和蛋 白质结构为基础
(一)特定的DNA序列是转录起始调控的结构基础
在基因内和基因外都有一些特定的DNA序列,与结 构基因表达调控相关、能够被基因调控蛋白特异性识别 和结合,这些特定的DNA序列称为顺式作用元件(cisacting elements),亦称为顺式调控元件。在原核生物 中主要是启动子、阻遏蛋白结合位点、正调控蛋白结合 位点、增强子等。
transcription
RNA 5'-AGGUCCACG········-3'
启动子及其与转录的关系 ···
目录
(二)阻遏蛋白结合操纵元件对转录起 始进行负调控
阻遏蛋白是一类在转录水平对基因表达产生负 调控作用的蛋白质。阻遏蛋白主要通过抑制开放启 动子复合物的形成而抑制基因的转录。阻遏蛋白与 DNA结合后,RNA聚合酶仍有可能与启动子结合, 但不能形成开放起始复合物,不能启动转录;这种 作用称为阻遏(repression),特定的信号分子与阻 遏蛋白结合,使阻遏蛋白失活,从DNA 上脱落下来, 称为去阻遏,或脱阻遏(derepression)。
usually binds to CAAT box
目录
二、特定蛋白质与DNA结合后控制 转录起始
(一)σ因子和启动子决定转录是否能够起始
-35
-10
+1
5'-TAGTGTATTGACATGATAGAAGCACTCTACTATATTCTCAATAGGTCCACG············-·3·'
第6章原核生物的基因表达调控
![第6章原核生物的基因表达调控](https://img.taocdn.com/s3/m/bae1dfb14afe04a1b171de0f.png)
一、操纵子(operon)
细菌能随环境的变化,迅速改变某 些基因表达的状态,这就是很好的基因 表达调控的实验模型。人们就是从研究 这种现象开始,打开认识基因表达调控 分子机理的窗口的。
既然从DNA到蛋白质的过程称为基因表达,对这个过程
的调节就称为基因表达调控(gene regulation或gene control)。基因表达调控是现阶段分子生物学研究的中
心课题。
6.1.1基因表达调控的意义
基因组(genome) 是指含有一个生物体生存、发育、活动和 繁殖所需要的全部遗传信息的整套核酸。
一个受精卵含有发育成一个成熟个体的全部遗传信息,在个 体发育分化的各个阶段,各种基因极为有序地表达,一般 在胚胎时期基因开放的数量最多,随着分化发展,细胞中 某些基因关闭(turn off)、某些基因转向开放(turn on), 胚胎发育不同阶段、不同部位的细胞中开放的基因及其开 放的程度不一样,合成蛋白质的种类和数量都不相同,显 示出基因表达调控在空间和时间上极高的有序性,从而逐 步生成形态与功能各不相同、极为协调、巧妙有序的组织 脏器。
组成性基因表达也不是一成不变的,其表达强弱也是受一定机制调控的。
②适应性表达(adaptive expression)指环境的变化容易使其表达 水平变动的一类基因表达。
应环境条件变化基因表达水平增高的现象称为诱导(induction), 这类基因被称为可诱导的基因(inducible gene);
原核生物基因表达的机理及其调控
![原核生物基因表达的机理及其调控](https://img.taocdn.com/s3/m/97ff855826d3240c844769eae009581b6bd9bd99.png)
原核生物基因表达的机理及其调控原核生物是一类单细胞生物,其基因组包括细胞质内的DNA和可能存在于外部的质粒DNA。
基因是生命的基本单位,通过基因表达来实现细胞内各种生物活动的调节、协调和控制。
这里将重点介绍原核生物基因表达的机理及其调控。
基因表达的三个步骤基因表达分为三个主要步骤:转录、翻译和调节。
转录是指将DNA序列转换成RNA序列的过程;翻译是指RNA序列被翻译成氨基酸序列的过程,进而合成蛋白质;调节是指生物体在不同状态下对基因表达的调整和控制。
转录的机理和调控转录是从DNA合成RNA的过程。
在细胞内,RNA聚合酶是起主导作用的酶,可以将位于DNA模板链上的核苷酸与其形成互补配对的核苷酸连接起来,从而合成RNA,这个过程是由DNA模板指导的。
在原核生物中,转录过程相对简单。
细菌细胞中,只有一个RNA聚合酶可以完成所有RNA的合成,并且细菌细胞中的大多数基因都是成串排列的,构成的连续片段被称为“操纵子”。
细菌的一个操纵子通常包含3个区域,启动子、结构基因和终止子。
其中,启动子包含一段特别的DNA序列,被RNA聚合酶认识为转录起点,使得RNA聚合酶可以将核苷酸序列转录为RNA。
结构基因由串联的核苷酸序列组成,决定了合成的RNA分子序列构建。
终止子是一些DNA序列,确定RNA聚合酶在终止转录时的位置。
转录过程中的调控非常重要。
原核生物常常通过启动子区域的开放或关闭调控基因的转录。
这可以通过转录因子的作用来实现。
例如,细菌的“cap结构”和“UTR”可以帮助细胞发现起始位置。
激活蛋白可以缠绕到基因区域,启动转录酶的工作进程。
还有其他的转录因子,他们的作用是为转录酶提供指导信号。
翻译的机理和调控翻译是在RNA模板的指导下,由核糖体将合成的氨基酸序列合成成蛋白质的过程。
在原核生物中,翻译是通过紧密联系的核糖体和RNA复合物实现的。
核糖体由大大小小两个亚基组成,并特异地识别不同氨基酸。
它通过扫描RNA序列来寻找指定的起始区域(起始密码子),并始终按照特定的氨基酸序列连接合成蛋白质。
第七章:原核生物基因表达调控
![第七章:原核生物基因表达调控](https://img.taocdn.com/s3/m/9e64951aff00bed5b9f31dc5.png)
负转录调控
• 负控诱导 阻遏蛋白不与效应物
结合时基因不转录。
• 负控阻遏 阻遏蛋白与效应物 结合时,基因不转录。
正转录调控
• 正控诱导 有效应物时,激活蛋白 处于活性状态基因转录。
• 正控阻遏 有效应物时,激活蛋 白处于无活性状态基 因不转录。
负控诱导
正控诱导
负控阻遏
正控阻遏
1、原核生物基因调控机制的类型
6、色氨酸操纵子(元)调节过程涉及 D
(A) 转录水平调节 (B) 转录激活调节
(C) 翻译水平调节
(D) 转录/翻译调节
(A) Lac阻遏蛋白 (B) RNA聚合酶
(C) 环一磷酸腺苷
(D) CRP-cAMP 7、与O序列结合
A
8、与P序列结合 B 9、 与CRP结合 C 10、与CAP位点结合 D
境能提供足够浓度的色氨酸时,R与色氨酸结合后而活化,
能够与O结合,阻遏结构基因的转录,开 关。
(二) 弱化子及其作用
当色氨酸达到一定浓度,但还没有高到能够活化 R使其起阻遏作用的程度时,产生色氨酸合成酶 类的量已经明显降低,而且产生的酶量与色氨酸 浓度呈负相关。这种调控现象与色氨酸操纵子特
殊的结构有关。
乳糖存在诱导基因转录
乳糖(lac)操纵子的表达调控
1、阻遏蛋白的负性调控
没有乳糖时,1ac操纵子处于阻遏状态。i 基因在自身的 启动子Pi 控制下,产生阻遏蛋白R。R以四聚体形式与 操纵子o结合,阻碍RNA聚合酶与启动子P的结合。
当有乳糖存在时,乳糖与R结合,使R四聚体解聚成
单体,失去与o的亲和力,与o解离,基因转录开放。
(D) 在生物个体的某一生长阶段持续表达
2、一个操纵子(元)通常含有
原核生物乳糖操纵子基因表达调控原理
![原核生物乳糖操纵子基因表达调控原理](https://img.taocdn.com/s3/m/92e6919485254b35eefdc8d376eeaeaad0f3167f.png)
原核生物中,乳糖操纵子是一种在乳糖存在时调控基因表达的元件。
这种调控机制广泛存在于大肠杆菌等细菌中,它允许细菌在环境中检测到乳糖的存在并调整相关基因的表达。
以下是原核生物中乳糖操纵子基因表达调控的基本原理:
1. 乳糖操纵子的组成:
- 乳糖操纵子包括两个基本部分,一个是操纵子的操作元件(operator),另一个是调控基因的操纵子结合蛋白(repressor protein)。
2. 操作元件(Operator):
- 操纵子的操作元件是一个DNA序列,位于被调控的基因的上游区域。
- 操纵子的操作元件是乳糖操纵子的结合位点,调控蛋白可以与其结合。
3. 调控基因的操纵子结合蛋白:
- 调控基因的操纵子结合蛋白通常是一个负调控因子,即在没有乳糖的情况下,它会结合到操作元件上,阻止RNA聚合酶的结合,从而抑制基因的转录。
4. 乳糖的作用:
- 当细菌环境中存在乳糖时,乳糖分子会与调控基因的操纵子结合蛋白发生结合。
- 乳糖结合到操纵子结合蛋白后,导致蛋白的构象发生变化,无法再结合到操纵子的操作元件上。
5. 操纵子的操作元件的解离:
- 由于操纵子结合蛋白不能再结合到操作元件上,RNA聚合酶得以在操作元件上结合并启动被调控基因的转录。
6. 基因的表达:
- 乳糖操纵子的解离使RNA聚合酶能够转录下游基因,从而启动基因的表达,产生相关的蛋白质。
通过这个机制,原核生物能够根据环境中乳糖的存在与否,灵活地调控基因的表达,以适应不同的代谢和生存需求。
这种调控机制是一种典型的负调控,其中乳糖的存在解除了负调控因子对基因的抑制。
原核生物基因表达调控
![原核生物基因表达调控](https://img.taocdn.com/s3/m/844a7784ac51f01dc281e53a580216fc700a53d8.png)
20
同位素示踪实验
把大肠杆菌细胞放在加有放射性35S标记的氨基酸,但没 有半乳糖诱导物的培养基中繁殖几代然后再将这些带有 放射活性的细菌转移到不含35S、无放射性的培养基中 随着培养基中诱导物的加入, β-半乳糖苷酶便开始合成。 分离β-半乳糖苷酶, 发现这种酶无35S标记说明酶的合 成不是由前体转化而来的, 而是加入诱导物后新合成的。
• Jacob和Monod认为诱导酶(他们当时称为适应酶)
现象是个基因调控问题, 可以用实验方法进行研究, 因此
选为突破口, 终于通过大量实验及分析, 于1961年建立
了该操纵子的控制模型。
-
21
酶的诱导
-
22
• 酶的诱导现象是生物进化过程中出现的一种合理、 经济地利用有限资源的本能。
• 酶诱导已证明是低等生物的普遍现象。
倒位片段
鼠伤寒沙门菌鞭毛素基- 因的调节
H1鞭毛素
10
鼠伤寒沙门氏菌(S.typhimrium)的相转变(phase variation)
-
11
2.σ 因子对原核生物转录起始的调控
σ因子:原核生物RNA聚合酶的一个亚基,是转录起 始所必需的因子,主要影响RNA聚合酶对转录起始 位点的正确识别,这种σ因子称σ70,此外还有分子量 不同,功能不同的其他σ因子 。
PO
操纵子可视为原核生物的转录单位,它可以逐个
地从原核生物基因组中分离出来,对其结构功
能加以研究。
-
15
3.乳糖操纵子
1) 乳糖操纵子的结构
启动子 操纵基因
调节蛋白
(阻遏蛋白)
-
结构基因
16
3个编码的结构基因
• Z编码β-半乳糖苷酶: 将乳糖水解成葡萄糖和半乳糖,还能 将乳糖转变为异构乳糖
分子生物学第七章原核生物基因表达调控
![分子生物学第七章原核生物基因表达调控](https://img.taocdn.com/s3/m/6bb9457d3a3567ec102de2bd960590c69fc3d844.png)
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;
第七章、原核生物基因表达调控
![第七章、原核生物基因表达调控](https://img.taocdn.com/s3/m/c52a191f4431b90d6c85c73a.png)
本章重点:操纵子的结构与功能、负转录调 控、正转录调控、诱导与阻遏。 本章难点:弱化子的作用机理、葡萄糖效应。
1
第一节、原核生物基因表达调控总论
原核生物和单细胞真核生物直接暴露在变幻 莫测的环境中,食物供应毫无保障,只有根据 环境条件的改变合成各种不同的蛋白质,使代 谢过程适应环境的变化,才能维持自身的生存 和繁衍。原核生物中,营养状况和环境因素对 基因表达起着举足轻重的影响。在真核生物尤 其是高等真核生物中,激素水平和发育阶段是 基因表达调控的最主要手段,营养和环境因素 的影响力大为下降。
16
17
3.调节基因(阻遏基因I)和操纵基因(操纵区O)的发现 (1)已经分离在有诱导物或没有诱导物的情况下都能产生lacmRNA的突变体,这种失去调节能力的突变体称为永久(组成) 型突变体,为分两类:I型和O型。 I型:野生型为I+,突变型为IO型:野生型为O+,突变型为Oc。 (2)I+→ I-或O+→Oc后,Z、Y、A结构基因均表现为永久表 达,所以I基因(阻遏基因I)被称为调节基因(regulatory gene)。 研究发现,I基因是一个产生阻遏物的调节基因,其产物使体系关 闭。 I-突变体由于不能产生阻遏物,使lac永久表达。 I-/I+局部二 倍体由于带有一个正常阻遏物,使细胞中的lac被抑制。 (3)遗传学图谱分析指出,Oc突变位于I与Z之间,所以,lac 体系的4个基因的序列为IOZY。通过这些观察,Jacob和Monod推 断Oc突变代表DNA链上的一个位点或一个非编码区域,而不是一 个基因,因为可编码的基因具有互补性,而Oc没有这一特性。O 决定相邻Z基因的产物是诱导型合成还是永久型合成,O区域称为 操纵基因。
原核生物的基因表达和调控机制
![原核生物的基因表达和调控机制](https://img.taocdn.com/s3/m/fb79ea117275a417866fb84ae45c3b3567ecddda.png)
原核生物的基因表达和调控机制原核生物是指不含细胞核和其他复杂的细胞器官的生物,包括细菌和蓝藻等。
这些生物虽然简单,但仍具有复杂的基因表达和调控机制,通过调控基因的转录和翻译来响应环境变化和完成生物学功能。
本文将探讨原核生物的基因表达和调控机制。
基因表达和调控的基本概念基因是指DNA分子上编码一个蛋白质的序列,是生物体内传递遗传信息的基本单位。
基因表达指的是将基因的信息转化为蛋白质的过程,包括转录和翻译两个步骤。
其中,转录是指将DNA序列转化为mRNA(信使RNA)的过程,而翻译是指将mRNA上的三联体密码子翻译为相应的氨基酸序列的过程。
基因表达的过程涉及到基因启动子、转录因子、RNA聚合酶等多个分子的相互作用,需要经过复杂的调控机制来保证在特定的时空条件下进行。
原核生物中基因的表达和调控原核生物虽然没有细胞核和其他复杂的细胞器官,但其基因的表达和调控机制同样有其特殊性。
以下将从基因的结构、转录、RNA的修饰和翻译等方面探讨原核生物中基因的表达和调控。
基因结构原核生物中,基因通常呈现为一条连续的DNA链,其中编码区域与非编码区域相互交错,没有剪切和剪接等后加工处理。
编码区通常以ATG作为起始密码子,以TAG、TAA或TGA作为终止密码子。
在非编码区,存在启动子、转录因子结合位点、RNA剪切位点和终止符等辅助元素,有助于调控基因的表达。
相比于真核生物中复杂的基因结构,原核生物中基因的紧凑结构为调控提供了更多的可能性。
转录的调控在原核生物中,转录的调控可以通过多种方式实现,包括转录起始的选择、负向调控和正向调控等。
转录起始的选择:在原核生物中,转录的起始位点可以在基因内或外,不同的起始位点可以产生不同长度的转录产物,从而产生不同的蛋白质或非编码RNA。
此外,在一些条件下,同一基因的多个启动子甚至可以同时被使用,进一步增加了基因表达的多样性。
负向调控和正向调控:在原核生物中,负向调控指的是一些转录抑制因子的作用,可以通过抑制转录因子的结合来阻止基因的转录。
原核生物基因表达调控概述
![原核生物基因表达调控概述](https://img.taocdn.com/s3/m/336c79a668dc5022aaea998fcc22bcd126ff42fd.png)
原核⽣物基因表达调控概述原核⽣物基因表达调控概述基因表达调控是⽣物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。
1.基因表达调控意义在⽣命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋⽩质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,⽽与⽣物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭⽽不来表达。
2.原核基因表达调控特点原核⽣物基因表达调控存在于转录和翻译的起始、延伸和终⽌的每⼀步骤中。
这种调控多以操纵⼦为单位进⾏,将功能相关的基因组织在⼀起,同时开启或关闭基因表达即经济⼜有效,保证其⽣命活动的需要。
调控主要发⽣在转录⽔平,有正、负调控两种机制在转录⽔平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋⽩质因⼦及其他⼩分⼦配基的相互作⽤。
细菌的转录和翻译过程⼏乎在同⼀时间内相互偶联。
细胞要控制各种蛋⽩质在不同时期的表达⽔平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是⼀条经济的途径,可减少从mRNA合成蛋⽩质的⼩分⼦物质消耗,这是⽣物长期进化过程中⾃然选择的结果,这种控制称为转录⽔平调控。
(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括⼀些与翻译有关的酶及其复合体分⼦缔合的装配速度等过程。
这种蛋⽩质合成及其基因表达的控制称为翻译⽔平的调控。
⼆.原核⽣物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够⼴泛适应变化的环境条件。
这些条件包括营养、⽔分、溶液浓度、温度,pH等。
⽽这些条件须通过细胞内的各种⽣化反应途径,为细胞⽣长的繁荣提供能量和构建细胞组分所需的⼩分⼦化合物。
(2)顺式作⽤元件和反式作⽤元件基因活性的调节主要通过反式作⽤因⼦与顺式作⽤元件的相互作⽤⽽实现。
反式作⽤因⼦的编码基因与其识别或结合的靶核苷酸序列在同⼀个DNA分⼦上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因克隆的技术路线
目的基因
载体
体外重组
重组子(杂合DNA)
转化
受体细胞 筛选阳性克隆 大量扩增,获得子代DNA
重组基因表达的目的 1. 2. 3. 4. 5. 6. 蛋白质功能研究 生物制药和疫苗生产 疾病的基因治疗 食品、化工用酶制剂 抗虫、抗逆植物改良 细胞代谢产物的富集
表达产物可以通过亲和层析进行特异性简单纯化。
区域,并为融合蛋白提供终止密码子。另外,两个
结构基因拼接位点处的序列设计十分重要,它直接 决定了融合蛋白的裂解方法。
最后,当两个蛋白编码序列融合在一起时,外
生命科学学院
用融合载体组合表达融合蛋白质:
以Ecoli. lacZ为靶基因的组合最典型,含三个不同 载体,每个载体都有一个lacZ启动子和SD序列,且在 lacZ基因下游部位具有一EcoRⅠ识别序列 (GAATTC) 5’上游存在着不同数量的G-C碱基对。三种情况必有一
Tac启动子
是一组由Lac和trp启动子人工构建的杂合启动 子,其启动能力比Lac和trp都强; 受Lac阻遏蛋白的负调节,受IPTG(异丙基硫代 半乳糖苷)的诱导 。
λ 噬菌体的左向启动子PL
来自λ 噬菌体早期左向转录启动子,活性比Trp启 动子高约11倍;
受控于温度敏感的阻遏蛋白cI 。在低温(28-30℃) 时,cIts857阻遏蛋白可阻遏PL启动子转录。在高 温(42℃)时,cIts857蛋白失活,阻遏解除,促使 PL启动子转录。
位于 表达产物
形式
目标蛋白在细胞质中表达的主要优点是:
表达质粒的构建比较简单;
能够达到很高的目标蛋白表达量,一般可以达到占细 胞总蛋白的20%~40%。 目标蛋白在大肠杆菌系统表达的形式有二种: 在细胞内表现为不溶性的包涵体颗粒 包涵体存在于大肠杆菌细胞质中 在细胞内表现为可溶性的蛋白质 可溶性的目标蛋白质除可存在于细胞质中外,还可借
蛋白质折叠的三态模型
(伸展态)U→(中间态)I→(自然态)N
↓ A(包涵体)
从中间体转变为天然态的过程比较缓慢。
当溶液中离子强度或变性剂浓度很低,又无其
它辅助手段存在时,聚集趋势占主导地位,导 致蛋白质的自发复性效率极低。
复性目的
复性:通过缓慢去除变性剂(避免折叠
中间体重新聚集)使目标蛋白从变性的完全伸 展状态(?)恢复到正常的折叠结构,同时去 除还原剂使二硫键正常形成。一般在尿素浓度 4M左右时复性过程开始,到2M左右时结束。
pIN III-comA1, pIN III-comA2, pIN III-comA3, 1)强启动子:Ipp(脂蛋白基因启动子)和lacUV5启动子。 2)调节基因:lac I 。 3)S-D序列和起始密码ATG。 4)分泌信号肽:大肠杆菌外膜蛋白基因ompa。 5)插入位点区(多克隆位点)。
3.融合蛋白表达载体系统 表达出的外源基因产物蛋白是与质粒载体上的菌体蛋 白连接在一起的。 如:pGEX、pET系列
助于身的功能序列和大肠杆菌蛋白质加工、运输体系,最
终分泌到周质空间,或外泌到培养液中。
包涵体蛋白
本质:细胞内蛋白质的不断聚集
包括:1.折叠状态的蛋白质的聚集作用; 2.非折叠状态的蛋白质的聚集作用; 3.蛋白质的中间体结构。 优点:易于分离纯化
包涵体表达形式的优点
在一定程度上保持表达产物的结构稳定
洗涤:由于脂体及部分破碎的细胞膜及膜蛋 白与包涵体粘连在一起,在溶解包涵体之前 要先洗涤包涵体,通常用低浓度的变性剂如 2M尿素在50mM Tris pH7.0-8.5左右、
1mMEDTA中洗涤。此外可以用温和去垢剂
TritonX-100洗涤去除膜碎片和膜蛋白。
包涵体的溶解
1.采用高浓度的变性剂,使其形成伸展 的肽链。常用的变性剂有尿素(8M)、盐酸 胍(GuaHCl 6-8M),通过离子间的相互作用, 破坏包涵体蛋白间的氢键而增溶蛋白。尿素的 增溶效果稍差,异氰硫酸胍(GuaSCN)最强。
有效的变性复性操作,才能回收得到具有正确空间构象(因而具有生
物活性)的目标蛋白,因此包涵体变复性操作的效率对目标产物的收 率至关重要。
经过复性处理的目标蛋白不一定能完全恢复原来的生物学活性,
有时甚至完全得不到有活性的蛋白蛋,尤其当目标蛋白分子中的 Cys 残基数目较高时,体外复性蛋白质的成功率相当低,一般不超过 30% 复性处理工艺可使目标蛋白的制备成本上升。
LacUV5启动子:Lac启动子的衍生物
大肠杆菌的trp启动子
来自大肠杆菌的色氨酸操纵子 由启动子、衰减子、操纵基因及 trpE 的部分结构 基因组成 受阻遏蛋白和衰减子的调控,阻遏蛋白前体必须 与色氨酸结合才有活性 3-β - 吲哚丙烯酸( IAA )可竞争性抑制色氨酸与 阻遏蛋白的结合,提高转录活性。
原核生物基因表达载体的组成特征
启动子
核糖体结合位点(SD序列)
终止子
选择标记基因 复制子
大肠杆菌表达载体
核糖体结合位点 启动子 转录终止子
报告基因( reporter gene ):特指那些编 码产物可以被快速测定的功能核苷酸编码单 元(半乳糖苷酶基因、碱性磷酸酶基因、萤 光素酶基因、半乳糖激酶基因以及氯霉素乙 酰转移酶基因等)。
RNA聚合酶不能识别真核的启动子;外源基因 可能含有具大肠杆菌转录终止信号功能的核苷 酸序列。 3. 真核基因mRNA的分子结构同细菌的有所差异,
影响真核基因mRNA稳定性。
4. 许多真核基因的蛋白质产物,都要经过
转译后的加工修饰(正确折叠和组装),
而大多数的这类修饰作用在细菌细胞中
并不存在; 5. 细菌的蛋白酶,能够识别外来的真核基 因所表达的蛋白质分子,并把它们降解掉。
非融合蛋白特点:
表达时要求高:SD序列与ATG的距离要
合适。即使改变2-3个碱基,表达效率也
会大受影响。
优点:能够较好地保持原来蛋白的活性。 缺点:在宿主细胞内容易被蛋白酶降 解,蛋白产量低;分离纯化费时费力, 成本较高。
2. 分泌型表达载体 载体表达出的外源蛋白质与细菌的分泌信号肽连在一 起,可被宿主菌分泌到细胞周质中。
重组因导入宿主菌,并指导 宿主菌的酶系统合成外源蛋白。 2.外源基因不能带有间隔顺序(内含子),因而必 须用cDNA或全化学合成基因,而不能用基因组DNA。 3.必须利用原核细胞的强启动子和SD序列等调控 元件控制外源基因的表达。 4.外源基因与表达载体连接后,必须形成正确的 开放阅读框架(ORF)。 5.利用宿主菌的调控系统,调节外源基因的表达, 防止外源基因的表达产物对宿主菌的毒害。
4.还原剂:由于蛋白间二硫键的存在,在增 溶时一般使用还原剂。还原剂的使用浓度一般 是50-100mM DTT,也有使用5mM浓度。实际, 还原剂的使用浓度与蛋白二硫键的数目无关, 而有些没有二硫键的蛋白加不加还原剂无影响。 对于目标蛋白没有二硫键某些包涵体的增溶, 有时还原剂的使用也是必要的,可能由于含二 硫键的杂蛋白影响了包涵体的溶解。 含有半胱氨酸的蛋白质,需要加入还原 剂巯基乙醇、二硫苏糖醇等。加入金属螯 合剂EDTA去除金属离子。
个保持着正确的读码结构,产生出真实的融合蛋白质。
第二节 外源基因在原核细胞中的表达
用凝血酶或Xa因子可以把外源蛋白从GST上切下来
pGEX-1X的插入区
pGEX-2X的插入区
pGEX-3X的插入区
4.其他融合蛋白系统 His-tag(组氨酸标签) 在外源多肽的N端或C端接上6个组氨酸(His)。 His-tag能与Ni2+柱结合,但很容易被EDTA
优点:便于融合蛋白的分离和纯化。
组成结构: 1)启动子:tac 2)操纵基因:lacP 3)调节基因:lacI 4)S-D序列 5)ori:pBR322 ori 6)融合肽:GST(谷胱甘肽巯基转移酶)
融合蛋白表达系统的构建的三个原则:
首先,受体细菌结构基因应能高效表达,且其 其次,外源基因应插在受体菌结构基因的下游
对于盐酸胍而言,可以从4M开始,到1.5M 时
分离纯化细菌包涵体蛋白质的基本步骤:
破碎细胞 (Disruption of cell) ↓
分离包涵体
(Seperation of inclusion body) ↓
溶解包涵体
(Dissolve inclusion body)
↓
蛋白质产物的构象复原等。
包涵体的复性前准备
(或咪唑溶液)洗脱下来,可以纯化蛋白质。
融合蛋白:是指蛋白质的N末端由原核DNA序列或其他 DNA序列编码,C端由真核DNA的完整序列编码。这 样的蛋白质有一段短的原核多肽或具有其他功能的 多肽和真核蛋白质结合在一起,故称为融合蛋白。
外源基因在原核细胞中的表达
细胞质 细胞周质 细胞外 包涵体蛋白 融合蛋白 整合型外源蛋白 分泌型外源蛋白
用的寄主菌株和不同类型的载体;
3. 许多克隆的真核基因都可以在大肠杆菌细胞中 实现有效、高水平的表达; 4. 大肠杆菌培养方便、操作简单、成本低廉,易 用于批量生产。
大肠杆菌中表达体系的不足:
1. 真核基因,在结构上同原核基因之间存在着很
大的差别。
2. 真核基因的转录信号同原核的不同。细菌的
通过与阻遏蛋白的相互作用来控制基因的启动和停止
大肠杆菌的Lac启动子
来自大肠杆菌的乳糖操纵子 由阻遏蛋白基因(LacI)、启动基因(P)、操纵基因(O) 和编码3个与乳糖利用有关的酶的结构基因所组成 受活化蛋白和cAMP 的正调控,阻遏蛋白的负调控
受IPTG(异丙基硫代半乳糖苷)、TMG(硫甲基半乳 糖苷)、ONPG(邻硝基苯基半乳糖苷)的诱导