高一数学必修一必修二基础题目练习(含答案)
高中数学必修一必修二好题精选(附答案)
一.选择题〔共8小题〕1.设有一个体积为54的正四面体,假设以它的四个面的中心为顶点做一个四面体,那么所作四面体的体积为〔〕A.1B.2C.3D.42.设a=,b=,c=,那么〔〕A.a>b>c B.b>a>c C.c>a>b D.b>c>a3.函数y=的单调增区是〔〕A.[1,2]B.〔﹣∞,﹣1〕C.〔﹣∞,2]D.[2,+∞〕4.﹣1<a<0,那么三个数3a,a,a3由小到大的顺序是〔〕A.B.C.D.5.设a=log30.4,b=log23,那么〔〕A.ab>0且a+b>0B.ab<0且a+b>0C.ab>0且a+b<0D.ab<0且a+b<06.假设a=log23,b=log48,c=log58,那么a,b,c的大小关系为〔〕A.a>b>c B.a>c>b C.b>a>c D.c>b>a7.假设幂函数y=f〔x〕的图象过点,那么f〔x〕在定义域内〔〕A.有最小值B.有最大值C.为减函数D.为增函数8.y=〔m2+m﹣5〕x m是幂函数,且在第一象限是单调递减的,那么m的值为〔〕A.﹣3B.2C.﹣3或2D.3二.填空题〔共2小题〕9.函数f〔x〕=|x2+3x|,x∈R,假设方程f〔x〕﹣a|x﹣1|=0恰有4个互异的实数根,那么实数a的取值范围为.10.,那么函数f〔x〕的解析式为.三.解答题〔共6小题〕11.求以下函数的值域〔1〕y=;〔2〕假设x、y满足3x2+2y2=6x,求z=x2+y2的值域;〔3〕f〔x〕=|2x+1|﹣|x﹣4|;〔4〕y=x+;〔5〕f〔x〕=.12.〔1〕y=f〔x〕的定义域为[0,2],求:①f〔x2〕;②f〔|2x﹣1|〕;③f〔〕的定义域.〔2〕函数f〔x2﹣1〕的定义域为[0,1],求f〔x〕的定义域;〔3〕函数f〔2x+1〕的定义域为〔0,1〕,求f〔2x﹣1〕的定义域;〔4〕函数f〔x+1〕的定义域为[﹣2,3],求f〔+2〕的定义域;〔5〕函数f〔x〕的定义域为[0,1],求g〔x〕=f〔x+m〕+f〔x﹣m〕〔m>0〕的定义域;〔6〕函数f〔x〕的定义域为[﹣,],求F〔x〕=f〔ax〕+f〔〕〔a>0〕的定义域.13.设f〔x〕=3x﹣1,g〔x〕=2x+3.一次函数h〔x〕满足f[h〔x〕]=g〔x〕.求h〔x〕.14.〔1〕f〔〕=+,求f〔x〕的解析式.〔2〕函数f〔x〕满足f〔x〕﹣2f〔〕=x,求函数f〔x〕的解析式.15.设f〔x〕是R上的函数,且满足f〔0〕=1,并且对任意实数x,y,有f〔x﹣y〕=f〔x〕﹣y〔2x﹣y+1〕,求f〔x〕的解析式.16.设函数f〔x〕=〔x∈〔﹣∞,1]〕〔Ⅰ〕求函数y=f〔2x〕的定义域.〔Ⅱ〕求证:f〔x〕=〔x∈〔﹣∞,1]〕在其定义域上为减函数.参考答案与试题解析一.选择题〔共8小题〕1.设有一个体积为54的正四面体,假设以它的四个面的中心为顶点做一个四面体,那么所作四面体的体积为〔〕A.1B.2C.3D.4【解答】解:设体积为54的正四面体的棱长为a,如图,G,H分别是BC,CD的中点,E,F分别是三角形ABC,ACD的重心,BD=a,由中位线定理可知:=a,又由重心定理可知:,故所作四面体与原四面体相似,相似比为它们的体积比为,那么所作四面体的体积为=2应选:B.2.设a=,b=,c=,那么〔〕A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:∵a==ln,b==ln,c==ln,>>,y=lnx是增函数,∴a>b>c.应选:A.3.函数y=的单调增区是〔〕A.[1,2]B.〔﹣∞,﹣1〕C.〔﹣∞,2]D.[2,+∞〕【解答】解:令t=﹣x2+4x+5,其对称轴方程为x=2,内层函数二次函数在[2,+∞〕上为减函数,而外层函数y=为减函数,∴函数y=的单调增区是[2,+∞〕.应选:D.4.﹣1<a<0,那么三个数3a,a,a3由小到大的顺序是〔〕A.B.C.D.【解答】解:∵﹣1<a<0,不放取a=﹣,那么三个数3a===,a==﹣,a3==﹣,故有<a3<3a,应选:C.5.设a=log30.4,b=log23,那么〔〕A.ab>0且a+b>0B.ab<0且a+b>0C.ab>0且a+b<0D.ab<0且a+b<0【解答】解:∵;∴﹣1<log30.4<0;又log23>1;即﹣1<a<0,b>1;∴ab<0,a+b>0.应选:B.6.假设a=log23,b=log48,c=log58,那么a,b,c的大小关系为〔〕A.a>b>c B.a>c>b C.b>a>c D.c>b>a【解答】解:∵,;∴a>b;又,,且log85>log84>0;∴;∴b>c;∴a>b>c.应选:A.7.假设幂函数y=f〔x〕的图象过点,那么f〔x〕在定义域内〔〕A.有最小值B.有最大值C.为减函数D.为增函数【解答】解:设幂函数y=f〔x〕=xα,α为实数,其图象过点,∴2α=,∴α=﹣,∴f〔x〕=,定义域为〔0,+∞〕,且在定义域内无最大、最小值,是减函数.应选:C.8.y=〔m2+m﹣5〕x m是幂函数,且在第一象限是单调递减的,那么m的值为〔〕A.﹣3B.2C.﹣3或2D.3【解答】解:由题意得:,解得:m=﹣3,应选:A.二.填空题〔共2小题〕9.函数f〔x〕=|x2+3x|,x∈R,假设方程f〔x〕﹣a|x﹣1|=0恰有4个互异的实数根,那么实数a的取值范围为〔0,1〕∪〔9,+∞〕.【解答】解:由y=f〔x〕﹣a|x﹣1|=0得f〔x〕=a|x﹣1|,作出函数y=f〔x〕,y=g〔x〕=a|x﹣1|的图象,当a≤0,f〔x〕≥0,g〔x〕≤0,两个函数的图象不可能有4个交点,不满足条件;那么a>0,此时g〔x〕=a|x﹣1|=,当﹣3<x<0时,f〔x〕=﹣x2﹣3x,g〔x〕=﹣a〔x﹣1〕,当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a〔x﹣1〕,即x2+〔3﹣a〕x+a=0,那么由△=〔3﹣a〕2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g〔x〕=﹣9〔x﹣1〕,g〔0〕=9,此时不成立,∴此时a=1,要使两个函数有四个零点,那么此时0<a<1,假设a>1,此时g〔x〕=﹣a〔x﹣1〕与f〔x〕,有两个交点,此时只需要当x>1时,f〔x〕=g〔x〕有两个不同的零点即可,即x2+3x=a〔x﹣1〕,整理得x2+〔3﹣a〕x+a=0,那么由△=〔3﹣a〕2﹣4a>0,即a2﹣10a+9>0,解得a<1〔舍去〕或a>9,综上a的取值范围是〔0,1〕∪〔9,+∞〕.故答案为:〔0,1〕∪〔9,+∞〕.10.,那么函数f〔x〕的解析式为f〔x〕=x2﹣1,〔x≥1〕.【解答】解:令+1=t,t≥1,可得=t﹣1,代入解析式可得f〔t〕=〔t﹣1〕2+2〔t﹣1〕,化简可得f〔t〕=t2﹣1,t≥1故可得所求函数的解析式为:f〔x〕=x2﹣1,〔x≥1〕故答案为:f〔x〕=x2﹣1,〔x≥1〕三.解答题〔共6小题〕11.求以下函数的值域〔1〕y=;〔2〕假设x、y满足3x2+2y2=6x,求z=x2+y2的值域;〔3〕f〔x〕=|2x+1|﹣|x﹣4|;〔4〕y=x+;〔5〕f〔x〕=.【解答】解:〔1〕y==〔x﹣1〕+;∵〔x﹣1〕+≥4或〔x﹣1〕+≤﹣4;∴y=的值域为〔﹣∞,﹣4]∪[4,+∞〕;〔2〕∵3x2+2y2=6x得y2=﹣x2+3x〔0≤x≤2〕,∴z=x2+y2=x2﹣x2+3x=﹣〔x﹣3〕2+,∵0≤x≤2,∴0≤﹣〔x﹣3〕2+≤4,〔3〕f〔x〕=|2x+1|﹣|x﹣4|=,f〔x〕=|2x+1|﹣|x﹣4|的值域为[﹣,+∞〕;〔4〕∵x≥1,∴y=x+在[1,+∞〕上单调递增,∴y≥1,∴y=x+的值域为[1,+∞〕;〔5〕f〔x〕==+,∵y=x+在[2,+∞〕上是增函数,又∵≥2,∴f〔x〕≥f〔0〕=2+=.那么函数f〔x〕=的值域为[,+∞〕.12.〔1〕y=f〔x〕的定义域为[0,2],求:①f〔x2〕;②f〔|2x﹣1|〕;③f〔〕的定义域.〔2〕函数f〔x2﹣1〕的定义域为[0,1],求f〔x〕的定义域;〔3〕函数f〔2x+1〕的定义域为〔0,1〕,求f〔2x﹣1〕的定义域;〔4〕函数f〔x+1〕的定义域为[﹣2,3],求f〔+2〕的定义域;〔5〕函数f〔x〕的定义域为[0,1],求g〔x〕=f〔x+m〕+f〔x﹣m〕〔m>0〕的定义域;〔6〕函数f〔x〕的定义域为[﹣,],求F〔x〕=f〔ax〕+f〔〕〔a>0〕的定义域.【解答】解:〔1〕y=f〔x〕的定义域为[0,2],那么①由0≤x2≤2得0≤x≤或﹣≤x≤0,即函数的定义域为{x|0≤x≤或﹣≤x≤0}.②由0≤|2x﹣1|≤2得﹣≤x≤,即函数的定义域为{x|﹣≤x≤}.③由0≤≤2得2≤x≤6,即函数的定义域为{x|2≤x≤6}.〔2〕函数f〔x2﹣1〕的定义域为[0,1],那么0≤x≤1,那么0≤x2≤1,﹣1≤x2﹣1≤0,即f〔x〕的定义域为[﹣1,0];〔3〕函数f〔2x+1〕的定义域为〔0,1〕,那么0<x<1,那么1<2x+1<3,即f〔x〕的定义域为〔1,3〕;由1<2x﹣1<3,得1<x<2,即f〔2x﹣1〕的定义域为〔1,2〕;〔4〕函数f〔x+1〕的定义域为[﹣2,3],那么﹣2≤x≤3,那么﹣1≤x+1≤4,由﹣1≤+2≤4,得﹣3≤≤2,解得x≥或x≤,即f〔+2〕的定义域是{x|x≥或x≤};〔5〕函数f〔x〕的定义域为[0,1],那么0≤x≤1,由得,∵m>0,∴当1﹣m=m时,即m=时,此时x=,假设0,那么m≤x≤1﹣m,假设m,那么不等式无解.∴当0时,函数的定义域为[m,1﹣m],当m=时,函数的定义域为{},当m时,函数定义域为空集,此时不成立,舍去.综上:故当0时,函数的定义域为[m,1﹣m],当m=时,函数的定义域为{}.〔6〕设μ1=ax,μ2=,其中a>0,那么F〔x〕=f〔μ1〕+f〔μ2〕且μ1、μ2∈[﹣,].∴⇒①当a≥1时,,故不等式组的解为﹣≤x≤;②当0<a<1时,不等式组的解为﹣≤x≤.∴当a≥1时,F〔x〕的定义域为[﹣,];当0<a<1时,F〔x〕的定义域为[﹣,].13.设f〔x〕=3x﹣1,g〔x〕=2x+3.一次函数h〔x〕满足f[h〔x〕]=g〔x〕.求h〔x〕.【解答】解:设h〔x〕=kx+b∵f[h〔x〕]=g〔x〕,f〔x〕=3x﹣1∴f〔kx+b〕=2x+3即3〔kx+b〕﹣1=2x+33kx+3b﹣1=2x+3∴∴k=,b=,∴h〔x〕=14.〔1〕f〔〕=+,求f〔x〕的解析式.〔2〕函数f〔x〕满足f〔x〕﹣2f〔〕=x,求函数f〔x〕的解析式.【解答】解:〔1〕f〔〕=+可化为f〔1+〕=1++,即f〔1+〕=〔1+〕2﹣〔1+〕+1,∴f〔x〕的解析式为f〔x〕=x2﹣x+1;〔2〕∵f〔x〕﹣2f〔〕=x,∴f〔〕﹣2f〔x〕=,联立消去f〔〕可得f〔x〕=﹣﹣,∴函数f〔x〕的解析式为f〔x〕=﹣﹣.15.设f〔x〕是R上的函数,且满足f〔0〕=1,并且对任意实数x,y,有f〔x﹣y〕=f〔x〕﹣y〔2x﹣y+1〕,求f〔x〕的解析式.【解答】解:由题意,令x=y得,f〔0〕=f〔x〕﹣x〔2x﹣x+1〕,那么f〔x〕=x〔x+1〕+1.16.设函数f〔x〕=〔x∈〔﹣∞,1]〕〔Ⅰ〕求函数y=f〔2x〕的定义域.〔Ⅱ〕求证:f〔x〕=〔x∈〔﹣∞,1]〕在其定义域上为减函数.【解答】解:〔1〕由2x≤1,得,所以,y=f〔2x〕的定义域为.〔2〕证明:任取x1,x2∈〔﹣∞,1],且x1<x2,那么=,,,即f〔x1〕>f〔x2〕,所以,f〔x〕在定义域〔﹣∞,1]上为减函数.。
高一数学必修一全册练习题(解析版)
第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∈a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∈c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∈c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.6解析:选D.∈z=xy,x∈A,y∈B,∈z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∈集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C=____________.解析:∈C={(x,y)|x∈A,y∈B},∈满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∈M B .a ∈M C .{a }∈M D .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个. 解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________. 解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根, ∈a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围. 解:∈a =0时,原方程为-3x +2=0,x =23,符合题意.∈a ≠0时,方程ax 2-3x +2=0为一元二次方程. 由Δ=9-8a ≤0,得a ≥98.∈当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合∈∈,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊 C .2010年考入清华大学的全体学生 D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ∈π∈R ;∈3∈Q ;∈0∈N *;∈|-4|∈N *. A .1 B .2 C .3 D .4 解析:选B.∈∈正确,∈∈错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∈AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()∈教2011届高一的年轻教师;∈你所在班中身高超过1.70米的同学;∈2010年广州亚运会的比赛项目;∈1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以∈不能构成集合;由于∈∈∈中的对象具备确定性、互异性,所以∈∈∈能构成集合.4.若集合M={a,b,c},M中元素是∈ABC的三边长,则∈ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()∈M={(3,2)},N={(2,3)};∈M={3,2},N={2,3};∈M={(1,2)},N={1,2}.A.∈ B.∈C.∈ D.以上都不对解析:选B.∈中M中表示点(3,2),N中表示点(2,3),∈中由元素的无序性知是相等集合,∈中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∈MC .x ∈M ,y ∈MD .x ∈M ,y ∈M 解析:选B.∈x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∈M .7.已知∈5∈R ;∈13∈Q ;∈0={0};∈0∈N ;∈π∈Q ;∈-3∈Z .其中正确的个数为________.解析:∈错误,0是元素,{0}是一个集合;∈0∈N ;∈π∈Q ,∈∈∈正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∈A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∈-3∈A ,∈-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∈12-3=2+3=2+3×1,而2,1∈Z ,∈2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b2b =2a, 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )∈{a ,b }={b ,a };∈{a ,b }∈{b ,a };∈∈={∈};∈{0}=∈;∈∈{0};∈0∈{0}.A .6个B .5个C .4个D .3个及3个以下 解析:选C.∈∈∈∈正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∈B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∈B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∈Δ=9-4(2-a2)=1+4a2>0,∈M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0∈A B.{0}∈AC.∈∈A D.{0}∈A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A∈B解析:选C.利用数轴(图略)可看出x∈B∈x∈A,但x∈A∈x∈B不成立.3.定义A-B={x|x∈A且x∈B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∈,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ∈B },则A 与B 的关系是( ) A .A ∈B B .B ∈A C .A ∈B D .B ∈A解析:选D.∈B 的子集为{1},{2},{1,2},∈, ∈A ={x |x ∈B }={{1},{2},{1,2},∈},∈B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx =1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∈B ,故B A .答案:BA8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ∈B ,则a 的值为________. 解析:A ∈B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:∈若⎩⎪⎨⎪⎧a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性, 故a ≠0,c 2-2c +1=0,即c =1; 当c =1时,集合B 中的三个元素也相同, ∈c =1舍去,即此时无解.∈若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∈a ≠0,∈2c 2-c -1=0,即(c -1)(2c +1)=0. 又∈c ≠1,∈c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ∈A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ∈A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∈BA ,∈mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时, 由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时, 由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0. 综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ∈N B .N ∈M C .M ∩N ={2,3} D .M ∈N ={1,4}解析:选C.∈M={1,2,3},N={2,3,4}.∈选项A、B显然不对.M∈N={1,2,3,4},∈选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)} B.{0,1}C.{y|y≥0} D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∈M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∈B=A,则实数m的取值范围是________.解析:A∈B=A,即B∈A,∈m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∈N=N;Q∈R=R∈Q;Q∩N=N中,正确的个数是() A.1B.2C.3 D.4解析:选C.只有Z∈N=N是错误的,应是Z∈N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∈A={3,5,6,8},B={4,5,7,8},∈A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∈B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∈a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∈P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3} B.{x|x≥1}C.{x|2≤x<3} D.{x|x>2}解析:选A.∈A={x|1≤x≤3},B={x|x>2},∈A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∈T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∈T =R ,∈⎩⎪⎨⎪⎧a +8>5,a <-1.∈-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∈A ∩B ={2,3},∈3∈B ,∈m =3. 答案:38.满足条件{1,3}∈M ={1,3,5}的集合M 的个数是________. 解析:∈{1,3}∈M ={1,3,5},∈M 中必须含有5, ∈M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∈; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∈B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∈A ∩B ={3},∈由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∈B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:∈当a -3≤5,即a ≤8时,A ∈B ={x |x <a -3或x >5}. ∈当a -3>5,即a >8时,A ∈B ={x |x >5}∈{x |x <a -3}={x |x ∈R }=R . 综上可知当a ≤8时,A ∈B ={x |x <a -3或x >5}; 当a >8时,A ∈B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∈,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∈,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∈U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∈U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∈R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∈B ={x |x <1},∈∈R B ={x |x ≥1}, ∈A ∩∈R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A={0,1},(∈U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∈U A={x|2≤x≤5},则a=________.解析:∈A∈∈U A=U,∈A={x|1≤x<2}.∈a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∈U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∈U B={3,4,5},∈A∩(∈U B)={3,4}.2.已知全集U={0,1,2},且∈U A={2},则A=()A.{0} B.{1}C.∈ D.{0,1}解析:选D.∈∈U A={2},∈2∈A,又U={0,1,2},∈A={0,1}.3.(2009年高考全国卷∈)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∈B,则集合∈U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∈B={3,4,5,7,8,9},A∩B={4,7,9},∈∈U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∈N=UC.(∈U N)∈M=U D.(∈U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∈U N)∈M ={3,4,5,7},(∈U M)∩N={2,6},M∈N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∈U(A∈B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∈A={1,2},∈B={2,4},∈A∈B={1,2,4},∈∈U(A∈B)={3,5}.6.已知全集U =A ∈B 中有m 个元素,(∈U A )∈(∈U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∈B 中有m 个元素,∈(∈U A )∈(∈U B )=∈U (A ∩B )中有n 个元素, ∈A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∈B )∩(∈U C )=________. 解析:∈A ∈B ={2,3,4,5},∈U C ={1,2,5}, ∈(A ∈B )∩(∈U C )={2,3,4,5}∩{1,2,5}={2,5}. 答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∈U A ={1},则实数a 的值是________. 解析:∈U ={2,3,a 2-a -1},A ={2,3},∈U A ={1}, ∈a 2-a -1=1,即a 2-a -2=0, 解得a =-1或a =2. 答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∈U A )∩B =∈,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∈∈U A ={x |x <-m },∈B ={x |-2<x <4},(∈U A )∩B =∈, ∈-m ≤-2,即m ≥2, ∈m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∈U B )∈P ,(A ∩B )∩(∈U P ).解:将集合A 、B 、P 表示在数轴上,如图.∈A ={x |-4≤x <2},B ={x |-1<x ≤3},∈A ∩B ={x |-1<x <2}. ∈∈U B ={x |x ≤-1或x >3}, ∈(∈U B )∈P ={x |x ≤0或x ≥52},(A ∩B )∩(∈U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∈U A )={2},A ∩(∈U B )={4},U =R ,求实数a ,b 的值.解:∈B ∩(∈U A )={2}, ∈2∈B ,但2∈A .∈A ∩(∈U B )={4},∈4∈A ,但4∈B .∈⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∈a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∈R B ,求实数a 的取值范围.解:∈R B ={x |x ≤1或x ≥2}≠∈, ∈A∈R B ,∈分A =∈和A ≠∈两种情况讨论. ∈若A =∈,此时有2a -2≥a , ∈a ≥2.∈若A ≠∈,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2.∈a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∈ B .∈或{1} C .{1} D .∈或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∈或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =x +103-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∈(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2, 故函数值域为{-1,-2,2}. 答案:{-1,-2,2} 10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值. 解:(1)∈f (x )=11+x ,∈f (2)=11+2=13, 又∈g (x )=x 2+2, ∈g (2)=22+2=6. (2)由(1)知g (2)=6, ∈f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数). ∈ax +1≥0,a <0,∈x ≤-1a ,即函数的定义域为(-∞,-1a ].∈函数在区间(-∞,1]上有意义, ∈(-∞,1]∈(-∞,-1a ],∈-1a ≥1,而a <0,∈-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x=1x1+1x(x ≠0), ∈f (t )=t1+t (t ≠0且t ≠-1),∈f (x )=x1+x(x ≠0且x ≠-1). 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∈2f (2)-3f (1)=5,2f (0)-f (-1)=1,∈⎩⎪⎨⎪⎧ k -b =5k +b =1,∈⎩⎪⎨⎪⎧k =3b =-2,∈f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________. 解析:令2x =t ,则x =t 2,∈f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x2-1. 答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x非负数非正数y1 -1B.x 奇数 0 偶数 y1-1C.x 有理数 无理数 y1-1D.x 自然数 整数 有理数 y1-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∈f (t )=4t -12-1,∈f (12)=16-1=15. 法二:令1-2x =12,得x =14,∈f (12)=16-1=15. 3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∈g (x +2)=2x +3=2(x +2)-1, ∈g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∈f (0)=(0-1)2+c =0, ∈c =-1,∈f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( ) A .y =12x (x >0) B .y =24x (x >0)C .y =28x (x >0) D .y =216x (x >0) 解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x . 7.已知f (x )=2x +3,且f (m )=6,则m 等于________. 解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1, ∈f [1f 3]=f (1)=2. 答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1. 再令-b =x ,即得f (x )=x 2+x +1. 11.已知f (x +1x )=x 2+1x 2+1x ,求f (x ).解:∈x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∈f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x )+1.∈f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∈f (2+x )=f (2-x ),∈f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a , ∈f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∈ax 2-4ax +3=0的两实根的平方和为10, ∈10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a , ∈a =1.∈f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .16解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 x >0x -1 x <0,再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 20≤x ≤3x 2+6x-2≤x ≤0的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集. 4.已知f (x )=⎩⎪⎨⎪⎧x +2x ≤-1,x 2-1<x <22x x ≥2,若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∈f (x )=x 2=3,x =±3,而-1<x <2,∈x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧x +12 x ≤-1,2x +1 -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∈⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∈⎝⎛⎭⎫-12,1D.⎝⎛⎭⎫-12,12∈(1,+∞) 解析:选C.f (a )>1∈⎩⎪⎨⎪⎧ a ≤-1a +12>1或⎩⎪⎨⎪⎧-1<a <12a +1>1或⎩⎪⎨⎪⎧a ≥11a -1>1∈⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12∈a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∈⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f x -2, x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0. 答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组⎩⎪⎨⎪⎧x +2≥0x +x +2·1≤5或⎩⎪⎨⎪⎧x +2<0x +x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 -1≤x ≤11 x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R. 由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∈260÷52=5(小时),260÷65=4(小时),∈s =⎩⎪⎨⎪⎧52t 0≤t ≤5,260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ∈BC ,DH ∈BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ∈当点F 在BG 上时, 即x ∈[0,2]时,y =12x 2;∈当点F 在GH 上时, 即x ∈(2,5]时,y =x +x -22×2=2x -2; ∈当点F 在HC 上时,即x ∈(5,7]时, y =S 五边形ABFED =S 梯形ABCD -S Rt∈CEF=12(7+3)×2-12(7-x )2 =-12(x -7)2+10.综合∈∈∈,得函数解析式为y =⎩⎪⎨⎪⎧12x 2x ∈[0,2]2x -2 x ∈2,5].-12x -72+10 x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8. 2.函数f (x )在R 上是增函数,若a +b ≤0,则有( ) A .f (a )+f (b )≤-f (a )-f (b ) B .f (a )+f (b )≥-f (a )-f (b ) C .f (a )+f (b )≤f (-a )+f (-b ) D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断. ∈a +b ≤0,∈a ≤-b ,b ≤-a . 又∈函数f (x )在R 上是增函数, ∈f (a )≤f (-b ),f (b )≤f (-a ). ∈f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:∈y =x x -1;∈y =x 2+x ;∈y =-(x +1)2;∈y =x1-x +2.其中在(-∞,0)上为减函数的是( )A .∈B .∈C .∈∈D .∈∈∈解析:选A.∈y =x x -1=x -1+1x -1=1+1x -1.其减区间为(-∞,1),(1,+∞).∈y =x 2+x =(x +12)2-14,减区间为(-∞,-12).∈y =-(x +1)2,其减区间为(-1,+∞), ∈与∈相比,可知为增函数.4.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 解析:对称轴x =k 8,则k 8≤5,或k8≥8,得k ≤40,或k ≥64,即对称轴不能处于区间内.答案:(-∞,40]∈[64,+∞)1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞) 解析:选A.根据y =-x 2的图象可得.2.若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( )A .单调递增B .单调递减C .先减后增D .无法判断解析:选D.函数单调性强调x 1,x 2∈[-1,3],且x 1,x 2具有任意性,虽然f (0)<f (1),但不能保证其他值也能满足这样的不等关系.3.已知函数y =f (x ),x ∈A ,若对任意a ,b ∈A ,当a <b 时,都有f (a )<f (b ),则方程f (x )=0的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上解析:选C.由题意知f (x )在A 上是增函数.若y =f (x )与x 轴有交点,则有且只有一个交点,故方程f (x )=0至多有一个根.4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 解析:选D.∈a 2+1-a =(a -12)2+34>0,∈a 2+1>a ,∈f (a 2+1)<f (a ),故选D.5.下列四个函数在(-∞,0)上为增函数的是( ) ∈y =|x |;∈y =|x |x ;∈y =-x 2|x |;∈y =x +x|x |.A .∈∈B .∈∈C .∈∈D .∈∈解析:选C.∈y =|x |=-x (x <0)在(-∞,0)上为减函数; ∈y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;∈y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;∈y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有( )∈若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ∈函数y =x 2在R 上是增函数; ∈函数y =-1x在定义域上是增函数;∈y =1x 的单调递减区间是(-∞,0)∈(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而∈不对;∈y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;∈y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);∈y =1x 的单调递减区间不是(-∞,0)∈(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知 f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∈0<x 1<x 2,∈x 1-x 2<0,x 1x 2>0. ∈b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34 )的大小关系为________.解析:∈a 2-a +1=(a -12)2+34≥34,∈f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________. 解析: y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x x >0x 2-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数. 解:(1)∈f (1)=0,f (3)=0,∈⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∈f (x )=x 2-4x +3, ∈设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3) =(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4), ∈x 1-x 2<0,x 1>2,x 2>2, ∈x 1+x 2-4>0.∈f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∈函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.解:由题意可得⎩⎪⎨⎪⎧-1≤x -1≤1-1≤1-3x ≤1,x -1<1-3x即⎩⎪⎨⎪⎧0≤x ≤20≤x ≤23,x <12∈0≤x <12.12.设函数y =f (x )=ax +1x +2在区间(-2,+∞)上单调递增,求a 的取值范围.解:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2, ∈f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2 =ax 1+1x 2+2-ax 2+1x 1+2x 1+2x 2+2=x 1-x 22a -1x 1+2x 2+2.∈f (x )在(-2,+∞)上单调递增, ∈f (x 1)-f (x 2)<0. ∈x 1-x 22a -1x 1+2x 2+2<0,∈x 1-x 2<0,x 1+2>0,x 2+2>0, ∈2a -1>0,∈a >12.1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-aD .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 2.函数y =x +1-x -1的值域为( ) A .(-∞, 2 ] B .(0, 2 ] C .[2,+∞)D .[0,+∞)解析:选B.y =x +1-x -1,∈⎩⎪⎨⎪⎧x +1≥0x -1≥0,∈x ≥1.∈y =2x +1+x -1为[1,+∞)上的减函数,∈f (x )max =f (1)=2且y >0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2, 对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1.则xy 的最大值为________.解析:y 4=1-x 3,∈0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是( ) A .1 B .0 C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知, f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.。
高中数学必修一、必修四、必修二综合练习(含答案)
高中数学必修一、必修四、必修二综合练习选择题:1.函数f(x) 1 2x的定义域是( )3 1 3 1A .-B .-C. D —2 2 2 25.在正项等比数列a n中,若a2 a3 2 , a4 a5 8,则a5 a6 ()A.16B. 32C. 36D. 646. 程序框图如下:如果上述程序运行的结果为S= 40,那么判断框中应填入A . k 6B . k 5 C. k 6 D . k 57.已知x11 ,则y x 的取小值为x 1A.1B. 2C. 2 2D. 38.已知图1是函数y f(x)的图象,则图2中的图象对应的函数可能是2.3.A. ( ,0]B. [0, C ( ,0)F列四个命题中正确的是(A. lg2 lg3 lg5B.mnxD. lOg a x lOg a y lOg a —ycos300(B) (C) (D)_J32uuu4 .正三角形ABC的边长为1,设ABuuuc, BCuuu a ,CA b ,那么acb bcp ccp的值是(A . yf(|x|)B . y 1 f (x)1C . y f( |x|)D y f( |x|)29.已知全集U 0,1,2,且C U A 2,则集合A 的子集共有( )A. 2个B . 3个C . 4个D . 5个 10.为了得到函数ycos(2x -)的图象,可以将函数 y sin2x 的图象(314 .对定乂域是 D f 、 D g 的函数yf(x)、 y g(x), 规定:函数f (x)g(x),当 xD f 且 x D gAh(x)f(x), 当x D f 且x D g ,若 函 数 f (x)1 ,g(x) x 2, 则g(x),当x D f 且xD gx 1h(1) h(2)o三、解答题uuu)^Luuu15.设向量OA3, \3,OB (cos ,sin), 其中 0 -A 向右平移—个单位长度 6B. 向右平移 个单位长度12 C. 向左平移—个单位长度6二、填空题(每小题 5分,共20分)11.已知向量 a (3,1), b (1,3), c D.向左平移个单位长度12(k,7),若(a C) // b ,则 k =12.满足约束条件 |x|+ 2|y|w 2的目标函数 z = y — x 的最小值是13.已知 cos (―2贝H cos2 _________(1 )若 uurAB■ 13,求tan 的值;(2)求厶AOB 面积的最大值.16.(本小题满分12分)等差数列a n中,34 10且33, 36,印0成等比数列,求数列a n前20项的和S2o.17.(本小题满分14 分)设函数f(x) ' 3cos2x sin xcos x a (其中 >0,a R),且f(x)的图象在y轴右侧的第一个高点的横坐标为一.6(1)求的值;(2)如果f(x)在区间—上的最小值为.3,求a的值3 618.(本小题满分14 分)在厶ABC 中,若(a b c)(a b c) 3ac,且tanA ta nC 3 .3 , AB边上的高为4-3,求角代B,C的大小与边a, b, c的长19.(本小题满分14分)设S n为数列a n的前n项和,对任意的n N*,都有S n m 1 ma n(m为常数,且m 0). (1)求证:数列a n是等比数列;(2)设数列a n 的公比q fm,数列b n 满足b, 2a「b n f b n 1 (n 2 , n N*),求数列b n的通项公式;2⑶设C n ()3 T n是c n的前项和,求T n。
高中数学必修1和必修2测试题及参考答案
高中数学必修1和必修2测试题选择题:本大题共10小题,每小题5分,满分50分•在每小题给出的四个选项中•只有B . :— 5,+ a )C . (— 5, 0)D . (— 2, 0)6.已知A (1,2), B (3,1),则线段AB 的垂直平分线的方程是( )A.4x 2y 5B.4x 2y 5C.x 2y 5D.x 2y 57.下列条件中,能判断两个平面平行的是()A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面8. 如图,在 Rt △ ABC 中,/ ABC=90 0 , P ABC 所在平面外一点 PA 丄平面ABC ,则四面体 P-ABC 中共有()个直角三角形。
A 4B 3C 2D 1 9.如果轴截面为正方形的圆柱的侧面积是4 ,那么圆柱的体积等于(AB 2C 4D 8一项是符合题目要求的.1 .设集合 A {x| 3 0},B={x|-1 3测 A n B=( C . :0,3])A . :-1,0]B . : -3,3] 2.下列图像表示函数图像的是( y)D • [ -3,-1]「XX3.函数 f (X )x 5lg (2X 1)的定义域为(4. 已知a b 0,则3a ,3b ,4a 的大小关系是()A . 3a 3 b 4aB . 3b 4 a 3aC .3b 3 a 4a 5. 函数f(x ) X 3 x 3的实数解落在的区间是( ) D . 3a 4aA 0,1 B. 1,2C. 2,3D. 3,4A . (— 5,+ a)C10 .在圆x2 y2 4上,与直线4x 3y 12 0的距离最小的点的坐标为()精品文档8 6 8 6A.( , )B.(,)5 5 5 5填空题本大题共4小题,每小题8 6 8 6C(—,—) D.(-,-)5 5 5 55分,满分20分11•设A(3,3,1), B(1,0,5), C(0,1,0),则AB的中点到点C的距离为12. 如果一个几何体的三视图如右图所示(单位长度:cm),则此几何体的表面积是_________________ .13. 设函数f(x) (2 a 1)x b在R上是减函数,则a的范围是_______________ .14. 已知点A(a,2)到直线l:x y 3 0距离为2,则a= ____________ .三、解答题:本大题共6小题,满分80分•解答须写出文字说明、证明过程和演算步骤.15. (本小题满分10分)求经过两条直线2x y 3 0和4x 3y 5 0的交点,并且与直线2x 3y 5 0垂直的直线方程(一般式).16. (本小题满分14分)如图,PA 矩形ABCD所在的平面,M、N分别是AB、PC的中点.(1)求证:MN// 平面PAD ; (2)求证:MN CD ;17. (本小题满分14分)1 x已知函数f(x) log a ----------- (a 0且a 1) (14 分)1 x(1 )求f (x)的定义域;(2)判断f(x)的奇偶性并证明;18. (本小题满分14分)当x 0,函数f (x)为ax2 2,经过(2,6),当x 0 时f (x)为ax b,且过(-2,-2),(1 )求f (x)的解析式;(2 )求f (5);(3)作出f (x)的图像,标出零点。
高一数学必修一,必修二测试题答案
高一数学必修一,必修二测试题 答案一、选择题:二、填空题: 13、19614、2(80cm + 15、210x y +-= 16、1或-3三、解答题:17.解: 根据题意,有11221(1)2413=;2121404m m l k l k m m +--+-===---的斜率的斜率(1) 若12//l l ,则2223,214m k k m +==-即,解得112m =(2) 若12l l ⊥,则12231,1214m k k m +⋅=-⨯=--即,解得1011m =-18、解:(1)(4)f -=-2,)3(f =6,[(2)]f f -=(0)0f =(2)当a ≤-1时,a +2=10,得:a =8,不符合;当-1<a <2时,a 2=10,得:a =10±,不符合;a ≥2时,2a =10,得a =5, 所以,a =519、解:(1)在直三棱柱ABC —A 1B 1C 1中,侧面BB 1C 1C ⊥底面ABC ,且侧面BB 1C 1C ∩底面ABC =BC , ∵∠ABC =90°,即AB ⊥BC , ∴AB ⊥平面BB 1C 1∵CB 1⊂平面BB 1C 1C ,∴AB ⊥CB 1. ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴CB 1⊥平面ABC 1. (2)取AC 1的中点F ,连BF 、NF . 在△AA 1C 1中,N 、F 是中点,∴NF 1//2=AA 1,又∵BM 1//2=AA 1,∴EF //=BM , 故四边形BMNF 是平行四边形,∴MN //BF , 而EF ⊂面ABC 1,MN ⊄平面ABC 1,∴MN //面ABC 1A (2,3)B (-1,-2)C (-3,4)D20、解: 解 (1) 点D 的坐标为(-2,1),2142A D k ==中线AD 所在的直线方程为13(2)2y x -=- 整理得 240x y -+=(2)AD 2=(2+2)2+(3-1)2=20 ,AD=25点B 到AD 的距离为d=5575741441==+++-△ABC 的面积为 1455752212=⨯=⨯⨯⨯d AD21、(1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥P A .因为PA ⊂平面PAC ,且DE ⊄平面PAC , 所以DE ∥平面PAC .(2)因为PC ⊥平面ABC ,且AB ⊂平面ABC ,所以AB ⊥PC .又因为AB ⊥BC ,且PC ∩BC =C . 所以AB ⊥平面PBC . 又因为PB ⊂平面PBC ,所以AB ⊥PB . (3)由(2)知,PB ⊥AB ,BC ⊥AB ,所以,∠PBC 为二面角P —AB —C 的平面角. 因为PC =BC ,∠PCB =90°, 所以∠PBC =45°,所以二面角P —AB —C 的大小为45°.22、解:设摊主每天从报社买进x 份,显然当x ∈[250,400]时,每月所获利润才能最大.于是每月所获利润y=20×0.30x+10×0.30×250+10×0.05×(x-250)-30×0.20x=0.5x+625,x ∈[250,400].因函数y 在[250,400]上为增函数,故当x=400时,y 有最大值825元.答:这个摊主每天从报社买进400份,才能使每月所获的利润最大,并计算他一个月最多可赚得825元.ACPDE(第21题)。
新版高一数学必修第一册第二章全部配套练习题(含答案和解析)
新版高一数学必修第一册第二章全部配套练习题(含答案和解析)2.1 等式性质与不等式性质基 础 练巩固新知 夯实基础1.若1a <1b <0,则下列结论中不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |2.已知a >b >0,则下列不等式一定成立的是( ) A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b >a -1a3.下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若1a >1b,则a <bC .若b >c ,则|a |b ≥|a |cD .若a >b ,c >d ,则a -c >b -d 4.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化 5.一辆汽车原来每天行驶x km ,如果这辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,写成不等式为________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为________.6.已知三个不等式①ab >0;①c a >db ;①bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.7.若x ①R ,则x 1+x2与12的大小关系为________. 8.已知1<α<3,-4< β <2,若z =12α-β,则z 的取值范围是________.9.已知a >b ,1a <1b ,求证:ab >0.10.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围.(1)|a |; (2)a +b ; (3)a -b ; (4)2a -3b .能 力 练综合应用 核心素养11.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>c |b |12.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <013.实数a ,b ,c ,d 满足下列三个条件:①d >c ;①a +b =c +d ;①a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________. 14.已知|a |<1,则11+a 与1-a 的大小关系为________.15.已知a ,b ①R ,a +b >0,试比较a 3+b 3与ab 2+a 2b 的大小.16.已知0<a <b 且a +b =1,试比较: (1)a 2+b 2与b 的大小; (2)2ab 与12的大小.17.已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的取值范围.18.建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件就越好,试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.【参考答案】1. D 解析: ①1a <1b <0,①b <a <0,①b 2>a 2,ab <b 2,a +b <0,①A 、B 、C 均正确,①b <a <0,①|a |+|b |=|a +b |,故D 错误.2. A 解析:因为a >b >0,所以1b >1a >0,所以a +1b >b +1a,故选A.3. C 解析 A 项:a ,b ,c ,d 的符号不确定,故无法判断;B 项:不知道ab 的符号,无法确定a ,b 的大小;C 项:|a |≥0,所以|a |b ≥|a |c 成立;D 项:同向不等式不能相减.4. C 解析y 1-y 2=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.5. 8(x +19)>2 200 8x >9(x -12) 解析:①原来每天行驶x km ,现在每天行驶(x +19)km.则不等关系“在8天内的行程超过2 200 km”,写成不等式为8(x +19)>2 200.①若每天行驶(x -12)km ,则不等关系“原来行驶8天的路程现在花9天多时间”, 写成不等式为8x >9(x -12). 6. 3 解析:①①①①,①①①①.(证明略)由①得bc -ad ab >0,又由①得bc -ad >0.所以ab >0①①.所以可以组成3个正确命题.7. x 1+x 2≤12 解析:①x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,①x 1+x 2≤12. 8. ⎩⎨⎧⎭⎬⎫z ⎪⎪-32<z <112 解析:①1<α<3,①12<12α<32,又-4<β<2,①-2<-β<4.①-32<12α-β<112,即-32<z <112. 9.证明:①1a <1b ,①1a -1b <0,即b -a ab<0,而a >b ,①b -a <0,①ab >0. 10. 解:(1)|a |①[0,3].(2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1,相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,①由1≤b <2得-6<-3b ≤-3,①由①+①得,-10<2a -3b ≤3. 11. C 解析:选C.因为a >b >c ,且a +b +c =0,所以a >0,c <0,b 可正、可负、可为零. 由b >c ,a >0知,ab >ac .12. D 解析: 由a >0,d <0,且abcd <0,知bc >0,又①b >c ,①0<c <b 或c <b <0. 13. a <c <d <b 解析:由①得a =c +d -b 代入①得c +d -b +d <b +c ,①c <d <b .由①得b =c +d -a 代入①得a +d <c +d -a +c ,①a <c .①a <c <d <b . 14.11+a≥1-a 解析:由|a |<1,得-1<a <1. ①1+a >0,1-a >0.即11+a 1-a =11-a 2①0<1-a 2≤1,①11-a 2≥1,①11+a≥1-a . 15.解:因为a +b >0,(a -b )2≥0,所以a 3+b 3-ab 2-a 2b =a 3-a 2b +b 3-ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )(a -b )(a +b )=(a -b )2(a +b )≥0,所以a 3+b 3≥ab 2+a 2b .16.解:(1)因为0<a <b 且a +b =1,所以0<a <12<b ,则a 2+b 2-b =a 2+b (b -1)=a 2-ab =a (a -b )<0,所以a 2+b 2<b .(2)因为2ab -12=2a (1-a )-12=-2a 2+2a -12=-2⎝⎛⎭⎫a 2-a +14=-2⎝⎛⎭⎫a -122<0,所以2ab <12.17.解:令4a -2b =m (a -b )+n (a +b ),①⎩⎪⎨⎪⎧ m +n =4,-m +n =-2,解得⎩⎪⎨⎪⎧m =3,n =1.又①1≤a -b ≤2,①3≤3(a -b )≤6,又①2≤a +b ≤4,①5≤3(a -b )+(a +b )≤10,即5≤4a -2b ≤10. 故4a -2b 的取值范围为5≤4a -2b ≤10.18.解:设住宅窗户面积、地板面积分别为a ,b ,同时增加的面积为m ,根据问题的要求a <b ,且ab ≥10%.由于a +mb +m -a b =m (b -a )b (b +m )>0,于是a +m b +m >a b .又a b ≥10%,因此a +m b +m >ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.2.2 第1课时 基本不等式的证明基 础 练巩固新知 夯实基础1.已知a ,b ①R ,且ab >0,则下列结论恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2 2.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =03.对x ①R 且x ≠0都成立的不等式是( )A .x +1x ≥2B .x +1x ≤-2C.|x |x 2+1≥12D.⎪⎪⎪⎪x +1x ≥2 4.已知x >0,y >0,x ≠y ,则下列四个式子中值最小的是( )A.1x +yB.14⎝⎛⎭⎫1x +1yC. 12(x 2+y 2)D.12xy5.给出下列不等式:①x +1x ≥2; ①⎪⎪⎪⎪x +1x ≥2; ①x 2+y 2xy ≥2; ①x 2+y 22>xy ; ①|x +y |2≥|xy |.其中正确的是________(写出序号即可).6.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1; ①a +b ≤2; ①a 2+b 2≥2; ①a 3+b 3≥3; ①1a +1b≥2.7.设a ,b ,c 都是正数,求证:bc a +ac b +abc≥a +b +c .能 力 练综合应用 核心素养8.若0<a <b ,a +b =1,则a ,12,2ab 中最大的数为( )A .aB .2ab C.12D .无法确定9.已知a >0,b >0,则a +b2,ab ,a 2+b 22,2aba +b中最小的是( ) A.a +b 2B.abC.a 2+b 22D.2aba +b10.设a >0,b >0,则下列不等式中不一定成立的是( )A .a +b +1ab≥22 B.2ab a +b ≥abC.a 2+b 2ab ≥a +b D .(a +b )⎝⎛⎭⎫1a +1b ≥4 11.已知a ,b ①(0,+∞),且a +b =1,则下列各式恒成立的是( )A.1ab≥8 B.1a +1b≥4C.ab ≥12D.1a 2+b2≤12 12.若a <1,则a +1a -1与-1的大小关系是________.13.给出下列结论:①若a >0,则a 2+1>a .①若a >0,b >0,则⎝⎛⎭⎫1a +a ⎝⎛⎭⎫b +1b ≥4. ①若a >0,b >0,则(a +b )⎝⎛⎭⎫1a +1b ≥4. ①若a ①R 且a ≠0,则9a +a ≥6.其中恒成立的是________.14.已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.15.已知a >0,b >0,a +b =1,求证⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.【参考答案】1. D 解析:选D.对于A ,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B ,C ,虽然ab >0,只能说明a ,b 同号,当a ,b 都小于0时,B ,C 错误;对于D ,因为ab >0,所以b a >0,a b >0,所以b a +ab ≥2b a ·a b ,即b a +a b≥2成立.2. B [解析] a 2+1-2a =(a -1)2≥0,①a =1时,等号成立.3. D [解析] 因为x ①R 且x ≠0,所以当x >0时,x +1x ≥2;当x <0时,-x >0,所以x +1x =-⎝⎛⎭⎫-x +1-x ≤-2,所以A 、B 都错误;又因为x 2+1≥2|x |,所以|x |x 2+1≤12,所以C 错误,故选D. 4. C [解析] 解法一:①x +y >2xy ,①1x +y <12xy,排除D ;①14⎝⎛⎭⎫1x +1y =x +y 4xy =14xy x +y >1(x +y )2x +y =1x +y ,①排除B ;①(x +y )2=x 2+y 2+2xy <2(x 2+y 2),①1x +y>12(x 2+y 2),排除A.解法二:取x =1,y =2.则1x +y =13;14⎝⎛⎭⎫1x +1y =38;12(x 2+y 2)=110;12xy =122=18.其中110最小. 5. ① 解析:当x >0时,x +1x ≥2;当x <0时,x +1x≤-2,①不正确;因为x 与1x 同号,所以⎪⎪⎪⎪x +1x =|x |+1|x |≥2,①正确; 当x ,y 异号时,①不正确; 当x =y 时,x 2+y 22=xy ,①不正确;当x =1,y =-1时,①不正确.6. ①①① [解析] 令a =b =1,排除①①;由2=a +b ≥2ab ①ab ≤1,①正确;a 2+b 2=(a +b )2-2ab =4-2ab ≥2,①正确;1a +1b =a +b ab =2ab≥2,①正确.7.[证明] 因为a ,b ,c 都是正数,所以bc a ,ac b ,ab c 也都是正数.所以bc a +ac b ≥2c ,ac b +ab c ≥2a ,bc a +abc≥2b ,三式相加得2⎝⎛⎭⎫bc a +ac b +ab c ≥2(a +b +c ),即bc a +ac b +abc ≥a +b +c ,当且仅当a =b =c 时取等号. 8. C 解析:选C.因为0<a <b ,a +b =1,所以a <12,因为ab <⎝⎛⎭⎫a +b 22=14,所以2ab <12,则a ,12,2ab 中最大的数为12,故选C.9. D [解析] 因为a >0,b >0,所以2ab a +b ≤2ab2ab =ab ,a +b 2≥ab ,a 2+b 22=2(a 2+b 2)4≥(a +b )24=a +b2(当且仅当a =b >0时,等号成立).所以a +b2,ab ,a 2+b 22,2ab a +b 中最小的是2aba +b,故选D. 10. B 解析:选B.因为a >0,b >0,所以a +b +1ab ≥2ab +1ab ≥22,当且仅当a =b 且2ab =1ab即a =b =22时取等号,故A 一定成立.因为a +b ≥2ab >0,所以2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时取等号,所以2ab a +b ≥ab 不一定成立,故B 不成立.因为2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b ≥2ab -ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b ≥ab ,所以a 2+b 2ab≥a +b ,故C 一定成立.因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥4,当且仅当a =b 时取等号,故D 一定成立,故选B. 11. B [解析] ①当a ,b ①(0,+∞)时,a +b ≥2ab ,又a +b =1,①2ab ≤1,即ab ≤12.①ab ≤14.①1ab ≥4.故选项A 不正确,选项C 也不正确.对于选项D ,①a 2+b 2=(a +b )2-2ab =1-2ab ,当a ,b ①(0,+∞)时,由ab ≤14可得a 2+b 2=1-2ab ≥12.所以1a 2+b 2≤2,故选项D 不正确.对于选项B ,①a >0,b >0,a +b =1,①1a +1b =⎝⎛⎭⎫1a +1b (a +b )=1+b a +ab+1≥4,当且仅当a =b 时,等号成立.故选B.12. a +1a -1≤-1 解析:因为a <1,即1-a >0,所以-⎝⎛⎭⎫a -1+1a -1=(1-a )+11-a≥2(1-a )·11-a=2.即a +1a -1≤-1.13.①①① [解析] 因为(a 2+1)-a =⎝⎛⎭⎫a -122+34>0,所以a 2+1>a ,故①恒成立. 因为a >0,所以a +1a ≥2,因为b >0,所以b +1b ≥2,所以当a >0,b >0时,⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,故①恒成立. 因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ,又因为a ,b ①(0,+∞),所以b a +ab ≥2,所以(a +b )⎝⎛⎭⎫1a +1b ≥4,故①恒成立. 因为a ①R 且a ≠0,不符合基本不等式的条件,故9a+a ≥6是错误的.14.证明:因为x >0,y >0,z >0,所以y x +z x ≥2yz x >0,x y +z y ≥2xz y >0,x z +y z ≥2xyz >0,所以⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8yz ·xz ·xyxyz=8,当且仅当x =y =z 时等号成立. 15.[证明] 证法一:因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+b a ,同理1+1b =2+a b,故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时取等号).证法二:因为a ,b 为正数,a +b =1.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab =1+a +b ab +1ab =1+2ab , ab ≤⎝⎛⎭⎫a +b 22=14,于是1ab ≥4,2ab ≥8,因此⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥1+8=9⎝⎛⎭⎫当且仅当a =b =12时等号成立.2.2 第2课时 基本不等式的综合应用基 础 练巩固新知 夯实基础1.(3-a )(a +6)(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.3222.设x >0,则y =3-3x -1x的最大值是( )A .3B .3-22C .3-2 3D .-1 3.若0<x <12,则函数y =x 1-4x 2的最大值为( )A .1 B.12 C.14D.184.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件5.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .56.已知y =4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.7.已知y =x +1x.(1)已知x >0,求y 的最小值;(2)已知x <0,求y 的最大值.8.已知a >0,b >0,且2a +b =ab .(1)求ab 的最小值; (2)求a +2b 的最小值.能 力 练综合应用 核心素养9.已知a <b ,则b -a +1b -a+b -a 的最小值为( )A .3B .2C .4D .110.已知实数x ,y 满足x >0,y >0,且2x +1y=1,则x +2y 的最小值为( )A .2B .4C .6D .811.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B.12C .1D.3212.已知x ≥52,则y =x 2-4x +52x -4有( )A .最大值54B .最小值54za C .最大值1D .最小值113.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .814.已知x >0,y >0,2x +3y =6,则xy 的最大值为________.15.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.16.设a>b>c,且1a-b+1b-c≥ma-c恒成立,求m的取值范围.17.(1)若x<3,求y=2x+1+1x-3的最大值;(2)已知x>0,求y=2xx2+1的最大值.【参考答案】1. B 解析:选B.因为-6≤a ≤3,所以3-a ≥0,a +6≥0,所以(3-a )(a +6)≤(3-a )+(a +6)2=92.即(3-a )(a +6)(-6≤a ≤3)的最大值为92.2. C 解析:y =3-3x -1x=3-⎝⎛⎭⎫3x +1x ≤3-2 3x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号. 3. C 解析:因为0<x <12,所以1-4x 2>0,所以x 1-4x 2=12×2x 1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x=1-4x 2,即x =24时等号成立,故选C. 4. B 解析:设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.5. C 解析:可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2ab =2ba时等号成立,所以9m ≤54,即m ≤6,故选C. 6. 36 解析:y =4x +ax≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时y 取得最小值4a . 又由已知x =3时,y 的最小值为4a ,所以a2=3,即a =36. 7. 解:(1)因为x >0,所以x +1x≥2x ·1x =2,当且仅当x =1x,即x =1时等号成立.所以y 的最小值为2. (2)因为x <0,所以-x >0.所以f (x )=-⎣⎡⎦⎤(-x )+1-x ≤-2(-x )·1-x =-2,当且仅当-x =1-x,即x =-1时等号成立.所以y 的最大值为-2. 8. 解:因为2a +b =ab ,所以1a +2b=1;(1)因为a >0,b >0, 所以1=1a +2b≥22ab ,当且仅当1a =2b =12,即a =2,b =4时取等号,所以ab ≥8,即ab 的最小值为8;(2)a +2b =(a +2b )⎝⎛⎭⎫1a +2b =5+2b a +2ab ≥5+22b a ·2ab=9, 当且仅当2b a =2ab ,即a =b =3时取等号,所以a +2b 的最小值为9.9. A 解析:因为a <b ,所以b -a >0,由基本不等式可得b -a +1b -a +b -a =1+1b -a+(b -a )≥1+21b -a·(b -a )=3, 当且仅当1b -a =b -a (b >a ),即当b -a =1时,等号成立,因此,b -a +1b -a +b -a 的最小值为3,故选A.10. D 解析:因为x >0,y >0,且2x +1y =1,所以x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +xy≥4+24y x ·xy=8, 当且仅当4y x =xy时等号成立.故选D.11. A 解析:选A.因为x >0,所以x +12>0,所以y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立,所以函数的最小值为0. 12. D 解析:y =x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎡⎦⎤(x -2)+1x -2,因为x ≥52,所以x -2>0,所以12⎣⎡⎦⎤(x -2)+1x -2≥12·2(x -2)·1x -2=1,当且仅当x -2=1x -2,即x =3时取等号.故y 的最小值为1.13. B 解析 (x +y )⎝⎛⎭⎫1x +a y =1+a +ax y +y x ≥1+a +2a =(a +1)2⎝⎛⎭⎫当且仅当y x =a 时取等号 .①(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,①(a +1)2≥9.①a ≥4.14. 32 解析:因为x >0,y >0,2x +3y =6,所以xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32.当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.15. 8 解析:因为点A (-2,-1)在直线mx +ny +1=0上,所以2m +n =1, 所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 16.解 由a >b >c ,知a -b >0,b -c >0,a -c >0.因此,原不等式等价于a -c a -b +a -c b -c≥m .要使原不等式恒成立,只需a -c a -b +a -cb -c的最小值不小于m 即可. 因为a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ×a -bb -c=4, 当且仅当b -c a -b =a -b b -c,即2b =a +c 时,等号成立.所以m ≤4,即m ①{m |m ≤4}.17.解:(1)因为x <3,所以3-x >0.又因为y =2(x -3)+1x -3+7=-⎣⎡⎦⎤2(3-x )+13-x +7,由基本不等式可得2(3-x )+13-x≥22(3-x )·13-x =22,当且仅当2(3-x )=13-x,即x =3-22时,等号成立,于是-⎣⎡⎦⎤2(3-x )+13-x ≤-22,-⎣⎡⎦⎤2(3-x )+13-x +7≤7-22,故y 的最大值是7-2 2.(2)y =2x x 2+1=2x +1x .因为x >0,所以x +1x ≥2x ·1x =2,所以0<y ≤22=1,当且仅当x =1x,即x =1时,等号成立.故y 的最大值为1.2.3 第1课时 二次函数与一元二次方程、不等式基 础 练巩固新知 夯实基础1.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为()A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x≥3}2.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解集为() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是() x|x<-1或x>3B.{x|-1<x<3}A.{}C.{x|1<x<3} D.{x|x<1或x>3}5.若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()6.设集合A={x|(x-1)2<3x+7,x①R},则集合A∩Z中有________个元素.7.不等式-1<x2+2x-1≤2的解集是________.8.解关于x的不等式:x2+(1-a)x-a<0.9. 解不等式:x 2-3|x |+2≤0.能 力 练综合应用 核心素养10. 若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是( )A.⎩⎨⎧⎭⎬⎫x |1t <x <tB.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t11.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)①(3,+∞)B .(-3,1)①(2,+∞)C .(-1,1)①(3,+∞)D .(-∞,-3)①(1,3)12.不等式x 2-px -q <0的解集是{x |2<x <3},则不等式qx 2-px -1>0的解是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 D.{}x | x <2或x >3 13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________.14.方程x 2+(m -3)x +m =0的两根都是负数,则m 的取值范围为________.15.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 16.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求关于x 的不等式cx 2-bx +a <0的解集.17.解关于x 的不等式ax 2-2(a +1)x +4>0.【参考答案】1. A 解析 ①M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},N ={x |x 2-x -6>0}={x |x <-2或x >3},①M ∩N ={x |-4≤x <-2或3<x ≤7}.2. D 解析 由题意知,-b a =1,ca =-2,①b =-a ,c =-2a ,又①a <0,①x 2-x -2≤0,①-1≤x ≤2.3. D 解析 由方程ax 2+bx +c =0的根为2,-1,知函数y =ax 2+bx +c 的零点为2,-1,又①a <0,①函数y =ax 2+bx +c 的图象是开口向下的抛物线,①不等式ax 2+bx +c ≥0的解集为{x |-1≤x ≤2}.4. A 解析 由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}.5. B 解析 因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.6. 6 解析 由(x -1)2<3x +7,解得-1<x <6,即A ={x |-1<x <6},则A ∩Z ={0,1,2,3,4,5},故A ∩Z 共有6个元素.7. {x |-3≤x <-2或0<x ≤1} 解析 ①⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,①-3≤x <-2或0<x ≤1.8. 解 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .函数y =x 2+(1-a )x -a 的图象开口向上,所以(1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为①; (3)当a >-1时,原不等式解集为{x |-1<x <a }. 9. 解 原不等式等价于|x |2-3|x |+2≤0,即1≤|x |≤2.当x ≥0时,1≤x ≤2;当x <0时,-2≤x ≤-1. ①原不等式的解集为{x |-2≤x ≤-1或1≤x ≤2}.10. D 解析 ①0<t <1,①1t >1,①1t >t .①(t -x )(x -1t )>0①(x -t )(x -1t )<0①t <x <1t .11. A 解析 f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1;当x <0时,x +6>3,解得-3<x <0. 所以f (x )>f (1)的解集是(-3,1)①(3,+∞).12. B [解析] 易知方程x 2-px -q =0的两个根是2,3.由根与系数的关系得⎩⎪⎨⎪⎧ 2+3=p ,2×3=-q ,解得⎩⎪⎨⎪⎧p =5,q =-6,不等式qx 2-px -1>0为-6x 2-5x -1>0,解得-12<x <-13.13. k ≤2或k ≥4 解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.14. {m |m ≥9} 解析 ①⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m <0,x 1x 2=m >0,①m ≥9.15. -3 -3 解析 可知1,m 是方程ax 2-6x +a 2=0的两个根,且a <0, ①⎩⎪⎨⎪⎧1+m =6a 1×m =a解得⎩⎪⎨⎪⎧ a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去). 16.解 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,①⎩⎨⎧-13+2=-b a-13×2=c a,①b =-53a ,c =-23a .所以不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又因为a <0,所以2x 2-5x -3<0,所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3.17.解 (1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a,x 2=2.①当0<a <1时,2a >2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a ,或x <2;①当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};①当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2. 综上,a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a,或x <2; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a2.3 第2课时 一元二次不等式的应用基 础 练巩固新知 夯实基础1.不等式x +5(x -1)2≥2的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -3≤x ≤12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x <1或1<x ≤3 D.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1 2.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x | x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x | -12<x <13C.⎩⎨⎧⎭⎬⎫x | x >13 D.⎩⎨⎧⎭⎬⎫x | x <-123.不等式2-xx +1<1的解集是( )A .{x |x >1}B .{x |-1<x <2} C.⎩⎨⎧⎭⎬⎫x | x <-1或x >12 D.⎩⎨⎧⎭⎬⎫x | -1<x <124. 若集合A ={x |ax 2-ax +1<0}=①,则实数a 的值的集合是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}5. 若关于x 的不等式x 2-4x -m ≥0对任意x ①(0,1]恒成立,则m 的最大值为 ( )A .1B .-1C .-3D .36.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .15≤x ≤30B .12≤x ≤25C .10≤x ≤30D .20≤x ≤307. 若关于x 的不等式x -a x +1>0的解集为(-∞,-1)①(4,+∞),则实数a =________.8.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.9.解下列分式不等式:(1)x +12x -3≤1; (2)2x +11-x <0.10. 当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解集为R?能 力 练综合应用 核心素养11. 不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .①D .{x |x <-2或x >2}12.若不等式mx2+2mx-4<2x2+4x的解集为R,则实数m的取值范围是()A.(-2,2) B.(-2,2]C.(-∞,-2)①[2,+∞) D.(-∞,2)13.对任意a①[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是() A.1<x<3 B.x<1或x>3C.1<x<2 D.x<1或x>214.在R上定义运算①:x①y=x(1-y).若不等式(x-a)①(x+a)<1对任意的实数x都成立,则a的取值范围是________.15.已知2≤x≤3时,不等式2x2-9x+a<0恒成立,则a的取值范围为________.16.方程x2+(m-3)x+m=0有两个正实根,则m的取值范围是________.17.已知关于x的一元二次方程x2+2mx+2m+1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.18.某地区上年度电价为0.8元/kW·h,年用电量为a kW·h,本年度计划将电价降低到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价-成本价).【参考答案】1. D 解析①原不等式等价于⎩⎪⎨⎪⎧ x +5≥2(x -1)2,x ≠1,①⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1,①⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,即⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1. 2. A 解析4x +23x -1>0①(4x +2)(3x -1)>0①x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x | x >13或x <-12.3. C 解析原不等式等价于2-x x +1-1<0①1-2x x +1<0①(x +1)·(1-2x )<0①(2x -1)(x +1)>0,解得x <-1或x >12.4. D 解析 a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4}.5. C 解析 由已知可得m ≤x 2-4x 对一切x ①(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,①f (x )min =f (1)=-3,①m ≤-3.6. C 解析 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,①y =40-x ,①xy ≥300,①x (40-x )≥300,①x 2-40x +300≤0,①10≤x ≤30. 7. 4 解析x -ax +1>0①(x +1)(x -a )>0 ①(x +1)(x -4)>0,①a =4. 8. -2<m <2 解析 由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=(m )2-4×1×1<0,所以-2<m <2.9. 解 (1)①x +12x -3≤1,①x +12x -3-1≤0,①-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4.①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. (2)由2x +11-x <0得x +12x -1>0,此不等式等价于⎝⎛⎭⎫x +12(x -1)>0,解得x <-12或x >1, ①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1.10.解 ①当a 2-1=0时,a =1或-1.若a =1,则原不等式为-1<0,恒成立.若a =-1,则原不等式为2x -1<0即x <12,不合题意,舍去.①当a 2-1≠0时,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0.解得-35<a <1.综上a 的取值范围是⎝⎛⎦⎤-35,1. 11. A 解析①x 2+x +1>0恒成立,①原不等式①x 2-2x -2<2x 2+2x +2①x 2+4x +4>0①(x +2)2>0,①x ≠-2. ①不等式的解集为{x |x ≠-2}.12. B 解析 ①mx 2+2mx -4<2x 2+4x , ①(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,x ①R ;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,x ①R . 综上所述,-2<m ≤2.13. B 解析 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ①[-1,1]①⎩⎪⎨⎪⎧ g1=x 2-3x +2>0g-1=x 2-5x +6>0①⎩⎪⎨⎪⎧x <1或x >2x <2或x >3①x <1或x >3. 14. -12 <a <32 解析 根据定义得(x -a )①(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )①(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.15. a <9 解析 ①当2≤x ≤3时,2x 2-9x +a <0恒成立,①当2≤x ≤3时,a <-2x 2+9x 恒成立.令y =-2x 2+9x .①2≤x ≤3,且对称轴方程为x =94,①y min =9,①a <9.①a 的取值范围为a <9.16. (0,1] 解析 由题意得⎩⎪⎨⎪⎧Δ=m -32-4m ≥0x 1+x 2=3-m >0x 1x 2=m >0, 解得0<m ≤1.17. 解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得,m 满足不等式组⎩⎪⎨⎪⎧ f 0=2m +1<0f -1=2>0f 1=4m +2<0f 2=6m +5>0解得-56<m <-12. 18. 解(1)设下调后的电价为x 元/kW·h ,依题意知,用电量增至k x -0.4+a ,电力部门的收益为y =⎝⎛⎭⎫k x -0.4+a (x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎫0.2ax -0.4+a (x -0.3)≥[a ×(0.8-0.3)](1+20%),0.55≤x ≤0.75.整理,得⎩⎪⎨⎪⎧ x 2-1.1x +0.3≥0,0.55≤x ≤0.75.解此不等式,得0.60≤x ≤0.75.①当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年度至少增长20%.。
高一数学必修1、4基础题及答案
必修1 第一章 集合基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高中数学必修一和必修二第一二章综合试题(人教A版含答案)
高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个 2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x 3.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞) 4.梯形1111A B C D (如图)是一水平放置的平面图形ABCD 的直观图(斜二测),若11A D ∥/y 轴,11A B ∥/x 轴,1111223A B C D ==, 111A D =,则平面图形ABCD 的面积是( ) A.5 B.10 C.52 D.1025.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120︒ B.150︒ C.180︒ D.240︒ 6.已知f (x 3-1)=x +1,则f (7)的值,为( )A.37-1B.37+1 C .3 D .2 7.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab8.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]9.下列四个图象中,表示函数f (x )=x -1x的图象的是( )A 1B 1C 1D 1O 110.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点 B.有一个零点 C.有两个零点 D.有无数个零点11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是( )A.4 B.3 C.2 D.112.已知f(x)是定义在(0,+∞)上的增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0<x<2 D.1<x<2二、填空题(每小题5分,共20分)13.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=__________.14.函数y=log23-4x的定义域为__________.15.据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已知近两年污染区域由0.16 km2降至0.04 km2,则污染区域降至0.01 km2还需要__________年.16.空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC= 4、BD=25那么AC与BD所成角的度数是_________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|1≤x<4},B={x|x-a<0},(1)当a=3时,求A∩B;(2)若A⊆B,求实数a的取值范围.18.(12分)(1)计算:(279)12+(lg5)0+(2764)-13;(2)解方程:log 3(6x-9)=3.19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性.20. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB . (1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.21.(12分)已知正方体1111ABCD A B C D ,O 是底ABCD 对角线的交点.求证:(1)O C 1∥面11AB D ;D 1ODB AC 1B 1A 1C(2)1A C 面11AB D .22.( 12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1,(1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S(x)=xf(x)+g(12)在(0,+∞)上是增函数.高一数学期末考试模拟试题(答案)一、选择题(每小题5分,共60分)1.解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B 3.解析:要使函数有意义,自变量x 的取值须满足⎩⎪⎨⎪⎧x ≠0x +3>0,解得x >-3且x ≠0.答案:D4. 解析:梯形1111A B C D 上底长为2,下底长为3腰梯形11A D 长为1,腰11A D 与下底11C D 的夹角为45︒ ,所以梯形1111A B C D 的高为2,所以梯形1111A B C D 的面积为1+=224(23) ,根据S =4直观平面 可知,平面图形ABCD 的面积为5.答案:A 5.解析:由22r r 3r l πππ+=知道2l r =所以圆锥的侧面展开图扇形圆心角度数为13603601802r l ⨯︒=⨯︒=︒,故选C 答案:C 6.解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C7.解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B8.解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B9.解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x在(0,+∞)上为增函数,故满足条件的图象为A.答案:A10.解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.答案:B 11.解析:因为①②④正确,故选B .12.解析:由题目的条件可得⎩⎪⎨⎪⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D二、填空题(每小题5分,共20分) 13.答案:{x |x <4}14.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:2 16、解析:如图,取AD 中点Q ,连PQ ,RQ ,则5PQ =,2RQ =,而PR =3,所以222PQ RQ PR +=,所以PQR 为直角三角形,90PQR ∠=︒,即PQ 与RQ 成90︒的角,所以AC 与BD 所成角的度数是90︒.答案:90︒三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}. (2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞). 18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x-9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4.(2)由方程log 3(6x-9)=3得6x-9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性. 解:由a x-1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞), f (-x )=1a -x -1+(-x )3+12=a x1-a x -x 3+12=a x -1+11-a x-x 3+12=-1a x -1-x 3-12=-f (x ). ∴f (x )为奇函数.20.(12分) 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . (2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第20题)又OE =1,所以,tan ∠EFO =5. 21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体11A ACC ∴是平行四边形11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =D 1ODBAC 1B 1A 1C11AOC O ∴是平行四边形 111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥又1111A C B D ⊥, 1111B D AC C ∴⊥面111AC B D ⊥即同理可证11A C AB ⊥, 又1111D B AB B =∴1A C ⊥面11AB D22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x(k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x.(2)由(1)得h (x )=x +1x,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x =-(x +1x)=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数. (3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2,则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。
高中数学(必修一)第二章 基本不等式练习题
高中数学(必修一)第二章 基本不等式练习题(含答案解析)学校:___________姓名:___________班级:_____________一、解答题 1.已知a b ,比较2a ab +与23ab b -的大小,并证明.2.设a ,b 为正实数,求证:()()()2233338a b a b a b a b +++≥.3.求函数1(3)3y x x x =+>-的最小值.4.(1)把49写成两个正数的积,当这两个正数各取何值时,它们的和最小?(2)把12写成两个正数的和,当这两个正数各取何值时,它们的积最大?5.已知圆C 的圆心在坐标原点,且过点(M . (1)求圆C 的方程;(2)已知点P 是圆C 上的动点,试求点P 到直线40x y +-=的距离的最小值;(3)若直线l 与圆C 相切,且l 与,x y 轴的正半轴分别相交于,A B 两点,求ABC 的面积最小时直线l 的方程.6.已知a ,b R +∈,求证:()114a b a b ⎛⎫++≥ ⎪⎝⎭.7.函数π()2sin()10,||2f x x ωϕωϕ⎛⎫=++>< ⎪⎝⎭图像过点π,13⎛⎫ ⎪⎝⎭,且相邻对称轴间的距离为π2.(1)求,ωϕ的值;(2)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若32A f ⎛⎫= ⎪⎝⎭,且2a =,求ABC 面积的最大值.8.小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售收入为25x -万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大? (利润=累积收入+销售收入-总支出)9.高一(3)班的小北为我校设计的冬季运动会会徽《冬日雪花》获得一等奖.他的设计灵感来自三个全等的矩形的折叠拼凑,现要批量生产.其中会徽的六个直角(如图2阴影部分)要利用镀金工艺上色.已知一块矩形材料如图1所示,矩形 ABCD 的周长为4cm ,其中长边 AD 为 x cm ,将BCD △沿BD 向ABD △折叠,BC 折过去后交AD 于点E .(1)用 x 表示图1中BAE 的面积;(2)已知镀金工艺是2元/2cm ,试求一个会徽的镀金部分所需的最大费用.10.已知ABC 的内角A ,B ,C 的对边分别为a , b ,c ,A 为锐角,cos cos 3cos b A a B c A +=. (1)求cos A ;(2)若2a =,求ABC 面积的最大值.11.已知(2,5)x ∈-,求(2)(5)y x x =+-的最大值,以及y 取得最大值时x 的值.12.下列结论是否成立?若成立,试说明理由;若不成立,试举出反例.(1)若0ab >,则a b +≥(2)若0ab >2≥;(3)若0ab <,则2b aa b+≤-.13.已知a ,b ,c 均为正实数.(1)求证:a b c ++≥(2)若1a b +=,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.14.已知x >2,求函数4()2f x x x =+-的最小值.15.已知抛物线C :()220y px p =>的焦点为F ,直线l 过F 且与抛物线C 交于A ,B 两点,线段AB 的中点为M ,当3AB p =时,点M 的横坐标为2. (1)求抛物线C 的方程;(2)若直线l 与抛物线C 的准线交于点D ,点D 关于x 轴的对称点为E ,当DME 的面积取最小值时,求直线l 的方程.16.如图,动物园要以墙体为背面,用钢筋网围成四间具有相同面积的矩形虎笼.(1)现有可围36m 长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2)若每间虎笼的面积为220m ,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?17.已知 5<4x ,求函数14145y x x =-+- 的最大值.参考答案:1.见解析【解析】利用作差法比较大小. 【详解】解:223a ab ab b +>-,证明如下:()2222232()a ab ab b a ab b a b +--=-+=-.a b ≠2()0a b ∴-> 223a ab ab b ∴+>-【点睛】本题考查作差法比较两式的大小关系,属于基础题. 2.证明见解析【分析】利用基本不等式计算可得;【详解】解:因为a ,b 为正实数,所以a b +≥222a b ab +≥,332a b +≥=当a b =时取等号,所以()()()223333228a b a b a b ab a b +++≥⨯=,即()()()2233338a b a b a b a b +++≥,当且仅当a b =时取等号;3.5【分析】式子化为1333x x +-+-,再利用基本不等式即可求解. 【详解】因为3x >, 所以30x ->,所以133353y x x =+-+≥=-, 当且仅当133x x -=-即4x =时取等号,此时取得最小值5.4.(1)当7x y ==时,x y +取得最小值14;(2)当6x y ==时,xy 取得最大值36【解析】(1)设0x >,0y >,49xy =,然后利用基本不等式求得x y +的最小值,根据基本不等式等号成立的条件,求得,x y 的值.(2)设0x >,0y >,12x y +=,然后利用基本不等式求得x y ⋅的最大值,根据基本不等式等号成立的条件,求得,x y 的值.【详解】(1)设0x >,0y >,49xy =,由均值不等式,得214x y xy +=, 当且仅当x y =时,取等号.由,49,x y xy =⎧⎨=⎩得7x y ==,即当7x y ==时,x y +取得最小值14.(2)设0x >,0y >,12x y +=,由均值不等式,得22123622x y x y +⎛⎫⎛⎫⋅== ⎪ ⎪⎝⎭⎝⎭.当且仅当x y =时,取等号.由,12,x y x y =⎧⎨+=⎩得6x y ==.即当6x y ==时,xy 取得最大值36.【点睛】本小题主要考查利用基本不等式求最值,属于基础题. 5.(1)224x y +=(2)2(3)0x y +-【分析】(1)利用两点间距离公式可求得半径r ,由此可得圆C 方程; (2)利用点到直线距离公式可求得圆心到直线距离d ,可知最小值为d r -;(3)设():10,0x yl a b a b+=>>,由圆心到直线距离等于半径,结合基本不等式可知当a b ==ABC面积取得最小值,由此可得直线l 方程. (1)由题意知:圆心()0,0C ,半径2r CM ===,∴圆C 的方程为:224x y +=.(2)圆心到直线40x y +-=的距离d r ==,∴点P 到直线40x y +-=的距离最小值为2d r -=.(3)设直线():10,0x yl a b a b+=>>,即0bx ay ab , 则圆心到直线l 距离2d ==,ab ∴=≥a b ==,解得:8ab ≥, ∴当a b ==ABC 面积取得最小值142ab =,则直线1l =,即0x y +-=. 6.见解析【分析】()11a b a b ⎛⎫++ ⎪⎝⎭展开并运用基本不等式即可得证.【详解】()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时等号成立.【点睛】本题考查基本不等式的应用,属于基础题. 7.(1)2ω=,π3ϕ=;(2)2+【分析】(1)由题干条件得到最小正周期,进而求出2ω=,待定系数法求出π3ϕ=;(2)先由32A f ⎛⎫= ⎪⎝⎭求出π6A =,利用余弦定理,基本不等式求出8bc ≤+. (1)由题意得:()f x 的最小正周期πT =,由于0>ω,故2ππω=,解得:2ω=,又2π32sin()11ϕ++=,所以2ππ,3k k Z ϕ+=∈,即2ππ,3k k Z ϕ=-∈,又π||2ϕ<,所以2πππ,32k k Z <∈-,解得:1766k <<,k Z ∈,故1k =,此时π3ϕ=,综上:2ω=,π3ϕ=; (2)2sin()33π12A f A ⎛⎫= ⎪⎝++=⎭,所以sin()1π3A +=,因为()0,πA ∈,所以ππ4π,333A ⎛⎫+∈ ⎪⎝⎭,则ππ32A +=,解得:π6A =,又2a =,所以由余弦定理得:224cos 2b c A bc +-==,则224b c +=,由基本不等式得:222b c bc +≥,即42bc ≥,解得:8bc ≤+b c =时等号成立,故ABC 面积最大值为1sin 22bc A ≤8.(1)第三年;(2)第5年.【解析】(1)求出第x 年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入﹣总支出,可得平均利润,利用基本不等式,可得结论. 【详解】(1)设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 万元, 则y =25x ﹣[6x +x (x ﹣1)]﹣50=﹣x 2+20x ﹣50(0<x ≤10,x ∈N )由﹣x 2+20x ﹣50>0,可得10﹣<x <,∈2<10﹣<3,故从第3年,该车运输累计收入超过总支出; (2)∈利润=累计收入+销售收入﹣总支出,∈二手车出售后, 小张的年平均利润为(25)y x y x +-==19﹣(x +25x)≤19﹣10=9,当且仅当x =5时,等号成立, ∈小张应当在第5年年底将大货车出售,能使小张获得的年平均利润最大. 【点睛】思路点睛:首先构建函数的模型一元二次函数,再解一元二次不等式,再利用基本不等式求最值.9.(1)()223cm 12S x x x ⎡⎤⎛⎫=-+<< ⎪⎢⎥⎝⎭⎣⎦;(2)当 AD cm 时,一个会徽的镀金部分所需的最大费用为(36-元.【分析】(1)设ED a =cm ,根据条件可得222x x a x-+=,然后利用面积公式即得;(2)利用基本不等式即得.(1)因为AD x =cm ,所以()2AB x =-cm , 设 ED a = cm ,则()AE x a =-cm ,因为AEB C ED '∠=∠,EAB DC E '∠=∠,AB DC '=, 所以Rt Rt BAE DC E '≌△△,所以BE ED a ==cm , 在Rt BAE △中,由勾股定理得222BA AE BE +=, 即()()2222x x a a -+-=, 解得222x x a x-+=,所以22x AE x a x-=-=, 所以BAE 的面积()()22112232223cm 1222x x x S AB AE x x x x x x --+-⎡⎤⎛⎫=⋅=-⋅==-+<< ⎪⎢⎥⎝⎭⎣⎦. 所以BAE 的面积()223cm 12S x x x ⎡⎤⎛⎫=-+<< ⎪⎢⎥⎝⎭⎣⎦;(2)设一个会徽的镀金费用为y 元,则(26212312336BAE y Sx x ⎡⎤⎛⎫=⋅⋅=⨯-+≤⨯-=- ⎪⎢⎥⎝⎭⎣⎦当且仅当2xx=,12x <<,即x所以当AD cm 时,一个会徽的镀金部分所需的最大费用为(36-元. 10.(1)1cos 3A =;【分析】(1)由正弦定理、两角和的正弦公式求cos A 的值;(2)由同角三角函数间的基本关系求sin A 的值,根据余弦定理和基本不等式求bc 的最大值,最后根据三角形的面积公式求ABC 面积的最大值即可. (1)因为cos cos 3cos b A a B c A +=,由正弦定理得sin cos cos sin 3sin cos B A B A C A +=, 所以()sin 3sin cos A B C A +=,所以sin 3sin cos C C A =. 在ABC 中,sin 0C ≠, 所以1cos 3A =;(2)由(1)知1cos 3A =,由22sin cos 1A A +=,A 为锐角,得sin A =由余弦定理可知222123b c a bc +-=,因为2a =, 所以2233122b c bc +-=, 所以22212336bc b c bc +=+≥,所以3bc ≤,当且仅当b c ==所以1sin 2ABC S bc A =△所以ABC 11.当32x =时,y 取得最大值494【解析】根据基本不等式,求得y 的最大值,根据基本不等式等号成立的条件,求得此时x 的值.【详解】∈(2,5)x ∈-,∈20,50x x +>->,∈22549(2)(5)24x x y x x ++-⎛⎫=+-=⎪⎝⎭. 当且仅当25x x +=-,即32x =时,取等号.即当32x =时,y 取得最大值494.【点睛】本小题主要考查利用基本不等式求最值,属于基础题. 12.(1)不成立,理由见解析; (2)成立,理由见解析; (3)成立,理由见解析;【分析】取特殊值判断(1),由均值不等式判断(2)(3). (1)取1,2a b =-=-满足0ab >,此时a b +≥不成立; (2)0ab >,0,0a bb a∴>>,2,当a b =时等号成立. (3)0ab <,0,0b aa b∴<<,2b a b a a b a b ⎡⎤⎛⎫⎛⎫∴+=--+-≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当a b =-时等号成立. 13.(1)证明见解析 (2)证明见解析【分析】(1)利用基本不等式证明即可;(2)由112111⎛⎫⎛⎫++=+ ⎪⎪⎝⎭⎝⎭a b ab 利用基本不等式求最值即可.(1)因为a ,b ,c 都是正数,所以 ()()()(1122++=+++++≥⎡⎤⎣⎦a b c a b b c a c=,当且仅当a b c ==时,等号成立,所以a b c ++≥ (2)211111122211111119142a b a b a b ab ab ab ab a b +⎛⎫⎛⎫++=+++=++=+≥+=+= ⎪⎪⎝⎭⎝⎭+⎛⎫⎪⎝⎭, 当且仅当12a b ==时等号成立. ∈11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 14.6【解析】利用基本不等式可求函数的最小值.【详解】解:∈2x >,∈20x ->,故44()222622f x x x x x =+=-++≥=--, 当且仅当4x =时等号成立,故()f x 的最小值为6.15.(1)24y x =(2)1x y =±+【分析】(1)设()()1122,,,A x y B x y ,根据焦点弦的性质得到12||AB x x p =++,从而求出p ,即可得解; (2)设:1l x ty =+,联立直线与抛物线,消元、利用韦达定理得到M y ,从而得到M x ,则()1||12DEM M S DE x =⋅+最后利用基本不等式求出最小值,即可得解; (1)解:设()()1122,,,A x y B x y ,由题知12||43AB x x p p p =++=+=时,2p =,故抛物线方程为24y x =;(2)解:设:1l x ty =+,联立抛物线方程得2440y ty --=,∈1222M y y y t +==,2121M M x ty t =+=+,而21,D t ⎛⎫-- ⎪⎝⎭,21,E t ⎛⎫- ⎪⎝⎭, 所以()()21141||1224||822||||DEM M S DE x t t t t ⎛⎫=⋅+=⋅⋅+=+≥ ⎪⎝⎭, 当且仅当||1t =时等号成立,故直线l 的方程为1x y =±+.16.(1)长为9m 2,宽为18m 5(2)长为5m ,宽为4m【分析】(1)设每间老虎笼的长为m x ,宽为m y ,则每间老虎笼的面积为S xy =,可得出4536x y +=,利用基本不等式可求得S 的最大值,利用等号成立的条件求出x 、y 的值,即可得出结论;(2)设每间老虎笼的长为m x ,宽为m y ,则20xy =,利用基本不等式可求得钢筋网总长45x y +的最小值,利用等号成立的条件求出x 、y 的值,即可得出结论.(1)解:设每间老虎笼的长为m x ,宽为m y ,则每间老虎笼的面积为S xy =,由已知可得4536x y +=,由基本不等式可得()2211458145m 202025x y S xy x y +⎛⎫==⋅⋅≤⨯= ⎪⎝⎭, 当且仅当454536x y x y =⎧⎨+=⎩,即当92185x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立, 因此,每间虎笼的长为9m 2,宽为18m 5时,可使得每间虎笼的面积最大. (2)解:设每间老虎笼的长为m x ,宽为m y ,则20xy =,钢筋网总长为()4540m x y +≥=,当且仅当4520x y xy =⎧⎨=⎩,即当54x y =⎧⎨=⎩时,等号成立, 因此,每间虎笼的长为5m ,宽为4m 时,可使围成四间虎笼的钢筋网总长最小. 17.2 【分析】将14145y x x =-+-变形为[()1]54454y x x=--++-,利用基本不等式即可求得答案. 【详解】根据题意,函数()114545444554y x x x x ⎡⎤=-++=--++⎢⎥--⎣⎦ , 又由54x <,则540x ->,则()154254x x -+≥-, 当且仅当15454x x -=-时,即1x =时取等号, 则1[(54)]424254y x x=--++≤-+=-, 故函数14145y x x =-+-的最大值为2.。
(完整word版)高一数学必修一必修二基础题目练习(含答案),推荐文档
高一期末复习基础题目练习一.选择题1.已知集合{}{}1,2,3,2,3,4M N ==,则( )A .M N ⊆B .N M ⊆C .{}2,3M N =ID .{}1,4M N =U 2.若{}32,M{}54321,,,,,M 则的个数为( )A .5B .6C .7D .8 3.已知()32,(21)f x x f x =-++=则( )A .32x -+B .61x --C .21x +D .65x -+ 4.函数0()lg(31)1f x x x=++-的定义域是( )A .1(,)3-+∞B . 1(,)3-∞-C . 11(,)33- D . 1(,0)(0,1)3-U5.下列函数中,在其定义域内既是奇函数又是减函数的是( )A . y x =-B .3y x x =-- C .1()2xy = D .1y x=-6.一次函数(0,0)y kx b k b =+><的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 7.函数232(03)y x x x =+-≤≤的最小值为( )A .1-B .0C .3D .48.已知函数{23,0()log ,0x x f x x x ≤=>,则1[()]2f f =( )A .3-B .3C .13D .13-9.函数2()ln f x x x=-的零点所在的大致区间是( ) A .()1,2 B .()2,3 C .11,e ⎛⎫ ⎪⎝⎭D .(),e +∞ 10.已知3log 2a =,那么33log 82log 6-用a 表示是( )A .52a -B .2a -C .23(1)a a -+ D .231a a -- 11.当[)2,2x ∈-时,31x y -=-的值域是( )A .8,89⎛⎤- ⎥⎝⎦B .8,89⎡⎤-⎢⎥⎣⎦C .1,99⎛⎫ ⎪⎝⎭D .1,99⎡⎤⎢⎥⎣⎦12.当1a >时,在同一坐标系中, 函数x y a -=与log xa y =的图象是图中的( )13.若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A .24 B .22C .14D .1214.已知△ABC 是边长为2a 的正三角形,那么它的平面直观图△A ′B ′C ′的面积为( ) A .32a 2 B .34a 2 C .64a 2 D .6a 2 15.用与球心距离为1的平面去截球,所得截面面积为π,则球的体积为( ) A .323π B .83π C .82π D .823π 16.一空间几何体的三视图如图所示,则该几何体的体积为( ) A .223π+ B .423π+ C .2323π+D .2343π+ 17.一个三棱锥的所有棱长都为2,四个顶点在同一球面上,则此球 的表面积为( )A .3πB .4πC .33πD .6π18.设,m n 是不同的直线,,,αβγ是不同的平面,有以下四个命题:①//////αββγαγ⎫⇒⎬⎭②//m m αββα⊥⎫⇒⊥⎬⎭ ③//m m ααββ⊥⎫⇒⊥⎬⎭ ④////m n m n αα⎫⇒⎬⊂⎭ 其中,真命题是( )A .①④B .②③C .①③D .②④19.已知αβ⊥平面平面,=l αβI ,在l 上取线段4,,AB AC BD =分别在平面α和平面β内,且,,3,12AC AB DB AB AC BD ⊥⊥==,则CD 的长度为( ) A .13 B .151 C .123 D .152 2侧(左)视图2 22 正(主)视俯视图第10题20.已知经过两点()2,m -和(),4m 的直线与斜率为2-的直线平行,则m 的值是( ) A .8- B .0 C .2 D .1021.若直线110ax by +-=与3420x y +-=平行,并过直线2380x y +-=和230x y -+=的交点,则,a b 的值分别为( )A .3,4--B .3,4C .4,3D .4,3--22. 直线06:1=++my x l 与直线()0232:2=++-m y x m l 互相平行,则m 的值为( ) A .12B .-1C .3D .3或-123.已知直线1:20l ax y a -+=,2:(21)0l a x ay a -++=互相垂直,则a 的值是( ) A .0 B .1 C .0或1 D .0或1- 24.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限25.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1)26.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥ B .324k ≤≤ C .324k k ≥≤或 D .2k ≤27.方程220x y x y m +++-=表示一个圆,则m 的取值范围是( )A .1(,)2-+∞B .1(,)2-∞-C .1(,]2-∞- D .1[,)2-+∞28. 已知圆22450x y x +--=,则过点()1,2P 的最短弦所在直线l 的方程是( )A .3270x y +-=B .240x y +-=C .230x y --=D .230x y -+= 29.直线40x y -+=被圆224460x y x y ++-+=截得的弦长等于( )A .B .C .D .30.两圆相交于点()()1,3,,1A B m -,两圆的圆心均在直线0x y c -+=上,则m c +的值为( ) A .1- B .2 C .3 D .031.已知点(,1,2)A x 和点(2,3,4)B ,且AB =,则实数x 的值是( ) A .3-或4 B .6或2 C .3或4- D .6或2-32.一束光线自点()1,1,1P 发出,被xOy 平面反射到达点()3,3,6Q 被吸收,那么光线所走的路程是( )A B C D 二.填空题1.设映射3:1f x x x →-+,则在f 下,象1的原象所成的集合为 2.设3()1f x x =+,若()11f a =,则()f a -=3.函数()f x 是定义域为R 的奇函数,当0x >时()1f x x =-+,则当0x <时,()f x 的表达式 为4.已知2()41f x x mx =-+在(],2-∞-上递减,在[)2,-+∞上递增,则()f x 在区间[3,1]-上的值域为5.过点(3,2)A 且垂直于直线4580x y +-=的直线方程为 6.过点(1,3)A -且平行于直线230x y -+=的直线方程为 7.点()1,2-关于直线210x y -+=的对称点的坐标为 8.过点(2,3)P ,且在两坐标轴上的截距相等的直线方程 9.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是10.直线20x y C -+=与直线220x y -+=,则C =11.过圆224x y +=上一点(-的圆的切线方程为12.从圆22(1)(1)1x y -+-=外一点(2,3)P 引这个圆的切线,则切线方程为 三.解答题1.已知集合{}{}{}|1,|23,|21A x x B x a x a C x x =<-=<<+=-<≤, (1)求,A C A C U I . (2)R B C A ⊆若,求a 的取值范围.2.已知22()()21xx a a f x x R ⋅+-=∈+,若对x R ∈,都有()()f x f x -=-成立(1)求实数a 的值,并求)1(f 的值; (2)判断函数的单调性,并证明你的结论; (3)解不等式 31)12(<-x f .3.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.4. 如图,已知在侧棱垂直于底面三棱柱111ABC A B C -中,3,5,90AC AB ACB ==∠=︒,14,AA =点D 是AB 的中点. (1)求证:1AC BC ⊥(II )求证:11//AC CDB 平面 (III )求三棱锥 11A B CD -的体积.5.求经过(0,1)A -和直线1x y +=相切,且圆心在直线2y x =-上的圆的方程.6.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求? (已知lg 20.3010=,lg30.4771=)高一期末复习基础题目练习答案一.选择题1~5:C B B D B 6~10:B B C B B 11~15:A A A C D 16~20:C A C A A 21~25:B B C C C 26~30:C A D B C 31~32:D D 二.填空题1.{}1,0,1- 2.9- 3.()1f x x =-- 4.[]15,21- 5.5470x y --= 6.270x y -+= 7.()3,0- 8.3502y x x y =+-=和 9.8 10.73-或 11.40x -+= 12.23460x x y =-+=和 三.解答题1.解:(1){}{}=|1,|21A C x x A C x x ≤=-<<-U I (2)由题意得:{}|1R C A x x =≥-当B =∅时,则32a a +≤,即3a ≥,满足R B C A ⊆当B ≠∅时,则由R B C A ⊆,得{3231312212a a a a a a <⎧⎪<+⇒⇒-≤<⎨≥-≥-⎪⎩综上可得:12a ≥-2.解:(1) 由对R x ∈,都有()()f x f x -=-成立得()f x 为奇函数1a ⇒=,31)1(=f . (2) ()f x 在定义域R 上为增函数.证明如下:由得)(1212)(R x x f xx ∈+-= 任取+∞<<<∞-21x x ,∵ 12121212)()(221121+--+-=-x x x x x f x f ()()1212)22(22121++-=x x x x∵ +∞<<<∞-21x x ,∴ 2122xx < ∴ 0)()(21<-x f x f ,即)()(21x f x f <∴ f(x)在定义域R 上为增函数(3) 由(1),(2)可知,不等式可化为)1()12(f x f <-2111x x ⇒-<⇒< 得原不等式的解为 {}|1x x <3.解:设直线为4(5),y k x +=+交x 轴于点4(5,0)k-,交y 轴于点(0,54)k -,14165545,4025102S k k k k=⨯-⨯-=--=得22530160k k -+=或22550160k k -+= 解得25k =或85k = 25100x y ∴--=,或85200x y -+=为所求。
高一数学必修1_必修2测试卷(附答案)
高一数学测试题(必修1,必修2)第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{0,1,2,4,5,7},{1,3,6,8,9},{3,7,8}X Y Z ===,那么集合()X Y Z 是( ) A. {0,1,2,6,8} B. {3,7,8} C. {1,3,7,8} D. {1,3,6,7,8}2. 设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,像20的原像是( )A. 2B. 3C. 4D. 5 3. 与函数y x =有相同的图像的函数是( )A. y =2x y x=C. log a xy a = 01)a a >≠(且 D.log x a y a = 01)a a >≠(且 4. 方程lg 3x x =-的解所在区间为( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)5. 设()f x 是(,)-∞+∞上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =, 则(7.5)f 等于 ( )A. 0.5B. 0.5-C. 1.5D. 1.5- 6. 下面直线中,与直线230x y --=相交的直线是( )A. 4260x y --=B. 2y x =C. 25y x =+D.23y x =-+ 7. 如果方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,那么必有( )A. D E =B. D F =C. E F =D. D E F == 8. 如果直线//,//a b a α直线且平面,那么b α与的位置关系是( )A. 相交B. //b αC. b α⊂D. //b α或b α⊂ 9. 在空间直角坐标系中,点(3,2,1)P -关于x 轴的对称点坐标为( )A. (3,2,1)-B. (3,2,1)--C. (3,2,1)--D. (3,2,1)10. 一个封闭的立方体,它的六个表面各标出ABCDEF 这六个字母.现放成下面三中不同的位置,所看见的表面上字母已标明,则字母A 、B 、C 对面的字母分别为( )A. D 、E 、FB. E 、D 、FC. E 、F 、DD. F 、D 、E第二部分 非选择题(共100分)二、填空题:本大题共4小题, 每小题5分,满分20分.11. 幂函数()y f x =的图象过点(2,2,则()f x 的解析式为_______________12. 直线过点(5,6)P ,它在x 轴上的截距是在y 轴上的截距的2倍,则此直线方程为__________________________.13.集合22222{(,)|4},{(,)|(1)(1),0}M x y x y N x y x y r r =+≤=-+-≤>,若M N N =,则实数r 的取值范围为_____________14. 已知函数(),()f x g x 分别由下表给出,则[(2)]f g =_______,[(3)]g f =________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.(其中15题和18题每题12分,其他每题14分)15. 已知函数2()2||1f x x x =--,作出函数的图象,并判断函数的奇偶性.16. 已知函数()log (1)(0,1)x a f x a a a =->≠. (1)求函数()f x 的定义域;(2)讨论函数()f x 的单调性.17. 正方体1111ABCD A BC D -中,求证:(1)11AC B D DB ⊥平面; (2)11BD ACB ⊥平面.18. 一个圆锥的底面半径为2cm ,高为6cm ,在其中有一个高为x cm 的内接圆柱. (1)试用x 表示圆柱的侧面积;(2)当x 为何值时,圆柱的侧面积最大?19. 求二次函数22()2(21)542f x x a x a a =--+-+在[0,1]上的最小值()g a 的解析式.20. 已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=.(1)求证:直线l 恒过定点;(2)判断直线l 被圆C 截得的弦何时最长,何时最短?并求截得的弦长最短时m 的值以及最短弦长.高一上学期期末复习题参考答案及评分标准11. 12()f x x -= 12. 650x y -=或2170x y +-= 13. (0,2 14. 2; 3 三、解答题:15. 本小题主要考查分段函数的图象,考查函数奇偶性的判断. 满分12分.解:2221,(0)()21,(0)x x x f x x x x ⎧--≥=⎨+-<⎩ ……2分函数()f x 的图象如右图 ……6分 函数()f x 的定义域为R ……8分 2()2||1f x x x =--22()2||12||1()f x x x x x f x -=----=--=()所以()f x 为偶函数. ……12分16. 本小题主要考查指数函数和对数函数的性质,考查函数的单调性. 满分14分. 解:(1)函数()f x 有意义,则10xa -> ……2分当1a >时,由10xa ->解得0x >;当01a <<时,由10xa ->解得0x <. 所以当1a >时,函数的定义域为(0,)+∞; ……4分当01a <<时,函数的定义域为(,0)-∞. ……6分 (2)当1a >时,任取12,(0,)x x ∈+∞,且12x x >,则12xxa a >1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a ->∴-=+>=-,即12()()f x f x >由函数单调性定义知:当1a >时,()f x 在(0,)+∞上是单调递增的. ……10分当01a <<时,任取12,(,0)x x ∈-∞,且12x x >,则12x xa a <1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a -<∴-=+>=-,即12()()f x f x >由函数单调性定义知:当01a <<时,()f x 在(,0)-∞上是单调递增的. ……14分17. 本小题主要考查空间线面关系,考查空间想象能力和推理证明能力. 满分14分. 证明:(1)正方体1111ABCD A BC D -中,1B B ⊥平面ABCD ,AC ⊂平面ABCD ,1AC B B ∴⊥ ……3分 又AC BD ⊥,1BD B B B =,∴11AC B D DB ⊥平面 ……7分(2)连接11,AD BC ,11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,111B C DC ∴⊥,又11B C BC ⊥,1111BC D C C =,∴111B C ABC D ⊥平面 1BD ⊂ 11ABC D 平面,11BD B C ∴⊥ ……10分由(1)知11AC B D DB ⊥平面,1BD ⊂平面ABCD ,1BD AC ∴⊥ 1,AC B C C =∴11BD ACB ⊥平面 ……14分18. 本小题主要考查空间想象能力,运算能力与函数知识的综合运用. 满分12分.解:(1)如图:POB 中,1DB OBD D PO=,即26DB x = ……2分 13D B x ∴=,123OD OB DB x =-=- ……4分 圆柱的侧面积1122(2)3S OD D D x x ππ=⋅⋅=-⋅∴2(6)3S x x π=-⋅ (06x <<) ……8分 (2)222(6)(3)633S x x x πππ=-⋅=--+ 3x ∴=时,圆柱的侧面积最大,最大侧面积为26cm π ……12分19. 本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想. 满分14分.解:22()2(21)542f x x a x a a =--+-+=22[(21)]1x a a --++ 所以二次函数的对称轴21x a =- ……3分当210a -≤,即12a ≤时,()f x 在[0,1]上单调递增, 2()(0)542g a f a a ∴==-+ ……6分 当211a -≥,即1a ≥时,()f x 在[0,1]上单调递减,2()(1)585g a f a a ∴==-+ ……9分当0211a <-<,即112a <<时,2()(21)1g a f a a =-=+ ……12分综上所述2221542,()21()1,(1)2542,(1)a a a g a a a a a a ⎧-+≤⎪⎪⎪=+<<⎨⎪-+≥⎪⎪⎩……14分 20. 本小题主要考查直线和圆的位置关系,考查综合运用数学知识分析和解决问题能力. 满分14分.(1)证明:直线l 的方程可化为(27)(4)0x y m x y +-++-=. ……2分联立27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩所以直线l 恒过定点(3,1)P . ……4分 (2)当直线l 过圆心C 时,直线l 被圆C 截得的弦何时最长. ……5分当直线l 与CP 垂直时,直线l 被圆C 截得的弦何时最短. ……6分 设此时直线与圆交与,A B 两点.直线l 的斜率211m k m +=-+,121312CP k -==--. 由 211()112m m +-⋅-=-+ 解得 34m =-. ……8分 此时直线l 的方程为 250x y --=.圆心(1,2)C 到250x y --=的距离d ==. ……10分||||AP BP ===所以最短弦长 ||2||AB AP == ……14分。
高一数学必修一必修二综合测试题(有答案)
高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABCA 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。
【整合&免费】高中人教版数学 Ⅰ 课本练习必修1 2 3 4 5 答案
4、程序:
INPUT “Please input a year:;y ” b=y MOD 4 c=y MOD 100 d=y MOD 400 IF b=0 AND c<>0 THEN PRINT “Leap year.” ELSE IF d=0 THEN PRINT “Leap year.” ELSE PRINT “Not leap year.” END IF END IF END
2
第三步,得到圆的面积 S . 2、算法步骤:第一步,给定一个大于 1 的正整数 n . 第二步,令 i 1 . 第三步,用 i 除 n ,等到余数 r . 第四步,判断“ r 0 ”是否成立. 若是,则 i 是 n 的因数;否则, i 不是 n 的因数. 第五步,使 i 的值增加 1,仍用 i 表示. 第六步,判断“ i n ”是否成立. 若是,则结束算法;否则,返回第三 步. 练习(P19)
-
7 左
整合
第一章 算法初步 1.1 算法与程序框图 练习(P5) 1、算法步骤:第一步,给定一个正实数 r . 第二步,计算以 r 为半径的圆的面积 S r .
INPUT “a,b,c=” ;a,b,c p=(a+b+c)/2 s=SQR(p*(p-a) *(p-b) *(p-c)) PRINT “s=” ;s END
程序: 4、
INPUT “a,b,c=” ;a,b,c sum=10.4*a+15.6*b+25.2*c PRINT “sum =” ;sum END
高三理科党整合, 仅供高三复习全部书参考,以及高一二订正,不建议直接抄袭。 只要努力 一切来得及 在高考吧 里 零基础 学生 逆袭高考 仅一年时间 考上一本 重点 的例子不少。 课本 是一切知识的基础, 万变不离其宗! 望广大学子加油 考上自己理想的大学!
(完整版)高一数学必修一基础知识测试含答案
必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A )3个 (B ) 4个 (C ) 5个 (D ) 6个2.已知S={x |x=2n ,n ∈Z}, T={x |x=4k ±1,k ∈Z},则 ( ) (A )S ⊂≠T (B ) T ⊂≠S (C )S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B ){(0,2 ),(1,1)} (C ){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R,则a 的取值范围是 ( ) (A)016<≤-a (B )16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B )5 (C)4 ( D )3 6。
函数243,[0,3]y x x x =-+∈的值域为 ( ) (A)[0,3] (B)[-1,0] (C )[-1,3] (D )[0,2] 7.函数y=(2k+1)x+b 在(—∞,+∞)上是减函数,则 ( )(A)k>12 (B )k 〈12 (C)k>12- (D).k 〈12-8.若函数f (x )=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤—3 (B)a ≥-3 (C)a ≤5 (D )a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是 ( )(A ) 0,1a a >≠ (B) 1a = (C) 12a = ( D ) 121a a ==或10.已知函数f (x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11。
高一数学必修第一二章测试题及答案
第一.二章三角函数单元检测试卷一、选择题:本答题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.在平行四边形ABCD 中,BD CD AB +-等于A .DBB .ADC .ABD .AC2.若|a |=2,|b |=5,|a +b |=4,则|a -b |的值A .13B .3C .42D .73.函数sin(2)3y x π=+图像的对称轴方程可能是A .6x π=-B .12x π=-C .6x π=D .12x π=5.点Ax,y 是300°角终边上异于原点的一点,则xy值为 333333函数)32sin(π-=x y 的单调递增区间是A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈ C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin -310π的值等于 A .21B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 12.比较大小,正确的是 A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D .5sin )5sin(3sin >->二、填空题每小题5分,共20分13.终边在坐标轴上的角的集合为_________.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________. 15.已知角α的终边经过点P-5,12,则sin α+2cos α的值为______.16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:本大题共6小题,共70分;解答应写出文字说明及演算步骤.; 17.8分已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ; 18.10分已知3tan =α,计算ααααsin 3cos 5cos 2sin 4+-的值;19.12分求函数)32tan(π+=x y 的定义域和单调区间. 第一章三角函数单元检测试卷参考答案一、选择题每小题5分,共60分1----6、BBDCBA7----12、CCDCAB 二、填空题每小题5分,共20分13.{α|}Z n n ∈=,2πα14.rad )2(-π 132三、解答题共70分17.1sin ,cos αα==2tan 2α=18.解、∵3tan =α∴0cos ≠α∴原式=ααααααcos 1)sin 3cos 5(cos 1)cos 2sin 4(⨯+⨯- =ααtan 352tan 4+- =335234⨯+-⨯ =7519.解:函数自变量x 应满足πππk x +≠+232,z k ∈,即ππk x 23+≠,z k ∈所以函数的定义域是⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,23ππ; 由ππk +-2<32π+x <ππk +2,z k ∈,解得ππk 235+-<x <ππk 23+,z k ∈所以,函数的单调递增区间是)23,235(ππππk k ++-,z k ∈;20.解:令t=cosx,则]1,1[t -∈所以函数解析式可化为:453y 2++-=t t =2)23(2+--t 因为]1,1[-∈t ,所以由二次函数的图像可知:当23=t 时,函数有最大值为2,此时Z k k x ∈++=k 611262,或ππππ 当t=-1时,函数有最小值为341-,此时Z k ∈+=k 2x ,ππ 21解:32π函数的最小正周期为 ,3322===∴ωπωπ即T又2-函数的最小值为 ,2=∴A 所以函数解析式可写为)3sin(2y ϕ+=x又因为函数图像过点95π,0, 所以有:0)953(sin 2=+⨯ϕπ解得35ππϕ-=k 323,ππϕπϕ-=∴≤或 所以,函数解析式为:)323sin(2y )33sin(2y ππ-=+=x x 或 22.解:Ⅰ8x π=是函数)(x f y =的图象的对称轴Ⅱ由Ⅰ知34πϕ=-,因此3sin(2)4y xπ=-由题意得3222,242k x k k Z πππππ-≤-≤+∈所以函数3sin(2)4y xπ=-的单调递增区间为Ⅲ由3sin(2)4y xπ=-可知故函数)(xfy=在区间[]0,π上的图象是。
完整版)高中数学必修一第二章测试题(含答案)
完整版)高中数学必修一第二章测试题(含答案)1.已知p>q>1,0<a<1,则下列各式中正确的是:A。
ap>aq B。
pa>qa C。
a-p>a-q D。
p-a>q-a正确答案:A解析:因为p>q>1,所以p-q>0,又因为0<a<1,所以a 的p-q次方小于1,即a^p-q<1,所以ap<aq,即选项A正确。
2.已知f(10x)=x,则f(5)=?A。
105 B。
510 C。
lg10 D。
lg5正确答案:B解析:将f(10x)=x代入x=5/10=1/2中,得到f(1/2)=5,又因为f(5)=f(1/2)/10=5/10=1/2,所以选项B正确。
3.当a≠0时,函数y=ax+b和y=ba^x的图象只可能是?正确答案:直线和指数函数曲线解析:当a=1时,y=x+b和y=be^x,即两个函数都是直线;当a>1时,y=ax+b的图象是一条上升的直线,y=ba^x的图象是一条上升的指数函数曲线;当0<a<1时,y=ax+b的图象是一条下降的直线,y=ba^x的图象是一条下降的指数函数曲线。
4.当a≠1时,函数y=a^(x+b)和y=b^(ax)的图象只可能是?正确答案:指数函数曲线解析:y=a^(x+b)可以化为y=a^b*a^x,因此是一条上升的指数函数曲线;y=b^(ax)可以化为y=(b^a)^x,因此也是一条上升的指数函数曲线。
5.设y1=4,y2=80.90.48,y3=1/2,则递增区间是?正确答案:(0,+∞)解析:因为y1<y3<y2,所以递增区间是(0,+∞)。
6.下列函数中,在区间(0,+∞)上为增函数的是?A。
y=ln(x+2) B。
y=-x+1 C。
y=1/(1+x) D。
y=sin(x)正确答案:A解析:求导可得y'=(1/(x+2))>0,所以y在区间(0,+∞)上为增函数,因此选项A正确。
高中数学必修一、二练习题有答案解析
高中数学必修一、二练习题及答案解析一. 选择题:1.用符号表示“点A 在直线l 上,l 在平面α外”,正确的是( ) A .α⊄∈l l A , B .α∉∈l l A , C .α⊄⊂l l A , D .α∉⊂l l A ,1.A ;解析:B 中;C 中点和直线的关系应该是;D 中直线与平面的关系应为.故选A.考点:元素与集合的关系,集合与集合的关系.2.{}{}=⋂长方体正棱柱( )A. {}正棱柱B. {}长方体C. {}正方体D. 不确定2.A3、已知平面α有无数条直线都与平面β平行,那么 ( )A .α∥βB .α与β相交C .α与β重合D .α∥β或α与β相交3.D ;解:根据题意当两个平面平行时符合平面有无数条直线都与平面平行,当两平面相交时,在平面作与交线平行的直线,也有平面有无数条直线都与平面平行.为D解析:根据题意平面有无数条直线都与平面平行,利用空间两平面的位置关系的定义即可判断.4、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么A 、点P 不在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面ABCD 、点P 必在平面ABC 外4.C 解:因为EF,GH 能相交于点P, 所以,且,又因为面ABC,所以面ABC, 因为面ACD,所以面ACD,所以P 是平面ABC 与面ACD 的公共点. 因为面面.所以.即点P 必在直线AC 上,又面ABC,所以点P 必在平面ABC.所以C 选项是正确的.解析:由EF 属于面ABC,而HG 属于面ACD,且EF 和GH 能相交于点P,知P 在两面的交线上,知点P 必在直线AC 上.5.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是 A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖5.D ;解析:本题主要考查的是对线,面关系的理解以及对空间的想象能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一期末复习基础题目练习一.选择题1.已知集合{}{}1,2,3,2,3,4M N ==,则( ) A .M N ⊆ B .N M ⊆ C .{}2,3M N = D .{}1,4M N =2.若{}32,M{}54321,,,,,M 则的个数为( )A .5B .6C .7D .8 3.已知()32,(21)f x x f x =-++=则( )A .32x -+B .61x --C .21x +D .65x -+ 4.函数0()lg(31)1f x x x=++-的定义域是( )A .1(,)3-+∞B . 1(,)3-∞-C . 11(,)33- D . 1(,0)(0,1)3-5.下列函数中,在其定义域内既是奇函数又是减函数的是( )A . y x =-B .3y x x =-- C .1()2xy = D .1y x=-6.一次函数(0,0)y kx b k b =+><的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 7.函数232(03)y x x x =+-≤≤的最小值为( )A .1-B .0C .3D .48.已知函数{23,0()log ,0x x f x x x ≤=>,则1[()]2f f =( )A .3-B .3C .13D .13-9.函数2()ln f x x x=-的零点所在的大致区间是( ) A .()1,2 B .()2,3 C .11,e ⎛⎫ ⎪⎝⎭D .(),e +∞ 10.已知3log 2a =,那么33log 82log 6-用a 表示是( )A .52a -B .2a -C .23(1)a a -+ D .231a a -- 11.当[)2,2x ∈-时,31x y -=-的值域是( )A .8,89⎛⎤- ⎥⎝⎦B .8,89⎡⎤-⎢⎥⎣⎦C .1,99⎛⎫ ⎪⎝⎭D .1,99⎡⎤⎢⎥⎣⎦12.当1a >时,在同一坐标系中, 函数x y a -=与log xa y =的图象是图中的( )13.若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A .24 B .22 C .14 D .1214.已知△ABC 是边长为2a 的正三角形,那么它的平面直观图△A ′B ′C ′的面积为( ) A .32a 2 B .34a 2 C .64a 2 D .6a 2 15.用与球心距离为1的平面去截球,所得截面面积为π,则球的体积为( ) A .323π B .83π C .82π D .823π 16.一空间几何体的三视图如图所示,则该几何体的体积为( ) A .223π+ B .423π+ C .2323π+D .2343π+ 17.一个三棱锥的所有棱长都为2,四个顶点在同一球面上,则此球 的表面积为( )A .3πB .4πC .33πD .6π18.设,m n 是不同的直线,,,αβγ是不同的平面,有以下四个命题:①//////αββγαγ⎫⇒⎬⎭②//m m αββα⊥⎫⇒⊥⎬⎭ ③//m m ααββ⊥⎫⇒⊥⎬⎭ ④////m n m n αα⎫⇒⎬⊂⎭ 其中,真命题是( )A .①④B .②③C .①③D .②④ 19.已知αβ⊥平面平面,=l αβ,在l 上取线段4,,AB AC BD =分别在平面α和平面β内,且,,3,12AC AB DB AB AC BD ⊥⊥==,则CD 的长度为( ) A .13 B .151 C .123 D .152 2侧(左)视图2 22 正(主)视俯视图第10题20.已知经过两点()2,m -和(),4m 的直线与斜率为2-的直线平行,则m 的值是( ) A .8- B .0 C .2 D .1021.若直线110ax by +-=与3420x y +-=平行,并过直线2380x y +-=和230x y -+=的交点,则,a b 的值分别为( )A .3,4--B .3,4C .4,3D .4,3--22. 直线06:1=++my x l 与直线()0232:2=++-m y x m l 互相平行,则m 的值为( ) A .12B .-1C .3D .3或-123.已知直线1:20l ax y a -+=,2:(21)0l a x ay a -++=互相垂直,则a 的值是( ) A .0 B .1 C .0或1 D .0或1- 24.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限25.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1)26.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥ B .324k ≤≤ C .324k k ≥≤或 D .2k ≤27.方程220x y x y m +++-=表示一个圆,则m 的取值范围是( )A .1(,)2-+∞B .1(,)2-∞-C .1(,]2-∞- D .1[,)2-+∞28. 已知圆22450x y x +--=,则过点()1,2P 的最短弦所在直线l 的方程是( )A .3270x y +-=B .240x y +-=C .230x y --=D .230x y -+= 29.直线40x y -+=被圆224460x y x y ++-+=截得的弦长等于( )A .B .C .D .30.两圆相交于点()()1,3,,1A B m -,两圆的圆心均在直线0x y c -+=上,则m c +的值为( ) A .1- B .2 C .3 D .031.已知点(,1,2)A x 和点(2,3,4)B ,且AB =,则实数x 的值是( ) A .3-或4 B .6或2 C .3或4- D .6或2-32.一束光线自点()1,1,1P 发出,被xOy 平面反射到达点()3,3,6Q 被吸收,那么光线所走的路程是( )A B C D 二.填空题1.设映射3:1f x x x →-+,则在f 下,象1的原象所成的集合为 2.设3()1f x x =+,若()11f a =,则()f a -=3.函数()f x 是定义域为R 的奇函数,当0x >时()1f x x =-+,则当0x <时,()f x 的表达式 为4.已知2()41f x x mx =-+在(],2-∞-上递减,在[)2,-+∞上递增,则()f x 在区间[3,1]-上的值域为5.过点(3,2)A 且垂直于直线4580x y +-=的直线方程为 6.过点(1,3)A -且平行于直线230x y -+=的直线方程为 7.点()1,2-关于直线210x y -+=的对称点的坐标为 8.过点(2,3)P ,且在两坐标轴上的截距相等的直线方程 9.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是10.直线20x y C -+=与直线220x y -+=,则C =11.过圆224x y +=上一点(-的圆的切线方程为12.从圆22(1)(1)1x y -+-=外一点(2,3)P 引这个圆的切线,则切线方程为 三.解答题1.已知集合{}{}{}|1,|23,|21A x x B x a x a C x x =<-=<<+=-<≤, (1)求,A C A C . (2)R B C A ⊆若,求a 的取值范围.2.已知22()()21xx a a f x x R ⋅+-=∈+,若对x R ∈,都有()()f x f x -=-成立(1)求实数a 的值,并求)1(f 的值; (2)判断函数的单调性,并证明你的结论; (3)解不等式 31)12(<-x f .3.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.4. 如图,已知在侧棱垂直于底面三棱柱111ABC A B C -中,3,5,90AC AB ACB ==∠=︒,14,AA =点D 是AB 的中点. (1)求证:1AC BC ⊥(II )求证:11//AC CDB 平面 (III )求三棱锥 11A B CD -的体积.5.求经过(0,1)A -和直线1x y +=相切,且圆心在直线2y x =-上的圆的方程.6.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求? (已知lg 20.3010=,lg30.4771=)高一期末复习基础题目练习答案一.选择题1~5:C B B D B 6~10:B B C B B 11~15:A A A C D 16~20:C A C A A 21~25:B B C C C 26~30:C A D B C 31~32:D D 二.填空题1.{}1,0,1- 2.9- 3.()1f x x =-- 4.[]15,21- 5.5470x y --= 6.270x y -+= 7.()3,0- 8.3502y x x y =+-=和 9.8 10.73-或 11.40x -+= 12.23460x x y =-+=和 三.解答题 1.解:(1){}{}=|1,|21AC x x A C x x ≤=-<<-(2)由题意得:{}|1R C A x x =≥-当B =∅时,则32a a +≤,即3a ≥,满足R B C A ⊆当B ≠∅时,则由R B C A ⊆,得{3231312212a a a a a a <⎧⎪<+⇒⇒-≤<⎨≥-≥-⎪⎩综上可得:12a ≥-2.解:(1) 由对R x ∈,都有()()f x f x -=-成立得()f x 为奇函数1a ⇒=,31)1(=f . (2) ()f x 在定义域R 上为增函数.证明如下:由得)(1212)(R x x f xx ∈+-= 任取+∞<<<∞-21x x ,∵ 12121212)()(221121+--+-=-x x x x x f x f ()()1212)22(22121++-=x x x x∵ +∞<<<∞-21x x ,∴ 2122xx < ∴ 0)()(21<-x f x f ,即)()(21x f x f <∴ f(x)在定义域R 上为增函数(3) 由(1),(2)可知,不等式可化为)1()12(f x f <-2111x x ⇒-<⇒< 得原不等式的解为 {}|1x x <3.解:设直线为4(5),y k x +=+交x 轴于点4(5,0)k-,交y 轴于点(0,54)k -,14165545,4025102S k k k k=⨯-⨯-=--=得22530160k k -+=或22550160k k -+= 解得25k =或85k = 25100x y ∴--=,或85200x y -+=为所求。