静电场力的功真空中静电场的环路定理

合集下载

9-5-静电场的环路定理解析

9-5-静电场的环路定理解析
•电势是标量,有正有负; •电势的单位:伏特 1V=1J.C-1; •电势具有相对意义,它决定于电势零点的选择。 在理论计算中,通常选择无穷远处的电势为零;
•在实际工作中,通常选择地面的电势为零。 •但是对于“无限大”或“无限长”的带电体, 只能在有限的范围内选取某点为电势的零点。
3、电势差
在静电场中,任意两点A和点B之间的电势之差, 称为电势差,也叫电压。
步骤:
(1)先算场强 (2)选择合适的路径L
(3) 积分(计算)
•2、利用点电荷的电势公式和电势的叠加原理
dq dV
4 0r
dq
V 4 0r
要求电荷的分布区域是已知的;
当电荷分布在有限的区域内,可以选择无穷
远点作为电势的零点的;而当激发电场的电荷分
布延伸到无穷远时,只能根据具体问题的性质,
在场中选择某点为电势的零点。
E
1
4 0
Q r2
er
B
Q
rB
r
rA
dr C r
A
dl
er
E
dW
1
4 0
Qq0 r2
er
dl
1
4 0
Qq0 r2
dr
rB
W
Qq0
dr Qq0 ( 1 1 )
rA 40r 2
40 rA rB
在点电荷的静电场中,电场力对试验电荷所作
的功与其移动时起始位置与终了位置有关,与
其所经历的路径无关。
V
p 3xy
Ey
y
4 0
x2 y2 5/2
-q
+q
电偶极子的延长线上 y 0
2p 1
E x 4 0 x 3

大学物理 静电场2-高斯定理、环路定理

大学物理 静电场2-高斯定理、环路定理
S
S′ SS r
q
29
证明:
ΦE=
∫S E ⋅ dS=
1
ε0
∑qi
S内
设真空中有一点电荷q,在q 的电场中,
(3) 若球面S 或任意曲面S′不包围电荷q
穿入的
穿出的
S′ S
电场线
电场线
q
Φ=E ∫S′E′ ⋅ dS=′ ∫S E ⋅ dS = 0
即:曲面外的电荷对曲面的电通量无贡献
30
证明:
ΦE=
将电荷qo从a点移动到b点, 电场力作功 A=?
q rb
.b 在任意点c, qo的位移dl ,
ra r
a.
r +dr c dl
qo
dl F
α
受电场力 F = qoE 元功为 dA= F ⋅ dl
dA = q0E .dl = Fdl cosα =Fdr dl cosα = dr
=A ∫ F ⋅ dr = ∫ qoEdr
P.dE
ΦE
=ε1o
∫V
ρ dV =
q
εo
方向为 er
E oR
r ≤ R ΦE= ∫S E ⋅ dS= E ⋅ 4πr2
ρ= q 4 πR3
ΦE
=ε1o
∫V
ρdV
=
ρ εo
4 3
πr 3
3
方向为 er
r 点电荷的电场在 r→0 时, E→∞.
35
∫ 例11.无用限高长斯圆定柱理棒求面体的均电匀场带分电布的,已知Φ线=E体面电电∫S荷E荷⋅d密密S 度度ε10λρσl。λdl
S内
高斯定理的意义:
——电磁场的基本方程之一
反映电场的基本性质

02静电场的环路定理

02静电场的环路定理
A
1 1 dr ( ) 2 4 0 RA RB 4 0 r RA
RB
q
q
2.如图已知+q 、-q、R ①求单位正电荷沿odc 移至c ,电场力所作的功
Aoc U o U c
d
0
0

q q a ( ) 4 0 3 R 4 0 R q
q
b
c
R
i
q0
b
a
b E1 dl +q0 E2 dl +
a
q i i 40
1 1 r r bi ai
静电场力做功与路径无关,静电力是保守力
二、静电场的环流定理
—静电力做功与路径无关的数学表述 在静电场中,场强沿任意闭合路径的线 积分等于零。
q0 E dr
Aa b
b
a
qq0 dA 40
dr ra r 2
rb
qq 0 1 1 4 0 ra rb
推广: 任意带电体产生的电场: b Aa b q0 E dl
a
q0
b
a
( E i ) dl
例:求半径为R、带电量为Q的球面在球心O 处产生的电势。
dq Q dq 思路(1): dU U 40 R 40 R 40 R

(2):
U

E dl 0
E dl R


R E dl R E dl 0
求:E
例:用电势梯度法计算带电圆环轴线上 一点的场强。 r
o x p X
解:U p

4 r
0

第1章真空中静电场3(电势)

第1章真空中静电场3(电势)

a b
称 a b两点电势差
若选b点的势能为参考零点 则
a点的电势:
a
势能零点
讨论 任意
a

E dl
1)电势零点的选择(参考点)
视分析问题方便而定
6
参考点不同电势不同
通常: 理论计算有限带电体电势时选无限远为参考点 实际应用中或研究电路问题时取大地、仪器外 壳等 2)电势的量纲 SI制:单位 V (伏特) 量纲

如图


P

E dl
R
odl 4 π
r R
Q
0
r
2
dr
10
R


odl
r R
Q 4 π 0r
2
Q
dr
P o
R

r >R
Q
P

Q 4 π 0 R
r
场点在球面外 即


4 π
r
Q
0
r
2
dr

4 π 0r
11
1)电势分布


+
17
电偶极子的电场与等势面
+ +
+ +
+
+
+
+
+
19
3.电场强度与电势梯度
E
静电场是保守场
对单位电荷 有 E l
Ex
EY EZ
l
l 方向
El
x
y z
在直角坐标系中 梯度算符
i j k x y z

13.5 电势和电势差 静电场的环路定理

13.5 电势和电势差 静电场的环路定理

q V 4 π 0 r
q1
· 电势叠加原理
• 点电荷系的电势

r1
P r2 q2 Vp E dl p q1 q2 dr dr ( E1 E2 ) dl r1 2 2 r2 4 r p 4 0 r1 0 2 q1 q2 4 0 r1 4 0 r2
V 中点 0
VAB A b 1 (1 ) 2 0l 2 q
VB
4 0
2l
根据 : Aab q0Vab AAB QVAB qQ 1 (1 ) 2 0l 2
qQ 1 AA中点 QVA中点 (1 ) 4 0l 2
· 点电荷
P
x
1 VP 4 π 0
x R
2 2 ( x R x) 0 x2 r 2 2 0 2 R V Q 4 π 0 x 2 2 x R x (点电荷电势) 2x
2 πrdr
例2
均匀带电球壳的电势. 真空中,有一带电为 Q ,半径为 R 的带电球壳.
试求(1)球壳外两点间的电势差;(2)球壳内两点间的电势 差;(3)球壳外任意点的电势;(4)球壳内任意点的电势.
E
55
例2 如图所示,水分子可以近似看作为电偶极矩
p 6.2 10 C m的电偶极子 .
偶极矩的延长线、距电偶极矩中心
的点
30
有一电子放在电
o

5 10 m
10
A上
. 求电子的势能和作用在电子上的力.

Ep eV e p 2 4π 0 r
19
e 1.6010 C
13.5 电势和电势差 静电场的环路定理

6-3 静电场的环路定理和电势

6-3 静电场的环路定理和电势

V(r>R)

1
4 0
q r
练习 在点电荷 +2q 的电场中,如果取图中P点处 为电势零点,则 M点的电势为
2q P M
a
a
(A) q
2π 0a
(C)
q

0
a
q
(B)
4π 0a
(D) q
4π 0a
练习 在点电荷q的电场中,选取以q为中心,R为半 径的球面上一点P处作电势零点,则与点电荷q距离 为r的P’点电势为
A

(D)电场力作的功 W 0
电势的求解方法
(1)利用电势叠加原理
VP
dq
4π0r
使用条件:有限大带电体且选无限远处为电势零点.
(2)利用电势的定义
V 0点
VA E dl
A
使用条件:场强分布已知或很容易确定.
均匀带电球面:
V( r R )

1
4 0
q R
四 电势
1、电势
VA

EpA q0

E dl
AB
(VB 0)
q0
A
B E
物理意义:描述电场能的性质,某点的电势在数值上等于将单 位正电荷从该点沿着任意路径移到零势能点时电场力所做的功.
B
电势差(电压):U AB VA VB
E dl
A
WAB q0 (VA VB ) (EPB EPA)
位置有关,与路径无关.
B
dr
dl
q0
E

二 静电场的环路定理


q0 E dl q0 E dl

静电场的环路定理

静电场的环路定理

它是反映电场本身“能的属性”的物理量,与 场中是否存在电荷无关。 要注意,电势和电势能是两个不同的概念,不 能混为一谈。
Wa E dl 定义电势 ua q0 a
单位正电荷在该点 所具有的电势能

Wa q0 E dl
a

单位正电荷从该点到无穷远 点(电势零)电场力所作的功
三 电势
电势差
1、电势能 分析:当检验电荷 q 0 从a点移到b点,电 场力要做功,而功是能量转化的量度, 这说明 q 0 从a点移到b点有能量变化。不 管 q 0 从a点沿哪一条路径移到b点,电 场力对电荷 q 0 做的功都是相同的,这说 明电荷 q 0 在a﹑b两点的能量差是一定 的,其值由这两点的位置决定。这种由 电荷在电场中的位置决定的能量,叫做 电势能。显然,电势能是电荷 q 0 和电场 共同具有的。检验电荷在a﹑b两点的电 位能,分别用 W a ﹑W b 表示。
电势能
例2、求均匀带电圆环轴线 上的电势分布。 已知:R、q
解:方法一 微元法
Y
dl




r
x
P

Z
R
X
O


方法二 定义法 由电场强度的分布 qx E 2R 3 dl 2R 2 2 2 4 0 ( x R ) uP du 4 0 r 4 0 r 0 qxdx u Edx 3 q 2 2 2 xp x p 4 ( x R ) 0 2 2 4 0 R x
则ab电场力的功 Aab q0 E dl Wa Wb
b
取 W 0
注意
Wa Aa
q0 E dl

高等物理静电场环路定理

高等物理静电场环路定理

a
a 20

V Edl Edr pp
p
R
z
1q
y

4 0 r
xz

2 ) 定义法:

1
Vp

4 0r
dq
q

qx
x 40(R2x2)3/2dx

q 4
0
1 (R2 x2)1/2
x
o q

4 0 R2 x2
特例:
★若x = 0,
得:Vp

q
40R
W A B q 0 A B E d l E p A E p B ( E p B E p A )
试探电荷q o 在电场中某一点的静电势能在数值上等于 把试探电荷q o 由该点移到零势能点静电力所作的功。 若选 B 点为电势能零点,则
B
E P A q 0A E d l q 0A B E d l
E内 0
p
R
q
z
x
z

4 0 R2 x2
V 0
场强分布
电势分布
q
例题2均匀带电球面内外的电势分布。带电量为Q,球面半径为R

解∶由高斯定理得:
p
E外

1 4 0
Q r2
1 V
40
dV
r
1)对球内的一点P,其电势为:
r
r dWFdlq0Edl
Q
p

VEdr drrC

q0Q
1 (1)
20 20
4 0 r ra
2、电势、电势差 :
V dV (1)、定义:
电势的物理意义:

大学物理讲稿(第5章真空中的静电场)第四节

大学物理讲稿(第5章真空中的静电场)第四节

§5.5 静电场的功 电势一、静电场力的功 静电场的环路定理将试探电荷0q 引入点电荷q 的电场中,现在来考察如图5.10所示, 把0q 由a 点沿任意路径 L 移至b 点,电场力所做的功.路径上任一点c 到q 的距离为r ,此处的电场强度为r r q E 304 如果将试探电荷0q 在点c 附近沿L 移动了位移元dl ,那么电场力所做的元功为cos Edl q l d E q dA 00dr rq q Edr q 20004 式中θ是电场强度E 与位移元dl 间的夹角,dr 是位移元dl 沿电场强度E 方向的分量.试探电荷由a 点沿L 移到b 点电场力所做的功为)(ba r r r r q q dr r q q dA Ab a 114400200 (5.22) 其中b a r r 和分别表示电荷q 到点a 和点b 的距离.上式表明在点电荷的电场中,移动试探电荷时,电场力所做的功除与试探电荷成正比外,还与试探电荷的始、末位置有关,而与路径无关.利用场的叠加原理可得在点电荷系的电场中,试探电荷0q 从点a 沿L 移到点b 电场力所做的总功为ii A A上式中的的每一项都表示试探电荷0q 在各个点电荷单独产生的电场中从点a 沿L 移到点b 电场力所做的功.由此可见点电荷系的电场力对试探电荷所做的功也只与试探电荷的电量以及它的始末位置有关,而与移动的路径无关.任何一个带电体都可以看成由许多很小的电荷元组成的集合体,每一个电荷元都可以认为是点电荷.整个带电体在空间产生的电场强度E 等于各个电荷元产生的电场强度的矢量和.于是我们得到这样的结论:在任何静电场中,电荷运动时电场力所做的功只与始末位置有关,而与电荷运动的路径无关.即静电场是保守力场.若使试探电荷在静电场中沿任一闭合回路L 绕行一周,则静电场力所做的功为零,电场强度的环量为零,即 00000Lq L l d E l d E q (5.23) 静电场的这一特性称为静电场的环路定理,它连同高斯定理是描述静电场的两个基本定理.二、电势能和电势1 电势能在力学中已经知道,对于保守力场,总可以引入一个与位置有关的势能函数,当物体从一个位置移到另一个位置时,保守力所做的功等于这个势能函数增量的负值.静电场是保守力场,所以在静电场中也可以引入势能的概念,称为电势能 .设b a W W 、分别表示试探电荷0q 在起点a 、终点b 的电势能,当0q 由a 点移至b 点时,据功能原理便可得电场力所做的功为)(a b b aab W W l d E q A 0 (5.25) 当电场力做正功时,电荷与静电场间的电势能减小;做负功时,电势能增加.可见,电场力的功是电势能改变的量度.电势能与其它势能一样,是空间坐标的函数,其量值具有相对性,但电荷在静电场中两点的电势能差却有确定的值.为确定电荷在静电场中某点的电势能,应事先选择某一点作为电势能的零点.电势能的零点选择是任意的,一般以方便合理为前提.若选c 点为电势能零点,即0 c W ,则场中任一点a 的电势能为c aa l d E q W 0 (5.26) 2 电势与电势差电势能(差)是电荷与电场间的相互作用能,是电荷与电场所组成的系统共有的,与试探电荷的电量有关.因此,电势能(差)不能用来描述电场的性质.但比值0q W a /却与0q 无关,仅由电场的性质及a 点的位置来确定,为此我们定义此比值为电场中a 点的电势,用a V 表示,即c a a a ld E q W V 0(5.27) 这表明,电场中任一点a 的电势 ,在数值上等于单位正电荷在该点所具有的电势能;或等于单位正电荷从该点沿任意路径移至电势能零点处的过程中,电场力所做的功.式(5.27)就是电势的定义式,它是电势与电场强度的积分关系式.静电场中任意两点a 、b 的电势之差,称为这两点间的电势差,也称为电压,用V 或U 表示,则有b ac b c a b a ld E l d E l d E V V U (5.28) 该式反映了电势差与场强的关系.它表明,静电场中任意两点的电势差,其数值等于将单位正电荷由一点移到另一点的过程中,静电场力所做的功.若将电量为0q 的试探电荷由a 点移至b 点,静电场力做的功用电势差可表示为)(b a b a ab V V q W W A 0 (5.29)由于电势能是相对的,电势也是相对的,其值与电势的零点选择有关,定义式(5.27)中是选c 点为电势零点的.但静电场中任意两点的电势差与电势的零点选择无关.在国际单位制中,电势和电势差的单位都是伏特(V ).等势面 在电场中电势相等的点所构成的面称为等势面.不同电场的等势面的形状不同.电场的强弱也可以通过等势面的疏密来形象的描述,等势面密集处的场强数值大,等势面稀疏处场强数值小.电力线与等势面处处正交并指向电势降低的方向.电荷沿着等势面运动,电场力不做功.等势面概念的用处在于实际遇到的很多问题中等势面的分布容易通过实验条件描绘出来,并由此可以分析电场的分布.三、电势的计算1 点电荷的电势在点电荷q 的电场中,若选无限远处为电势零点,由电势的定义式(5.27)可得在与点电荷q 相距为 r 的任一场点P 上的电势为rq l d E V r P 04 (5.30) 上式是点电荷电势的计算公式,它表示,在点电荷的电场中任意一点的电势,与点电荷的电量q 成正比,与该点到点电荷的距离成反比.2 多个点电荷的电势在真空中有N 个点电荷,由场强叠加原理及电势的定义式得场中任一点P 的电势为ii i r i r i i r P V l d E l d E l d E V (5.31) 上式表示,在多个点电荷产生的电场中,任意一点的电势等于各个点电荷在该点产生的电势的代数和.电势的这一性质,称为电势的叠加原理.设第i 个点电荷到点P 的距离为i r ,P 点的电势可表示为N i i i i i P r q V V 1041 (5.32) 3 任意带电体的电势对电荷连续分布的带电体,可看成为由许多电荷元组成,而每一个电荷元都可按点电荷对待.所以,整个带电体在空间某点产生的电势,等于各个电荷元在同一点产生电势的代数和.所以将式(5.32)中的求和用积分代替就得到带电体产生的电势,即线分布面分布体分布L S V P rdl rdS r dV r dq V 00004444 (5.33) 讨论:1)在上述所给的电势表式中,都选无限远作为电势参考零点;2)在计算电势时,如果已知电荷的分布而尚不知电场强度的分布时,总可以利用(5.33)直接计算电势.对于电荷分布具有一定对称性的问题,往往先利用高斯定理求出电场的分布,然后通过式(5.27)来计算电势.例题5.6 求电偶极子电场中的电势分布,已知电偶极子的电偶极矩P = q l . 解:如图5.11所示,P 点的电势为电偶极子正负电荷分别在该点产生电势的叠加(求代数和),即r q r q V P 004141 因而有因此由于,cos ,, l r r r r r l r 230204141r r p r ql V P cos由此可见,在轴线上的电势为2041r p V P ;在中垂面上一点的电势为0 P V 。

静电场的环路定理

静电场的环路定理

已知q的电场分布 E
根据定义, P点的电势为
4
q
0r
2
er
VP


P

E dl

r
q
40r
2Pdr4q04r2qe0rrP dl
q > 0时, VP为正, r V, r处V= 0 min q < 0时, VP为负, r V, r处V = 0 max
2.电场强度与电势梯度的关系
根据电势差的定义, 把单位正电荷从P1移到P2 电场力所作的功为:
dA E dn V (V dV )
r E
dn
n
P1
P2
V V dV
E dn dV
E


dV dn
grad V
E
ቤተ መጻሕፍቲ ባይዱ

dV dn
n
r E grad V
r 即:电场中某点的场强 E 等于该点电势梯度的负值
无意义
VP

P
E
dr
rP
2 0r
dr

2 0
ln
rP
r
P
P'
令某处 r = r0(有限值) V=0,则
VP

P0
P
E
dl

P
P
E dl

P0
P
E dl
r0 P0

P
P
2
0r
dr

2 0
ln
r0 r
可见:当电荷分布到无穷远时,
22
归纳 电场强度与电势的关系
积分关系:

4 静电场的环路定理

4 静电场的环路定理
B
高压发生器
静电力做正功, 电势能减少; 静电力做正功, ∆A > 0, WA > WB , 电势能减少; 静电力做负功, 电势能增加。 静电力做负功, ∆A < 0, WA < WB , 电势能增加。
电势能和重力势能一样,是一个相对量, 电势能和重力势能一样,是一个相对量,先要规定电 势能为0的参考点 如果参考点p0确定 的参考点。 确定, 势能为 的参考点。如果参考点 确定,则
R2 q1 R1 o Ⅰ Ⅱ
V=
1
r ≤ R1 R1 ≤ r ≤ R2

r ≥ R2
无限长均匀带电圆柱面的电场。圆柱半径为R, 例6 无限长均匀带电圆柱面的电场。圆柱半径为 ,单 试求其电势分布。 位长度上的带电量为 + λ ,试求其电势分布。 解:电场分布也应有柱对称性 (1) r <R (2) r >R (2) r >R
∞ r r r r r r = ∫ E1 ⋅ dl + ∫ E2 ⋅ dl + ....... + ∫ En ⋅ dl P P
P ∞ P ∞ ∞
= u1 + u2 + ...... + un = ∑ ui = ∑
i =1
n
P
4πε 0 ri
qi
各点电荷单独存在时在该点电势的代数和 各点电荷单独存在时在该点电势的代数和, 代数和 注意(电势是一个标量) 电势是一个标量 注意 电势是一个标量
无旋场
2. 电势(Electric potential) )
2.1 电势能
由环路定理知,静电场是保守场。 由环路定理知,静电场是保守场。 保守场必有相应的势能, 保守场必有相应的势能,对静电场 则为电势能。 则为电势能。 静电力的功,等于静电势能的减少。 静电力的功,等于静电势能的减少。

真空中的静电场

真空中的静电场

13真空中的静电场真空中静电场的基本概念(1) 静电场的基本定律库仑定律:两点电荷在真空中的相互作用力电荷守恒定律:在一个与外界无电荷交换的系统内,任何过程中正负电荷的代数和永不改变.叠加原理:点电荷系在空间某点处产生的场强(或电势)等于各个点电荷单独存在时在该点产生的场强(或电势)之和.(2) 重要定理高斯定理:通过任一封闭面的电通量等于该封面所包围的电荷电量代数和的倍.1/ε,说明静电电场是有源场.环路定理:在静电场中,电场强度沿任一闭合路径的积分恒为0.,说明静电场是保守场,静电力是保守力.(3) 电场强度在电场中任一给定点处,检验电荷q0所受的电场力F与其电量q0的比值为给定的电场强度电场强度E是一矢量,其大小为,方向为电场中给定点处正检验电荷所受力的方向.(4) 电势①电势能静电场是保守场,引入电势能的概念.电荷q0在静电场a点的电势能.若带电体系分布在有限空间内,常取无限远处电势能为零,则上式表明,在静电场中,电荷q0在a点的电势能等于将电荷q0从a点移动到无穷远处电场力所作的功.②电势静电场中a点的电势静电场中a点的电势等于单位电量在该点所具有的电势能,即将单位电量从该点a移动到无穷远处电场力所作的功.电势的单位为伏(V).③电势差静电场中a,b 两点的电势差.静电场中a,b两点的电势差等于单位电量从a点移动到b点是电场力所作的功.解题指导(1)场强E、电势U 的计算场强和电势的计算可归纳为两大类题型:第一类,场具有球、柱、面对称性.先用高斯定理再用电势公式第二类,一般的场.原则:点电荷的场、叠加原理.点电荷的场场强电势点电荷系的场场强电势连续带电体的场场强将带电体分成无穷多个点电荷,取一点电荷,其场强为将d E分解到x方向和y方向再对场强在x方向的分量及y方向的分量积分电势取一点电荷,其电势为对所有点电荷产生的电势求和即求积分求解连续带电体的场强需用矢量积分(上面已介绍了基本方法),一般计算较为复杂.此问题也可简化:先计算带电体在空间的电势(电势计算积分为标量积分,比场强矢量积分简单),然后用求场强.(2) 运用F= q0E计算电场力时,应注意E是除q0以外的电荷产生的电场强度.(3) 对高斯定理中的每一个量,要有正确的理解.Φe只跟封闭面包围的电量有关,而E则是封闭面(也称高斯面)内、外所有电荷产生的总场强,跟高斯面内、外电荷有关.Φe>0,说明高斯面内净电荷(正、负电荷相加)大于零(也即正电荷比负电荷多),不能说高斯面内只有正电荷.(4)电场与电势的关系积分关系.微分关系.电场强度E大的地方,电势的高低要看积分的值大还是小,即单位电量从a→电势零点电场力作功大还是小来决定.从微分关系看,E l大,说明电势在l方向的方向导数大,即电势U随l的变化率大,即单位长度电势的变化大,反过来看电势高的地方也不能笼统地讲电场也强典型例题13-1 对于高斯定理举例说明下列说法是否正确:(1) 若高斯面内无电荷,则通过高斯面的电通量必为零;(2) 若高斯面内电荷的代数和不为零,则高斯面上的场强一定处处不为零;(3) 若高斯面上的场强处处为零,则高斯面内一定处处无电荷;(4) 若高斯面上的场强处处不为零,则高斯面内必有电荷.答(1) 正确.根据高斯定理因电荷都分布在高斯面外,任一电力线穿入高斯面后必要穿出高斯面,所以总电通量必为零.(2) 不正确.高斯面上的场强有些地方可以为零.例:有两正点电荷(+q,+q),高斯面通过两点电荷的中点O (如图13.3-1(a) ),O点处的场强 = 0.不正确.高斯面上的场强处处为零,说明表明高斯面内净电荷 = 0,可能存在正、负电荷相加为0的情况.例:两同心球壳分别带有等量异号电荷+Q、—Q(如图13.3-1(b)所示),两球壳外的电场处处为0,高斯球面在两球壳外,高斯面内有电荷+Q、—Q.(4) 不正确.例:高斯面外有一点电荷q,这时高斯面上场强处处不为零,而高斯面内无电荷.读者还可列举出一些例子来说明以上问题,这样有助于对以上问题更深入的理解.13-2 举例说明下列说法是否正确.(1) 场强大的地方,电势一定高;电势高的地方,场强一定大;(2) 带正电的物体电势一定是正的,电势等于零的物体一定不带电;(3) 场强大小相等的地方电势一定相等,等势面上场强的大小一定相等.答(1) 不正确.例如图13.3-2(a)中带等量异号电荷的平行板电容器,两平行板间的场强大小处处相等,但靠近正极的电势高,靠近负极的电势低.(2)不正确.例如两带电的同心球壳,如图13.3-2(b)所示.内球的电势只要足够大,可能为负值.后一问也不对,电势为零的物体可能带电,如图12.3-2(a)中负板接地电势为零,但带负电.(3)不正确.如图12.3-2(a)中平行板间场强大小处处相等,但电势可能不相同.后一问也不对,如图12.3-2(c)所示,两正、负点电荷,电量大小相等,它们的中垂面为等势面,但其上各点的场强大小不一定相等.13-3 半径为R的半圆形带电细棒,均匀分布有总电荷q ,求圆心O处的场强和电势.解题思路本题的电势分布不具有球、柱、面对称性,属求解一般场强和电势的问题.解这种类型题的原则是:点电荷的场和叠加原理.这里是一个连续带电的半圆环,用叠加原理时数学上用积分方法.这里我们将对求连续带电体的场强、电势的方法作一介绍.①将连续带电体分成无穷多小段,每一小段看成一点电荷;②任意取一小段dl(图12.3-3中所示),这一小段的电量为dq,dq在O点产生的电场强度d E的方向在图中标出,大小将d E分解到x,y方向;③对无穷多小段的点电荷在O点产生的场求和即求积分,很多情况根据带电体对称性(对x 轴,y轴对称情况),可直接看出一分量的场强为零.解如图13.3-3 所示取x,y坐标.将半圆环分成无穷多小段,取一小段d l,带电量,d q在O点的场强方向如图所示.从对称性分析(跟x轴对称的一小段)在y方向的场强相互抵消,只存在x方向的场强dq在圆心O的电势总电势注意:在解连续带电体电场问题中容易犯的错误是,写出任一点电荷在O点的场强d E后,不经分解就直接积分这里的积分是一个矢量积分,矢量积分的方法如下:即要分别求x,y,z轴的分量13-4 有一总电量为q,半径为R的均匀带电球面,求场强和电势的分布.解题思路这是一个电荷分布(或场)具有球对称性的问题,先用高斯定理求E的分布,再用求电势.具体计算时要看场强分布可分成几个区域,如本题可分成r < R及 r > R两个区域,对不同区域分别求解.解r> R,取半径为r的同心球面作高斯面(如图13.3-4(b)所示),根据高斯定理,r ≤R,〔取半径为r的同心球面作高斯面,根据高斯定理〕,以上〔〕中内容跟r > R时相同,也可省去,写“同理”即可.电势计算:r > R2,球外,离球心为r 的a 点的电势r≤R,球壳内,任取一点b,说明:(1) 上面介绍了对球对称情况求电场和电势的基本方法.对球对称问题可作如下变化:①两同心的均匀带电球壳(如图13.3-4′(a)所示),这时场分三个区域.r > R,可得2R< r < R2,1r ≤R,1对以上结果,读者可自己进行计算,并加以验证.②均匀带电球体(如图13.3-4′(b) )所示:r≤R,同理,r > R,电势:r > R,r ≤R,(此结果请读者一定要自己验证).③对不均匀的带电球体,,这时求高斯面所包围的电量要用积分方法.(2)电势的计算:r≤R,,这时积分路线是从b积到∞,在积分路线中E有几种不同的表式,积分就要分几个积分相加,这点特别要提醒读者注意.在本题中,r ≤R,E=0,有些人就误认为.这时从b到∞电场分积分要分两段进行13-5 一个内、外半径分别为a 和b的无限长圆柱体壳层,壳内电荷体密度为式中A为常数,r为壳内任一点到轴线的距离.轴线处有一电荷线密度为λ的无限长均匀带电直线.求A为何值时才能使壳内的场强大小恒定.解题思路本题电荷分布(或场)具有柱对称性,用高斯定理求解.解在壳内作半径r,高l的同轴柱封闭面作高斯面,根据高斯定理,,现在作的柱封闭面(高斯面)由1,2,3三个面组成,积分应分成三个面积分.包括两部分电荷:轴上的电荷lλ及包围的壳内电荷所以上式变为电场方向垂直轴线,一、二两个积分E·d S = 0.要求E 跟r无关,,.说明:⑴对柱对称分布的电荷(无限长均匀带电直线,无限长均匀带电柱面,柱体,无限长同轴均匀带电柱面……)取高斯面为同轴柱封闭面,积分要分3个面积分进行,其中跟轴垂直的两个面1,2的积分为零,只存在对侧面的积分.⑵电荷分布不均匀时,一般要用积分计算.⑶对柱对称问题一般求得场强的形式为:求场中某点的电势时,若取无穷远处电势为零,则会得出任一点的电势,这是不符合实际的.所以现在不能取无穷远处的电势为零.我们知道,电势零点的选取可随问题而定,这时我们选一点离轴线距离为的电势为零,a点的电势.13-6 两个无限长均匀带电共轴薄圆筒,内、外半径分别为.已知外筒和内筒间电势差,求一个电子在离轴线垂直距离r=2 cm处受的电场力.解题思路电子在电场中所受的电场力F=qE,求出E即可得F.对柱对称的电场用高斯定理可得,现已知电势差,可倒过来求得E,再代入F=qE求得电场力.解根据高斯定理,两无限长带电薄圆筒间的场强,两筒间的电势差,所以,.13-7 一无限大厚度为2d的均匀带电平板,单位体积中带电粒子数为n,每个粒子带电量q,求平板内外场强E及电势U的分布(设处电势为零.)解题思路对无限大均匀带电平板,电荷分布及电场有面对称性,取轴垂直于平板且底面平行于平板的柱封闭面为高斯面,利用高斯定理可求E的分布,再根据,求出电势.解电力线垂直于中心面指向外.,作长2l垂直中心面,底面积为S的柱面(图13.3-7中I高斯面)作高斯面根据高斯定理,高斯面有两个底面1,2和一个侧面3,,所以,,作高斯面Ⅱ,同理可得,电势:,,,,,.说明:⑴对面对称分布的电荷用高斯定理求解时,所取的高斯面应是中心面垂直且对称的封闭曲面.⑵对面对称的电场求电势时,也不能取无穷远处的电势为电势零点(若取无穷远处为电势零点,则场中各点的电势都为,失去实际意义),应先取定某点电势为零,再进行计算.13-8如图13.3-8所示,在A点处有点电荷,在B点处有电荷,O点为AB的中点,AB长为,P点与A点相距.求:⑴把电量的点电荷从无限远处移到P点,电场力作功多少?电势能增加多少?⑵将从P点移到O点,电场力作功多少?电势能增加多少?解题思路计算电场力的功及电势能的增量可用公式,将计算后代入即可,一般不要用功的定义计算,这样做会带来一些计算上的麻烦,而且花时间,也容易算错.解:⑴⑵. 13-9 均匀带电细圆环,半径为R,带电量为 q,求圆环轴线上离环心为x 处的任一点P的电势,利用电势梯度求该点的场强.解题思路本题电荷分布无球、柱、面对称性,为一般的场,而且为连续带电体,空间电场强度的计算比较复杂(需用对变量求积分及矢量积分的方法).可先求P点的电势,再用场强电势的微分关系求场强进行简化.解将带电圆环分成无穷多小段,取其中的任意的一小段,所带的电量为,在P点的电势整个圆环在P点产生的电势题解1. 一无限长带电直线,电荷线密度分别为和,求点处的场强E.解在正x轴上取一小段,离O点距离x,在P点的场强(方向如图中)在负x轴上跟O对称取一小段,在P点的场强(方向如图)从对称性分析,在y方向成对抵消,只存在x方向的分量2. 一半径为a的带电半圆弧,上半部均匀分布着电荷+q,下半部均匀分布着电荷—q(如图13.4-2所示)试求圆心O处的电场强度.解 +q上半部产生的场强:将上半部分成无穷多小段,取其中任一小段(所带电量),在O点的场强方向如图所示.—q下半部分产生的场强:以x轴为对称轴取跟d l对称的一小段(带电量)在O点的场强方向如图所示.从图中看出,根据对称性,在x方向的合场强相互抵消为0,只存在y方向的场强分量总场强3.一半径为a的半球壳,均匀地带有负电荷,电荷面密度为.求:球心O 处的电场强度和电势.解将半球面分成无限多个圆环,取一圆环如图13.4-3所示,半径为r,到球心距离为x,所带电量绝对值在O点产生的场强(利用圆环在轴线上场公式)带电半球壳在O点的总场强其中,电势计算:将半球壳分成无穷多小面元d s,所带电量,在O点的电势带电半球壳在O点的总电势.4、用细的塑料棒弯成半径为0.5 m的圆弧,两端空隙为2 cm,所带电量,且均匀分布在棒上.求圆心处的电场强度.解带电圆弧长所带电量q在带隙中补上长2cm,带电量的小条,则圆心O的场强式中分别为q和在O点产生的场强,所以可看成点电荷圆弧形带电塑料棒在O点的场强大小为,方向朝右.5、一无限长均匀带电的圆柱面,半径为R,沿轴线方向单位长电量为,求轴线上场强的大小.解:图13.4-5为圆柱面横截面图,对应的无限长直线单位长带的电量为它在轴线O产生的场强大小为因对称性,成对抵消.6、把某一电荷Q分成两个部分,使它们相隔一定距离.如果要使这两部分有最大的库仑斥力,求这两部分电荷应怎样分配?解设一部分的电量为q,另一部分的电量为(Q-q),则相互斥力为F最大,,7、电荷线密度为的无限长均匀带电直线与另一长度为l、电荷线密度为的均匀带电直线在同一平面内,二者互相垂直,求它们之间的相互作用力.解将AB分成无穷多小段,取一小段,所带电量.受无限长带电直线的作用力,方向朝右,各小段受无限长带电直线的作用力方向都朝右,所以AB受的总作用力8.两个均匀带电的同心球面,若维持外球面半径m以及内外两球面间的电势差U=100V不变,则内球面半径为多大时,才能使内球表面附近场强最小?其值为多大?解设内球带电量q ,两球面间的场强,两球的电势差,可得.代入E中,内球表面附近,最小,9.(1)地球表面附近的电场强度近似为,方向指向地球中心.试求地球带的总电量;(2)在离场面1400m处,电场强度降为,方向仍指向地球中心.试计算在1400m下大气层里的平均电荷密度.解 (1)沿地球表面作一封闭球面S ,设地球所带的总电量为Q,根据高斯定理,.由于地球表面附近电场强度数值相等,方向指向地球中心,于是上式左边,所以(2)在离地面h=1400m处包围地球作一封闭球面,设大气层里总电量为q,根据高斯定理,因大气层体积所以大气层中平均电荷密度.10.设气体放电形成的等离子体在圆柱内的电荷分布可用下式表示:.式中r是到轴线的距离,是轴线上的电荷密度,a是常数. 计算场强分布.解电荷分布有柱对称性,利用高斯定理,在等离子体的圆柱内,作长,半径为r的同轴柱面为高斯面,根据高斯定理,,.由于电场的对称性,方向垂直于圆柱面侧面,通过圆面两底的电通量为零,上式有,.11.一均匀的带电球体,电荷体密度为,球内有一不带电的球形空腔,偏心距为a,求腔内任一点P的电场强度.解将相同电荷体密度的带电物质填满空腔,它在P点的场强为.此时整个实心均匀带电球在P点的场强设为E,很显然空心球在P点的场强,根据高斯定理,同理,所以12. 如图放置的细棒,长为L,电荷线密度( k为常数),求: (1)P(0 ,y )处的电势;(2)用电势梯度求P点处的场强分量;(3)能否由(1)的结果用电势梯度求P点处的场强分量?为什么?解 (1)在细棒上x上处取电荷元,它在P点产生的电势,.(2) .(3)不能由(1)的结果用电势梯度求.因为U=U (0,y)中x =0为确定值,电势梯度必为0.应该先求出任一场点处的电势U (x,y),再由才可求得x=0处的场强分量.13.设电势沿x轴的变化曲线如图所示.试对于每个所示的区间(忽略区间端点的情况),确定电场强度的x分量,并作对x的关系图线.解在a~b区间,;在b~c区间,;在c~e区间,;在e~f区间,;在f~g区间,;在g~h区间,对x的关系线见图13.4(b)所示.。

大学物理课件:14-4 静电场的环路定理与电势

大学物理课件:14-4 静电场的环路定理与电势

ABC CDA
l E dl 0
结论:沿闭合路径一 周,电场力作功为零. 静电场是保守场
第14章 真空中的静电场
3
大学 物理
三 电势能
14-4 静电场的环路定理 电势 B
静电场是保守场,静电场
WpB
力是保守力. 静电场力所 做的功就等于电荷电势能
A WpA
E
增量的负值.
AAB (WpB WpA ) WpA WpB
电子伏特eV 1eV 1.6021019 J
第14章 真空中的静电场
6
大学
14-4 静电场的环路定理 电势
物理
点电荷的电势
E
4
q
π 0 r
2
er
令U 0
dl
dr
E
U r Er dl
qr
qdr
r 4 π0r 2
U q
4 π0r
q 0, U 0 q 0, U 0
第14章 真空中的静电场
7
大学 物理

14-4 静电场的环路定理 电势
电势的叠加原理
点电荷系
E Ei
i
U A A E dl
n
A Ei dl i 1
n
Vi
i 1
U A
n i 1
qi 4 π ε0ri
q1
r1
q2 q3
r2
r3

A
E3 E2
E1
第14章 真空中的静电场
8
大学
14-4 静电场的环路定理 电势
1
大学
14-4 静电场的环路定理 电势
物理
A q0q rB dr q0q ( 1 1 )

静电场的环路定理讲座

静电场的环路定理讲座
(点电荷电势)
例3:求一均匀带电球面的电势分布。
解:由高斯定理知,电场分布为
E
0
rR
1q
4o r 2
rR
当r<R 时
V


r
E

dr

R
E dr
r

E dr
R
1 q
R 4 0 r 2 dr
1
4 0
q R
R
r
.P
当r> R 时
V


r
E
dr
处,VP为正值。这个例题的结果再次表明,在静电
场中只有两点的电势差有绝对的意义,而各点的电
势值却只有相对的意义。
小结: 1.叠加法 (1) 将带电体划分为电荷元 dq。
(2) 选零势点,写出 dq 在场点的电势 dv 。
(3) 由叠加原理得 V Vi 或V dV。
2. 场强积分法(由定义求)
电势能不是点函数只能说电荷q在某位置的势能为多少电势静电场中某点电势等于单位正电荷在该点具有的电势能或将单位正电荷由该点移至零势点过程中静电力所做的功
同 学 们 好
§8-4 静电场的环路定理 电势
静电场对移动带电体要做功,说明静电场具有能量。 一、 静电场力的功
1.点电荷电场中
试探电荷q0从A点经任意路径到达B点。
r
2π R P
x
x
+
+
z +++
dVP

1
4π 0r
qd l 2π R
VP

1
4π 0r
qdl q
q

08.3静电场的环路定理、电势

08.3静电场的环路定理、电势
E a E b
b
a
u 3
u 2 u 1
2.电势梯度 电势梯度 单位正电荷从 a到 b电场力的功 到 电场力的功
u+d +u
E•d = Ec sθ l =u−(u+d ) l o d u Ec sθ l =− u o d d
在 l E d 方向上的分量 电场强度沿某 一方向的分量 一般
u
E l
n
a
b
l 由电势定义得 u =∫ E•d =∫ P
r

4 ε0r π
d = r
q 4 ε0r π
讨论 大小
q>0 u>0 r ↑ u↓ r → u 小 ∞ 最 q<0 u<0 r ↑ u↑ r → u 大 ∞ 最
为球心的同一球面上的点电势相等 对称性 以q为球心的同一球面上的点电势相等
点电荷系的电势 由电势叠加原理, 的电势为 由电势叠加原理,P的电势为
单位正电荷在该点 所具有的电势能

W = ∫q E•d l a 0
a

单位正电荷从该点到无穷远 电势零)电场力所作的功 点(电势零 电场力所作的功 电势零
定义电势差 a b 定义电势差 u −u 电场中任意两点 的 电势之差(电压) 电势之差(电压)
u =u −u =∫ E•d −∫ E•d =∫ E•d l l l ab a b
d q −q A =u −u =0−( ) + oc o c 4 03R 4 0R a πε πε b c q +q 0 −q = 6 0R πε R R R
② 将单位负电荷由 ∞ O电场力所作的功
A O =u −u =0 o ∞ ∞
功、电势差、电势能之间的关系 电势差、

静电场的环路定理

静电场的环路定理
a ( L2 )
b
a ( L1 )
v v b q0 E ⋅ dl − ∫
v v q0 E ⋅ dl
环路定理
=0

L
v v E ⋅ dl = 0
该定理还可表达为:电场强度的环流等于零。 该定理还可表达为:电场强度的环流等于零。 根据保守力的定义,任何力场, 根据保守力的定义,任何力场,只要其场强的环流 为零,该力场就叫保守力场 势场。 保守力场或 为零,该力场就叫保守力场或势场。可以引入相应 的势能,即电势能。 的势能,即电势能。
q 4πε 0 x
•从电荷分布求场强,再由场强分布求电势 从电荷分布求场强, 从电荷分布求场强
U P = ∫ E • d r (场强积分法) 场强积分法)
P ∞
例4 求均匀带电球面的电场中电势的分布 解 由高斯定理可以求的球面内外的场强分布为
+ P1 + + + + +
2
r <R r ≥R
对球外一点P 对球外一点
二 电势
某点电势电W 之比只取决于电场, 某点电势电 a与q0之比只取决于电场,定义电该 点的电势 单位:伏特( ) 电势. 点的电势. 单位:伏特(V) 电势电
W a = q0 ∫
"0"
a
v E ⋅ dl
电势
WA VA = q0
=∫
"0"
A
v E⋅ E⋅ dl
由上式可以看出, 由上式可以看出,静电场中某点的电势在数值上 等于单位正电荷放在该点处时的电势能, 等于单位正电荷放在该点处时的电势能,也等于单位 正电荷从该点经任意路径到电势零点处(无穷远处) 正电荷从该点经任意路径到电势零点处(无穷远处) 时电场力所做的功。 时电场力所做的功。

3.3 静电场的环路定理 大学物理

3.3 静电场的环路定理 大学物理

R
+
o + + +
4 0 r (3)确定电势分布;
2
E

er
(r R)
主讲:张国才
U P E dl E dr + r+ r r + + 1 q q r p + + 2 dr R R 4 + + 4 o R 0 r o + + (2)当r>R时 + + + + U P E dl E dr + + "P" r
主讲:张国才
3.3 静电场的环路定理
基础物理学
4
试验电荷q0在静电场中沿任意闭合路径 L运动一周时,电场力对q0做的功W=?
L
W q0 E dl 0
E dl 0
L
主讲:张国才
3.3 静电场的环路定理 静电场的 Nhomakorabea路定理基础物理学
5
在静电场中,场强沿任意闭合路径的线积 分(称为场强的环流)恒为零。
2 2
0

主讲:张国才
q 4 0 R x
2 2
基础物理学 3.3 静电场的环路定理 二、从电荷分布求场强,从场强分布求电势。 例2 计算均匀带电球面的电场中的电势分布。球面半 径为R,总带电量为q。
13
解:
q
+
+ + + +
+ +
+
(1)取无穷远处为电势零点; + (2)由高斯定律可知电场分布为; + E 0 (r R) + + 1 q

3-真空中的静电场

3-真空中的静电场

v v ΦE = ∫ E ds = ∫SEds
S
= E∫ ds = E 4π r
S
2
r
Q
R
r≥R时:
ΦE = 4π r E外 = Q ε0
2
1 Q 或 ∴E外 = 2 4πε0 r
v 1 Qv E外 = r 3 4πε0 r
r
r
R
r<R时:
1 4 3 2 ΦE = 4πr E内 = ∫ ρdV = ρ π r ε0 3 ε0 3 Q r Q 2 Qρ = π 内 3 ∴4 r E = 3 (4 3)πR R ε0
2
εo
1
3
当 r≤R 时:
Qr E1 = 3 4πεo R
Q
r R
当 r>R 时:
E2 =
Q 4πεor
2
当 r≤R 时:
U1 = ∫ E1dr + ∫ E2dr
r R
R

q R
=∫
R
r
Qr Q dr + ∫ dr 3 2 R4 4πεo R πεor
2

Q Q Q(3R r ) 2 2 = = (R r ) + 3 8πεo R 4πεo R 8πεo R

q3 qi
S
q1
v v v v v v ∴ΦE = ∫ E dS = ∫ (E1 + E2 +L+ En ) dS
S
S
= ΦE1 + ΦE2 +LΦEn =
即:
1
ε0
i
∑q
S内
k
i
M
q2
qn
v v 1 ΦE = ∫ E ds =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电荷与真空中的静电场
9.4 静电场力的功 真空中静电场的环路定理
9.4.1 静电场力做功的特点
B
1. 单个点电荷产生的电场中
rB
电场力对q0做的元功为:
dW q0E dl
O
r
已E 知 点41电0荷rq2的e电r 场强度为由:图中几q何关r系A :r
'
A
dr L
dl
C
q0
b
d
a E1dl c E2dl
0
不是静电场
a
b

d
cE
(2) 环路定理要求电力线不能闭合.
(3) 静电场是有源、无旋场,可引进电势能.
2019/7/20
状无关.
B


E
L
A•
静电力——保守力; 静电场——保守力场
2019/7/20
9.4.2 静电场的环路定理
电荷与真空中的静电场
在静电场中,沿闭合路径移 动q0,电场力做功可表C示为:
W

l q0E dl q0
E dl
ABC
q0
E dl
CDA
E

E dl E dl
CDA
ADC
B D


q0
E dl
ADC
q0
E dl
ABC
A




W
l q0E dl
q0
E dl
ABC
q0
E dl
ADC
0
E dl 0lFra bibliotek在静电场中,电场强度沿任意闭合路径的线积分(
2. 点电荷系产生的电场中
电荷系q1、q2、…的电场中,移动q0,有:
由场强叠加原理:
q1 q2

E

n i 1
Ei
n i 1
qi
4 0
ri
2
eir
B n n B
WAB
A q0 Ei d l i 1

i 1
A q0 Ei d l
环流)为零.
——静电场的环路定理
2019/7/20
讨论

l E dl 0
电荷与真空中的静电场
(1) 环路定理是静电场的另一重要定理,可用环路定理
检验一个电场是不是静电场.
b c d a
l E dl a E dl b E dl c E dl d E dl
qi qn1 B
qn

L
A•
n q0qi ( 1 1 ) i1 4π ε0 riA riB
(与路径无关)
同理: 对连续分布带电体可得同样结果.
2019/7/20
电荷与真空中的静电场
结论
一试验电荷q0在静电场中从一点沿任意路径运动 到另一点时, 静电场力对它所做的功, 仅与试验电荷
q0 及路径的起点和终点的位置有关, 而与该路径的形
E
dW

1
4 0
qq0 r2
er
dl
er
dl

dl
cos

dr
2019/7/20
dW

1
4 0
qq0 r2
dr
电荷与真空中的静电场
WAB
B
dW
qq0
A
4 0
rB dr qq0 ( 1 1 ) (与路径无关)
r rA 2 40 rA rB
相关文档
最新文档