薄壁零件加工方法研究

合集下载

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 背景介绍薄壁零件是指壁厚较薄,形状复杂的零件,通常用于汽车、航空航天、电子等领域。

随着现代工业的发展,对薄壁零件的需求越来越大,但是薄壁零件的加工过程中容易产生变形、残余应力等问题,给加工工艺提出了更高的要求。

薄壁零件的加工难度主要体现在以下几个方面:一是薄壁零件在加工过程中容易变形,特别是在切削加工过程中会出现振动、共振等问题;二是薄壁零件在加工过程中很容易产生残余应力,影响零件的精度和稳定性;三是薄壁零件通常要求加工精度高,加工表面要求光洁度要求高。

对薄壁零件的机械加工工艺进行深入研究和分析,对提高零件加工质量和效率具有重要意义。

本文将通过对薄壁零件的加工特点、机械加工方法、加工工艺优化、加工设备选择和注意事项等方面进行分析,希望能为薄壁零件的加工提供一些参考和帮助。

1.2 研究目的薄壁零件的机械加工工艺分析本文旨在探讨薄壁零件的机械加工工艺,通过对薄壁零件加工特点、机械加工方法、加工工艺优化、加工设备选择以及加工注意事项等方面进行深入分析,以期为相关行业提供一定的参考和指导。

薄壁零件因其结构特殊、加工难度大、容易变形等特点,在实际生产中存在一定的挑战。

通过对薄壁零件的机械加工工艺进行研究分析,可以帮助企业更加有效地解决加工过程中所面临的问题,提高生产效率、降低生产成本,提升产品质量和市场竞争力。

研究目的的关键在于深入了解薄壁零件的加工特点和加工工艺,找出存在的问题并提出解决方案,为制造工程技术人员提供可行的指导意见和建议。

通过本文的研究,希望能够为薄壁零件的机械加工工艺提供更加系统和全面的分析,为相关领域的技术人员提供参考和借鉴,推动薄壁零件的机械加工技术不断创新和提升。

1.3 研究意义薄壁零件在机械加工领域中起着重要的作用,其加工工艺的优化对于提高产品质量、降低生产成本具有重要意义。

由于薄壁零件的特殊性,其加工过程中容易出现变形、裂纹等问题,因此需要对其加工进行深入研究和优化。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 简介薄壁零件在机械加工领域中起着重要的作用,其加工难度和技术要求较高。

对薄壁零件的机械加工工艺进行深入分析和研究具有重要意义。

本文旨在探讨薄壁零件加工的相关问题,通过对薄壁零件的定义、加工难点以及机械加工工艺的分析,来探讨如何选择合适的加工方案,并对加工工艺进行优化,提高加工效率和产品质量。

在工艺优化的过程中,需要考虑到薄壁零件的特点和加工需求,不断完善工艺流程,优化加工参数,提高加工质量和生产效率。

本文还将讨论工艺优化的重要性以及未来研究方向,以期为薄壁零件的机械加工工艺提供一定的参考和借鉴。

1.2 研究背景薄壁零件在现代工业生产中得到了广泛应用,其轻量化、高强度和高性能的特点使其在航空航天、汽车制造、电子设备等领域发挥着重要作用。

由于薄壁零件的特殊性,其加工难度较大,容易出现变形、裂纹等质量问题,给生产制造带来了挑战。

通过深入分析薄壁零件的机械加工工艺,探讨加工中存在的难点和问题,并提出相应的加工方案和工艺优化措施,对于提高薄壁零件加工质量和效率具有重要意义。

薄壁零件加工的难点主要包括材料轻薄、刚度低、易变形等特点,导致加工过程中容易出现振动、共振、切削变形等问题。

针对这些问题,现有研究主要集中在加工参数优化、刀具选择、切削力控制等方面进行探讨,但仍存在一定的局限性。

有必要对薄壁零件的机械加工工艺进行进一步深入的研究和分析,以期提出更有效的解决方案,实现薄壁零件加工质量的提升和成本的降低。

2. 正文2.1 薄壁零件的定义薄壁零件是指在加工过程中其壁厚相对较薄的零件。

薄壁零件通常用于各种工业领域,包括航空航天、汽车制造、电子设备等。

由于其壁厚较薄,薄壁零件在机械加工过程中常常面临一些特殊的挑战和难点。

薄壁零件的定义可以从几个方面来说明。

薄壁零件的壁厚通常小于其最小尺寸的10%,这就要求在加工过程中需要特别注意避免壁厚过薄导致变形或破裂的问题。

薄壁零件的结构通常比较复杂,需要高精度的加工,以保证零件的质量和性能。

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析什么是薄壁零件?薄壁零件是指壁厚相对较薄,外形也相对复杂,常见于汽车、电子、机械等领域的零件,如汽车车门、电子设备外壳等。

薄壁零件加工的难点薄壁零件加工的难点主要在于以下两个方面:1.零件壁厚薄:由于零件壁厚相对较薄,所以容易产生振动和翘曲等变形现象,而且易热变形,导致加工难度增加。

2.外形复杂:薄壁零件外形通常比较复杂,加工难度也大。

薄壁零件加工的常用方法单点加工法单点加工法是指通过刀具对薄壁零件进行加工的方法。

该方法适用于对平面零件和简单形状的薄壁零件进行加工。

常见的单点加工法包括:1.铣削:用铣刀对薄壁零件进行加工,可实现高速、高效、高精度的加工。

2.钻孔:用钻头对薄壁零件进行加工,也可加工一定程度的凸凹面。

3.车削:用刀具对薄壁零件进行加工,通常适用于对旋转体进行加工。

轧制加工法轧制加工法是指通过轧制的方式对薄壁零件进行加工。

该方法适用于对较大尺寸的薄壁零件进行加工,如汽车车身等。

常见的轧制加工法包括:1.深冲模:利用模具对薄壁零件进行加工,可加工多曲面、异形和复杂形状的零件。

2.拉伸模:利用模具对薄壁零件进行加工,适合加工尺寸大、平面面积较小的零件。

其他加工法除了上述两种方法外,还有一些其他的薄壁零件加工方法,如:1.冷却加工法:通过冷却液对薄壁零件进行加工,可减少热变形和振动。

2.激光加工法:通过激光对薄壁零件进行加工,可实现高精度、高效率的加工。

结论薄壁零件的加工难度比较大,但是通过一些常用的加工方法,如单点加工法和轧制加工法,以及一些其他的加工方法,如冷却加工法和激光加工法,就可以有效地解决加工难题,对薄壁零件进行高精度、高效率的加工。

钛合金薄壁零件加工工艺技术研究

钛合金薄壁零件加工工艺技术研究

钛合金薄壁零件加工工艺技术研究摘要:随着社会对钛合金材料需求的不断增加,钛合金零件加工技术的进步和发展受到了广泛的关注和重视。

分析现有加工技术的优势,充分发挥其优势,结合实际技术问题,解决有针对性的问题,提高产品的可靠性,将质量提高到一个新的高度,是保证行业稳定发展的前提,也是为长远发展提供技术支持。

关键词:钛合金;零件;加工;工艺;结合钛合金零件的加工特点,对钛合金薄壁零件进行深入分析,通过切削刀具材料、刃磨角度、切削要素、加工流程、浇注方式和夹紧力的制定等参数选择,解决钛合金薄壁零件精度高、难加工和易变形的切削难题。

提高零件加工质量,从而达到保证零件尺寸精度及形位公差的目的。

一、钛合金薄壁零件加工难点1.材料组织切削加工性差。

钛合金材料组织复杂,亲和力大,晶格原子不易脱离平衡位置,切削时使切削温度大幅提高,刀具易磨损。

2.材料加工切削温度高、刀具磨损快。

钛合金材料的零件加工时,切削区温度远高于其他材料的温度,材料的导热系数小于不锈钢和高温合金的导热系数,散热条件差,使切削区温度迅速上升,积于切削刃附近不易散发,造成加工刀尖附近应力集中、刀具磨损崩刃,从而破坏零件加工表面质量。

3.材料加工切削用量要素难以控制。

在切削速度、走刀量、切削深度和机床振动等因素的影响下,加工薄壁钛合金零件时,切削过程中产生振动,使零件变形。

4.零件尺寸精度及形位公差不易保证。

钛合金材料价格较昂贵,主要用于产品中的精密结构零件,钛合金薄壁零件的尺寸精度、形位公差要求高,受工艺流程、加工工序的划分等因素的影响难以保证。

5.零件加工易变形。

零件壁薄、刚性差,每一次切削加工由于应力释放,造成零件变形,影响壳体零件尺寸精度及形位公差。

6.夹紧易变形。

薄壁零件定位装夹时,在径向夹紧力作用下产生变形,当加工完成后零件恢复弹性变形,产生椭圆变形造成尺寸超差报废。

通过以上对钛合金薄壁零件加工变形的分析,解决的主要措施概括起来就是:选择合适的刀具材料、刃磨角度、切削要素、加工工艺流程、热加工方法和正确的装夹方式等。

薄壁件的三种加工方法

薄壁件的三种加工方法

薄壁件的三种加工方法
薄壁件是指壁厚相对较薄的零件,通常用于汽车、电子、航空航天等工业领域。

由于其特殊的结构和加工要求,薄壁件的加工方法也有一些特殊之处。

本文将介绍三种常见的薄壁件加工方法。

一、拉伸法
拉伸法是一种常用的薄壁件加工方法,通过拉伸薄壁板材来改变其形状和尺寸。

该方法适用于形状简单、壁厚均匀的薄壁件加工。

首先,将薄壁板材固定在拉伸机上,然后施加拉力使其产生塑性变形,最终得到所需形状的薄壁件。

这种方法可以快速高效地加工薄壁件,但对板材的材质和加工工艺要求较高。

二、冲压法
冲压法是一种常见的薄壁件加工方法,适用于形状复杂、壁厚较薄的薄壁件加工。

冲压法利用冲压设备将金属板材加工成所需形状的薄壁件。

首先,将金属板材放置在冲压机上,然后通过冲压模具对板材进行冲击,使其产生塑性变形,最终得到所需形状的薄壁件。

冲压法具有加工速度快、精度高的优点,但对冲压设备和模具的要求较高。

三、焊接法
焊接法是一种常用的薄壁件加工方法,适用于薄壁件的连接和修补。

焊接法通过熔化和连接金属材料,将多个薄壁件组合成一个整体。

焊接法可以用于不同材质、不同厚度的薄壁件的连接,具有连接牢固、结构简单的优点。

常见的焊接方法包括电弧焊、气体保护焊、激光焊等。

焊接法的缺点是加工过程中会产生热变形和应力集中等问题,需要通过控制焊接参数和采取适当的焊接工艺来解决。

薄壁件的加工方法包括拉伸法、冲压法和焊接法。

不同的加工方法适用于不同形状、不同壁厚的薄壁件加工。

在实际应用中,需要根据具体的要求和条件选择合适的加工方法,以确保薄壁件的质量和性能。

(整理)薄壁零件车削加工方法探讨

(整理)薄壁零件车削加工方法探讨

薄壁零件车削加工方法探讨1. 薄壁零件的加工特点1.1 薄壁零件不能承受较大的径向力,用通用夹具安装困难。

1.2 薄壁零件的刚性差,在夹紧力的作用下,极易产生变形,常态下工件的弹性复原,会影响工件的尺寸精度和形状精度。

1.3 工件受切削热的影响,尺寸精度不易控制。

1.4 由于切削力的影响,工件易产生变形或振动,尺寸精度和表面粗糙度不易控制。

1.5 薄壁零件刚性差,不能采用较大的切削用量,生产效率低。

因此合理的选择装夹方法,加工方法,切削用量,减少振动及充分冷却和检测都是保证加工薄壁零件的关键。

2. 薄壁零件的装夹方法2.1 通用软爪定位装夹,选择正确的夹紧力作用点,使夹紧力作用在工件刚性较好的部位,适用于形状和尺寸公差要求不严的零件加工优点:装卸方便长度可定位,看承受较大切削力。

缺点:零件定位点较集中,零件加紧后变形较严重。

2.2 大面积扇形软爪装夹:采用扇形软爪的三爪卡盘,按与加工零件的装夹面动配合的要求,加工出卡爪的工作面,增大与零件的接触面积。

优点:增大夹紧力的作用面积,使工件支持面增大,夹紧力均匀分布在工作面上,可加大切削用量,不易产生变形。

缺点:扇形软爪不易加工。

2.3 芯棒装夹2.3.1 采用椎体芯轴装夹,将零件直接套在椎体芯轴加工。

2.3.2 采用圆柱芯轴装夹,将零件装在芯轴上采用轴线压紧。

减小零件径向变形。

优点:装卸零件方便,能保证较高的同心度,技术要求。

缺点:零件内孔被芯轴划伤。

2.4 磁力吸盘装夹:采用磁力吸盘将零件吸附在吸盘上,这时零件只受轴向力,而径向不受力。

优点:可一次较高零件内外圆。

缺点:零件找正比较麻烦,应用范围小。

3. 薄壁零件较高方法的选择3.1 先粗后精先粗加工出零件的外圆和内孔,外圆和内孔均匀留0.5 —0.8 毫米余量,端面单边留0.25 —0.3 毫米余量,然后选择适当的装夹方法,将零件精加工到图纸尺寸要求。

3.2 先内后外先加工内孔,以为孔较外圆难加工,易产生变形。

薄壁零件加工技术研究

薄壁零件加工技术研究

介绍一种所有要素均为薄壁的小型零件加工方法,从工步顺序、刀具选择和工装制作几方面入手,通过制定合适的切冷屏作为超薄壁壳体结构,外形尺寸φ20m m×14m m,壁厚0.2m m左右,零件由多个台阶圆、2个很深的内环槽、锥面和2个凸台组成,内环槽中间的隔板也仅厚0.25mm,结构非常复杂,同时精度要求高,加工难度极大,经过反复分析,找到了独特的解决方法。

1.零件分析零件材料为N C u30-4-2-1蒙乃尔棒,是一种以金属镍为基体添加铜、硅、铁、锰等其他元素而成的合金,其中硅含量高达4%以上,使得此合金比普通蒙乃尔和。

)主要技术难点。

①零件为超薄壁壳体结构,最薄壁厚仅左右,刚性差,最后精加扫码了解更多助理工程师、主管工艺师 高 歌图1 冷屏零件模型冷加工具或者普通磨制刀具使用常规方法无法加工。

④φ6+0.10+0.02mm的通孔12.7mm、深0.3mm孔位于切断面,在首道工序中无法完成,必须分工序加工,而此时零件已工成形,壁厚仅有,刚性差,不仅无合适装夹面,而且易装夹变形,因此,合适的装夹设计十分关键。

⑤材料难切削。

材料为镍基合金,强度高、韧性好,这种金属切削加刀具磨损快,切削振动大,不易切削。

工艺设计件结构复杂,加工余量大,且零件精度高,正常加工时通常选择粗加工、时效去应力再精加工的流程。

但该零件壁薄不易装夹,综合考虑后采用工序尽量集中、减少工序数量、优化刀具几何角度及切削参数以减小零件变形的原则来设计工艺流程。

加工工艺路线为:0下料→5 10数车→15线切割→20检验→25喷砂→30发黑。

5工序数车一道工序中尽可能加工多的结构要素,除切断面上φ12.7mm、深0.3mm孔台阶及大端面上两处凸台外,其余全部在本工序保证,加工完后从毛坯棒上切下。

10工序调头平切断面,加工该面上的φ12.7m m、深0.3m m孔台阶,并且由于刀具悬伸过长,故而安排在本工序镗φ6+0.10+0.02mm孔。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺【摘要】本文针对典型薄壁零件的数控铣削加工工艺进行了全面分析和总结。

首先介绍了薄壁零件的特点及加工要求,包括对形状精度、表面质量和结构稳定性等方面的要求。

然后详细阐述了数控铣削加工工艺流程,包括铣削顺序、切削参数和进给速度等内容。

接着就刀具选择与加工参数进行了探讨,指导读者在实际加工过程中如何选择合适的工具和设定参数。

随后分析了薄壁零件加工中常见的问题,并提出了解决方案。

对优化薄壁零件数控铣削加工工艺进行了探讨,包括加工效率和质量的提升策略。

结论部分总结了本文的研究成果,并展望了未来发展趋势。

通过本文的阐述,读者可以深入了解薄壁零件加工过程中的关键技术,为相关领域的工程师和研究人员提供了有益参考。

【关键词】薄壁零件、数控铣削、加工工艺、刀具选择、加工参数、常见问题、优化、总结、未来发展趋势、展望。

1. 引言1.1 典型薄壁零件数控铣削加工工艺薄壁零件数控铣削加工工艺是一种用于加工形状复杂、壁薄的零件的精密加工技术。

随着现代制造业的发展,对零件精度和质量的要求越来越高,薄壁零件的加工难度也相应增加。

在传统加工方法下,薄壁零件容易受到变形、扭曲等问题影响,而数控铣削技术的出现为解决这些难题提供了有效途径。

典型薄壁零件数控铣削加工工艺包括薄壁零件特点及加工要求、数控铣削加工工艺流程、刀具选择与加工参数、薄壁零件加工中的常见问题以及优化薄壁零件数控铣削加工工艺。

通过合理选择刀具和加工参数,结合先进的数控技术,可以有效提高薄壁零件的加工精度和质量,同时减少加工过程中产生的浪费和损耗。

本文将重点探讨典型薄壁零件数控铣削加工工艺的特点、加工流程、技术要点以及发展趋势,以期为相关领域的从业者提供参考和借鉴。

通过不断优化工艺,提高加工效率和质量,为推动薄壁零件加工技术的发展作出积极贡献。

2. 正文2.1 薄壁零件特点及加工要求薄壁零件是指在其最小截面的厚度很薄的零件,通常用于航空、汽车、电子等领域。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指在工程结构中壁厚很薄的零件,其壁厚一般小于3mm。

薄壁零件因其壁厚薄,加工难度大,所以在工艺上有着独特的要求。

本文将对薄壁零件的机械加工工艺进行分析,希望能够为相关行业提供参考。

一、薄壁零件的特点1. 壁厚薄:薄壁零件的壁厚一般小于3mm,有的甚至只有几毫米,这就要求在加工过程中必须考虑到其薄壁的性质,避免因加工引起的变形和破裂。

2. 结构复杂:由于薄壁零件在工程结构中常常承担比较复杂的功能,因此结构也相对复杂,这就对加工工艺提出了更高的要求。

3. 材质优质:为了保证薄壁零件的承载能力和使用寿命,通常采用高强度、优质的金属材料进行加工,如不锈钢、铝合金等。

4. 精度要求高:薄壁零件通常用于精密仪器、汽车零部件等领域,对其加工精度要求也很高,所以加工工艺更要精益求精。

二、薄壁零件的机械加工工艺1. 工艺规划:在进行薄壁零件的机械加工之前,必须进行详细的工艺规划和制定加工工艺流程。

根据零件的结构特点和加工要求,合理确定加工顺序、刀具选择、切削参数等,确保在加工过程中能够保持零件的尺寸、形状和表面质量。

2. 材料选择:针对不同的薄壁零件,需选择合适的材料进行加工。

常用的材料有铝合金、不锈钢、镁合金等,其机械性能和切削性能各不相同,需要根据实际情况进行选择。

3. 加工工艺控制:在进行薄壁零件的机械加工过程中,必须严格控制加工工艺。

尤其是在切削过程中要注重刀具的刀具形状和刃口状态、切削速度、进给量和切削深度等参数的合理选择和控制,避免因切削引起的变形和表面质量问题。

4. 刀具选择:薄壁零件的机械加工过程中,需要选择合适的刀具进行加工。

通常情况下,采用高硬度、高强度的硬质合金刀具或刻线刀具,以保证加工效率和加工质量。

5. 夹紧与支撑:薄壁零件在加工过程中要进行合理的夹紧和支撑,避免因切削引起的振动和变形问题,提高加工稳定性和精度。

6. 加工检测:在薄壁零件的机械加工过程中,需要进行合理的加工检测工序。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析【摘要】本文针对薄壁零件的机械加工工艺进行了深入的分析。

介绍了薄壁零件的特点,包括轻盈柔软、易变形等问题。

然后,详细讨论了薄壁零件的机械加工方法,包括铣削、钻孔、车削等。

接着,探讨了薄壁零件在加工过程中需要重点控制的工艺参数,以确保加工质量。

接着,总结了薄壁零件加工中常见的问题,如变形、破裂等,并提出了相应的加工改进方法,如优化刀具选择、加工参数调整等。

强调了薄壁零件机械加工工艺的重要性,并展望了未来发展趋势,指出需要加强技术创新和自动化设备的应用。

通过本文的研究,可以为薄壁零件的机械加工提供有益的参考和指导。

【关键词】薄壁零件、机械加工工艺、特点、方法、工艺控制、常见问题、改进方法、重要性、未来发展趋势1. 引言1.1 薄壁零件的机械加工工艺分析薄壁零件的机械加工工艺分析是工程制造领域中一个重要的研究课题。

随着现代工业的发展,越来越多的机械零件变得更为轻薄,因此薄壁零件的加工工艺也变得越来越复杂。

薄壁零件相比普通零件具有更高的技术要求,需要更为精密的加工工艺来保证其质量和性能。

薄壁零件的机械加工方法通常包括车削、铣削、钻削等传统加工工艺,同时还涉及到电火花加工、激光加工等先进加工技术。

针对薄壁零件加工过程中的特点,加工工艺控制尤为关键,需要特别注意切削参数的选择、工件固定方式、刀具选用等方面的问题,以确保加工过程中不会出现变形、裂纹等质量问题。

在薄壁零件的加工过程中,常见的问题包括振动导致的表面质量不良、加工精度不高等,这些问题可能会影响零件的使用性能。

加工改进方法也是非常重要的,可以通过优化加工工艺、调整设备参数等方式来提高零件的加工质量。

薄壁零件的机械加工工艺分析对于确保零件质量、提高生产效率具有重要意义。

未来随着技术的不断进步,薄壁零件的加工工艺也将不断完善,为工程制造领域带来更多的发展机遇。

2. 正文2.1 薄壁零件的特点薄壁零件是指壁厚相对较薄的零件,通常在1mm以下,具有以下几个特点:1. 结构轻巧:薄壁零件由于壁厚较薄,整体重量相对较轻,适用于要求轻量化设计的产品。

铝合金薄壁零件的加工工艺及变形控制探讨

铝合金薄壁零件的加工工艺及变形控制探讨

铝合金薄壁零件的加工工艺及变形控制探讨摘要:中国特色社会主义现代化建设所取得的一系列丰富成果,为装备制造业的发展进步提供了有力支持。

铝合金薄壁零件是加工制造业中比较有代表性的零部件之一,它具有整体重量轻、机械强度高、造型美观等一系列优势,在汽车行业、航天航空行业当中发挥着不可替代的重要作用。

但是与此同时,人们也必须要清楚,铝合金薄壁零件的加工难度非常大、很容易发生变形,因此,对铝合金薄壁零件的加工工艺及变形控制进行研究具有一定的现实意义。

关键词:铝合金薄壁零件;加工工艺;变形控制;措施1薄壁铝合金加工变形概述1.1生产加工铝合金薄壁零件的性能和工艺较为特殊,自身有较强的可塑性与粘附性,在生产加工中很难分离切屑,很容易在刀刃上出现“刀瘤”,且实施切削工作的过程中可能会产生晶体颗粒,如出现位移会导致材料发生塑性变形的情况,严重影响到后续的工作。

铝合金薄壁零件的刚性较差,如果在生产加工中所用力度较大,则可能导致零件出现塑性变形,后续难以通过常规手段将其恢复,即便采用特殊手段将其恢复不仅费时费力,而且难以达到后续实际应用的参数要求。

1.2变形控制薄壁铝合金线膨胀系数在0.0000238左右;刚度在0.00001左右,为此加工会受到设备、环境、温度等方面的影响,如切削作业中产生过大的热量而引发变形;机床定位不精确导致偏移而引发变形;生产车间的环境较差也是引发变形的主要因素之一。

机械加工人员加工铝合金薄壁零件通常使用数控机床,一些厚度较薄的零件需要加大关注,对各项标准参数进行控制,为了能够进一步推进后续行业的持续健康发展,需要着重考虑到设备、环境、温度等与金属材料的差异化特点,保证参数精确度符合预期的生产要求,从而有效解决加工伴有的质量问题。

2铝合金薄壁零件的加工工艺随着科技发展,中国的零部件加工技术越来越成熟,对于薄壁零部件的加工能力也在不断提升,铝合金薄壁零件是其中比较有代表性的零部件之一。

铝合金材质决定了该零部件具有比重指数小、比强度指数大的特点,而薄壁结构则导致该零部件的刚性不佳、容易变形,这给铝合金薄壁零件加工带来了一定挑战。

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法一、概述薄壁件是指壁厚小于2mm的机械零件,具有重量轻、节省材料、结构紧凑等特点。

数控车床是现代加工制造业中应用广泛的设备,对于薄壁件的加工具有独特优势。

本文将重点介绍数控车床在薄壁件加工中的技巧和方法,以提高加工效率和产品质量。

二、材料选择与装夹方式1.材料选择:薄壁件常用的材料有铝合金、钛合金、不锈钢等,这些材料具有较好的塑性和切削性能。

在选择材料时,应充分考虑其物理性能和加工工艺性。

2.装夹方式:针对薄壁件易变形的特点,应采用合适的装夹方式,如真空吸附、专用夹具等,以保证工件在加工过程中保持稳定。

三、刀具选择与切削参数优化1.刀具选择:针对薄壁件的加工特点,应选用锋利、耐磨的刀具,如硬质合金刀具、涂层刀具等。

同时,刀具的几何参数对切削力、切削热等方面都有影响,应根据工件材料和加工要求进行合理选择。

2.切削参数优化:切削参数的合理选择对于薄壁件的加工至关重要。

应综合考虑切削深度、进给速度、切削速度等参数,以减小切削力、切削热对工件的影响,防止工件变形。

四、加工技巧1.轻切快走:在加工过程中,应采用轻切快走的加工方式,以减小切削力对工件的影响。

同时,合理使用切削液,降低切削温度。

2.分层加工:对于厚度较大的薄壁件,可以采用分层加工的方式,减小各层之间的切削力,避免工件变形。

3.工艺优化:在编制加工程序时,应充分考虑工件的形状、材料特性等因素,合理安排粗加工、半精加工和精加工的顺序,以提高加工效率和产品质量。

4.热处理:在加工过程中,可对工件进行适当的热处理,以提高其硬度和耐磨性。

同时,合理安排热处理工艺参数,防止工件变形或开裂。

5.检测与修正:在加工过程中,应定期检测工件的尺寸和形位公差,如有偏差应及时修正。

同时,对加工过程中出现的问题进行分析和总结,不断优化加工方法和工艺参数。

五、结论通过以上分析可知,数控车床在薄壁件加工中具有独特优势。

在实际生产中,应根据具体情况选择合适的材料、装夹方式、刀具和切削参数。

薄壁零件的加工工艺和夹具设计

薄壁零件的加工工艺和夹具设计

摘要:本文系统设计了薄壁零件的数控车削加工工艺。

通过探讨薄壁零件在加工中存在的易变形、零件尺寸精度、位置精度及表面粗糙度不易保证等技术问题,对加工难点进行分析,给出了加工工艺路线和加工方案,通过优化、完善夹具设计和切削参数,防止了薄壁零件加工变形、保证了较好的尺寸精度和位置精度,从而有效解决薄壁零件的车削加工难题。

由于薄壁零件刚性差、强度弱,在加工中极易变形,是零件的形位公差增大,不易保证零件的加工质量。

因此对薄壁零件的装夹,切削加工过程中刀具的合理选用及切削量的选择,提出了严格要求。

在普通车床上加工形状较复杂、有一定精度要求、且需要多把刀具进行加工的批量零件时,不仅需要频繁换刀和装夹,花费大量的人力和时间,而且加工出来的零件质量取决于加工人员的技术水平, 产品质量得不到充分的保证。

而运用数控车床,结合传统的加工工艺,不但能大大缩短加工时间、提高加工精度,而且成品率高、产品质量稳定。

所以,在运用数控机床加工过程中为保证被加工薄壁件的必要的精度,有同轴度要求的内外圆柱面或有垂直度要求的外圆与端面,尽可能在一次装夹中完成;需要编制其加工路线、合理的选择个阶段的加工参数并编写高质量的数控加工程序。

为完全保证零件的形位公差需要设计其装夹的夹具,为此,对零件图纸、零件加工及时效处理等方面都认真地进行了分析和研究。

图1-1由图1-1可看出,?64mm的外圆对?60mm的内孔的同轴度,?64的外圆的圆度和表面质量以及内孔尺寸精度的加工是该薄壁零件最主要的加工难点。

因为该零件刚性差、强度弱,在加工中极易变形,表面质量、垂直度及同轴度难以保证。

镗削内孔时应一次装夹中加工出来,以保证该零件的尺寸精度。

针对薄壁零件壁薄、刚性差、易变形的特点,可设计该薄壁零件专用夹具装夹,以保证零件的尺寸精度和形位公差达到图纸技术要求。

这些加工难点的存在,使得加工过程中刀具选择、加工工艺路线安排、工艺装夹方式确定等对于该零件是否合格非常关键。

薄壁类零件加工装夹技术研究

薄壁类零件加工装夹技术研究

薄壁类零件加工装夹技术研究摘要:由于薄壁零件具有重量轻、结构紧凑等诸多优点,因而其在航空航天等领域具有较普遍的应用。

基于此,本文分析了薄壁类零件加工的装夹技术。

关键词:薄壁零件;加工;装夹薄壁零件由于重量轻、比强度高等结构特点,所以在航空航天等行业的许多重要零件为薄壁结构。

由于薄壁结构零件刚度差,制造过程中在夹具夹紧力和切削载荷的作用下极易产生加工变形,使其加工精度和表面加工质量难以控制,因此,研究薄壁类零件加工装夹技术有着重要的意义。

一、薄壁零件加工问题1、装夹不当导致变形。

通常,薄壁零件内外直径差距较小,强度较弱,在车床作业中直接利用三爪自定心卡盘进行固定,将导致各爪点局部不稳,引发零件整体变形。

在过去的薄壁零件加工中,需要使零件上各夹紧点达到稳定均衡,所以需增大装夹接触面,从而减少零件整体变形量。

但采用该种加工方法,仍然无法杜绝零件变形问题的发生。

2、切削不合理导致变形。

在车削加工中,会产生较强震动。

在切削工艺不合理的情况下,就会导致薄壁零件变形。

为减少切削时刀具所受的阻力,以免零件因阻力过大产生塑性变形或弹性变形,通常需结合刀具类型进行前角调整。

比如在刀具为高速钢材质时,需将前角设定为6°~30°。

在刀具为硬质合金刀时,前角在5°~20°范围内。

而未能进行车削用量的合理选择,将导致薄壁零件产生各种变形。

分析这一现象产生的原因可发现,金属切削主要受两个因素的影响,即背吃刀量和进给量。

在同时增大这两个量的情况下,零件会因切削力增大而变形。

在背吃刀量减少、进给量增大的条件下,尽管切削力会减小,但由于工作表面剩余面积大,零件所受内应力也增大,最终导致零件变形。

因此,还要合理进行切削用量的选择,才能避免零件变形。

3、刀具不合适导致变形。

薄壁零件在车削时,选取合理的刀具至关重要,尤其是对刀具几何角度的选择,不仅会影响切削力的大小,也会影响车削中产生的热变形程度,需关注的是,在薄壁零件的工作表面微观质量的把握也很重要。

大直径薄壁铝合金零件的加工研究

大直径薄壁铝合金零件的加工研究

大直径薄壁铝合金零件的加工研究大直径薄壁铝合金零件在机械加工中由于诸多原因导致加工后零件较易变形,对具有公差严精度高等特点的航空产品在加工后不易合格。

本文系作者在经过实际加工过后,结合累积出的一些加工经验,总结出一些机械加工大直径薄壁铝合金零件的一些体会。

标签:机械加工;铝合金;变形1 铝及铝合金1.1 铝元素铝——一种金属元素,符号AI,银白色,有光泽,质地坚韧而轻,具有银白色有光泽金属,密度2.702克/立方厘米,熔点为660.37℃,沸点为2467℃。

具有良好的导热性、导电性和延展性。

化合价+3,电离能5.986电子伏特。

1.2 铝合金的特点及应用纯的铝很软,强度不大,有着良好的延展性。

在某些金属中加入少量铝,便可大大改善其性能。

在铝中加入镁,便制得铝镁合金,其硬度比纯的镁和铝都大许多,而且保留了其质轻的特点,常用于制造飞机的机身,火箭的箭体;制造门窗、美化居室环境;制造船舶等。

2 零件变形零件在机械加工中存在着各种各样的变形,其变形的产生原因亦不相同。

2.1 零件产生变形的原因在机械加工过程中,引起零件产生变形的原因大概有一下几种:2.1.1 零件结构产生变形由于在航空领域,要求大部分零件都要有质量轻的特点,故一些零件除保证该零件正常的刚性要求外,尽量保证材料少,因此,在航空零件大部分都是薄壁零件。

薄壁零件顾名思义,零件的支撑等部位相对较薄,大概在1mm-3mm左右,所以在机械加工时,容易产生强度刚性不够而导致变形,且零件直径较大,更是将零件变形扩大。

2.1.2 材质产生变形由于航空领域的特殊原因,采用轻质金属必为所有航空厂商的首选,而铝合金以其质地轻,且经过表面氧化后,化学性质温度等特点,成为航空产品材料选择的首选。

然而,铝合金大都分具有良好的延展性,故铝合金的变形在所难免。

2.1.3 切削力过大引起变形在机械加工过程中(除特种工艺外),采用刀具与零件接触,通过刀具选用较硬的材质,且较为锋利,对零件进行切削。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析在机械制造加工过程中,薄壁零件是一类机械加工工艺的难点。

其具有结构精细、形状复杂、壁厚薄等特点,而在加工过程中容易出现变形、翘曲和表面质量不良等问题,加工难度较大。

针对这些问题,需要进行全面分析和合理处理。

1. 薄壁零件的特点薄壁零件是指对称薄壁结构且壁厚小于零件直径的零件。

其具有结构精细,形状复杂,尺寸精度高,要求壁厚均匀,一般采用双面加工。

同时,由于其壁厚薄,容易出现变形、翘曲的现象,对加工设备要求严格,加工难度大,因此在进行薄壁零件加工时需要特别注意。

对于薄壁零件的机械加工工艺,需要选用适当的切削工具和加工方法,合理处理变形和翘曲问题。

常用的加工工艺如下:(1) 选择合适的加工方法为防止薄壁零件在加工过程中变形,应尽可能采用高温加工、低速加工来避免过硬的工具或高速切削,避免形成热疲劳和振动等现象。

一般采用割线式铣削、缩径技术、调整切削参数和切削力、减小表面靠刀量等加工方法,以保证加工质量。

为提高薄壁零件的加工质量,需要选用合适的刀具和磨具,以保证加工精度和表面质量。

在薄壁零件的加工中,一般使用不锈钢刀片、高速钢刀片或金刚石刀片等,切削刃要锋利,刀片要光滑,避免刀身过硬或影响加工效率。

(3) 加强加工设备的稳定性为防止薄壁零件在加工过程中变形、翘曲、抖动等现象,需要加强加工设备的稳定性,调整加工速度、切削力和落刀深度等参数,以保证加工设备的稳定性和减小变形的发生。

(4) 控制加工过程的温度为提高薄壁零件的加工质量,需要控制加工过程的温度,以避免过高或过低的温度对零件的影响。

一般采用水冷或喷水冷却器来降低温度,以达到保证加工质量的目的。

综上所述,对于薄壁零件的机械加工工艺分析,需要选择适当的加工方法和切削工具,加强对加工设备的稳定性,控制加工过程的温度,以保证加工质量和提高效率。

同时,还需要加强对加工过程中的变形和翘曲等问题的预处理和特殊控制,以达到更好的加工效果。

薄壁零件加工方法和工艺分析.pdf

薄壁零件加工方法和工艺分析.pdf

薄壁零件的工艺分析及加工方法单位名称:陕西长岭电子科技有限责任公司作者:安小康2017年3月 2 日薄壁零件的工艺分析及加工方法作者:安小康职业技能鉴定等级:二级单位名称:陕西长岭电子科技有限责任公司单位地址:宝鸡市渭滨区清姜璐75号2017年3月2 日目录摘要 (1)关键词 (1)1工艺方案分析 (2)1.1薄壁零件图 (2)1.2零件图分析 (2)1.3确定加工方法 (2)2工件装夹 (3)2.1定位基准选择 (3)2.2确定零件定位基准 (3)2.3装夹方式选择 (3)2.4确定装夹方式 (3)3刀具和切削用量选择 (3)4零件加工 (5)5加工注意事项 (7)5.1安全文明生产 (7)5.2刀具的选择 (7)5.3削用量的要求 (7)6影响薄壁加工因素及解决方法 (8)6.1受力变形 (8)6.2受热变形 (9)6.3振动变形 (9)总结 (10)参考文献 (11)摘要薄壁工件因为具有重量轻、节约材料、结构紧凑等特点,薄壁零件已日益广泛地应用在各工业部门。

但薄壁零件的加工是比较棘手的,原因是薄壁零件刚性差、强度弱,在加工中极容易变形,不易保证零件的加工质量。

薄壁零件的加工问题,一直是较难解决的。

薄壁件目前一般采用数控车削的方式进行加工,为此要对工件的装夹、刀具几何参数、程序的编制等工艺分析方面进行试验,合理的选择加工方法从而有效地克服了薄壁零件加工过程中出现的变形,保证加工精度。

关键词:薄壁工件工艺分析程序编制加工方法1工艺方案分析1.1薄壁零件图1.2零件图分析该零件图是薄壁套类零件由外圆、内孔、外螺纹组成。

尺寸标注完整,表面粗糙度为1.6,选用毛坯是45号钢。

毛坯尺寸Φ35mm×50mm,表面无热处理等要求。

1.3确定加工方法确定加工方法的原则是保证加工表面加工精度和表面粗糙度。

薄壁类零件应按粗、精加工工序。

薄壁件通常需要加工工件的内、外表面。

内表面的粗加工和精加工都会导致工件变形,所以应按粗精加工分序。

薄壁零件的数控车削加工探讨

薄壁零件的数控车削加工探讨

薄壁零件的数控车削加工探讨一、薄壁零件在数控车削加工中的问题1. 变形问题:薄壁零件在数控车削加工中容易受到刀具切削力的影响,从而产生变形。

尤其是在加工过程中,由于热变形效应的存在,薄壁零件更容易出现变形现象。

变形不仅会影响零件的尺寸精度和几何形状,还会降低零件的使用寿命和性能。

2. 振动问题:由于薄壁零件的结构特点,容易受到切削力的作用而产生振动现象。

振动不仅会影响加工质量,还会加剧刀具磨损、降低加工精度、影响加工表面质量等问题。

3. 切屑问题:薄壁零件在数控车削加工中,由于切削力的作用,容易产生大量的切屑,而这些切屑往往会对加工表面造成损坏,同时也会对工件和刀具造成损伤。

以上问题对薄壁零件的加工质量和加工效率都会产生较大的影响。

如何解决这些问题,提高薄壁零件的加工质量和效率,是当前数控车削加工中的一个重要课题。

二、解决问题的方法和技术1. 刀具选择和切削参数的优化:在数控车削加工中,合理选择刀具和优化切削参数对薄壁零件的加工具有重要意义。

选择合适的刀具材料和刀具几何形状对降低切削力、延长刀具使用寿命非常重要。

通过优化切削速度、进给量、切削深度等切削参数,可以有效地减少切削力、降低振动,从而保证薄壁零件的加工质量。

2. 支撑技术:薄壁零件在数控车削加工中,可以采用支撑技术来减少变形和振动。

支撑技术可以通过在零件上设置支撑点、改变切削路线等方式,有效地提高零件的刚度和稳定性,减少变形和振动。

可以在薄壁零件的内部设置支撑件,以增加结构的刚性,减少振动和变形。

3. 刀轴倾角补偿技术:在数控车削加工中,刀轴倾角对薄壁零件的加工具有重要影响。

合理地设置刀轴倾角可以有效地减少切削力和振动,避免因为切削力对零件产生的变形。

通过刀轴倾角补偿技术,可以实现对零件的精密加工,提高加工质量。

4. 加工路径优化技术:在数控车削加工中,通过优化加工路径,可以减少切屑对加工表面的损害,同时也可以减少切削力和振动。

在薄壁零件的加工中,通过合理设置加工路径和切削方向,可以减少切屑的产生,提高加工表面的光洁度和平整度。

技师论文薄壁零件加工

技师论文薄壁零件加工

浅谈薄壁零件的加工方法单位山东技师学院姓名郭尚超考评职称车工技师浅谈薄壁零件的加工方法摘要:薄壁零件已日益广泛地应用在各工业部门,但在薄壁零件的加工中会遇到比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。

高精度、薄壁腔体类零件金属切除量大、工件壁薄、刚性低,加工中需要解决的主要问题是控制和减小变形,在此基础上,希望尽可能提高切削效率、缩短加工周期。

其加工工艺需要从工件装夹、工序安排、切削用量参数、刀具选用等多方面进行优化。

关键词薄壁零件精度加工方法一.影响薄壁零件加工精度的主要因素影响薄壁零件加工精度的因素有很多,但归纳起来主要有以下三个方面:1.工件的尺寸精度和形状精度。

易受力变形。

因壁薄,在夹紧力的作用下,容易产生变形,从而影响2. 易受热变形。

因工件较薄,切削热会引起工件热变形,使工件尺寸难以控制。

3. 易振动变形。

在切削力(特别是径向切削力)的作用下,容易产生振动和变形,影响工件的尺寸精度和形状,位置精度和表面粗糙度。

二.减少薄壁工件变形的方法主要是减少切削力和切削热,改善或改变夹紧力对零件的作用。

1. 在切削过程中,切削力时必然要产生的,但它的大小时可以改变的,影响切削力的大小的因素很多,主要是被加工件材料、刀具、切削用量和冷却润滑等几个方面。

2. 减少切削力的方法。

在薄壁零件的切削中,合理的刀具几何角度对车削时切削力的大小是至关重要的。

刀具前角大小,决定着切削变形与刀具前角的锋利程度。

前角大,切削变形和摩擦力减小,切削力减小,所以前角取5-20°,刀具的后角大,,摩擦力小,切削力相应减小,所以后角取4-12°。

主偏角在30-90°范围内,车薄壁零件的内外圆时,取较大的主偏角,副偏角取8-15°。

三.合理地选择切削用量降低切削力切削力的大小与切削用量密切相关,背吃刀量和进给量同时增大,切削力增大,变形也大,对车削薄壁零件极为不利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄壁零件加工方法研究【摘要】在实际生产加工中,薄壁零件由于其刚性差、易变形等特点,导致其尺寸精度、形位精度及表面质量难以得到保证,给加工增加了不少难度。

本文对切削加工中常见问题进行分析,提出相应方案加以解决改善,并对几种新型的切削加工方法进行了简单介绍。

【关键词】薄壁零件;加工变形;工艺措施;误差补偿;高速切削薄壁零件通常也叫薄壳零件,这类零件的壁厚和它的轴向或径向尺寸比较相差很悬殊,一般认为零件的壁厚与零件最大尺寸比值小于1/20时,就属于薄壁零件。

由于这类零件具有重量轻,节省材料,结构紧凑,占空间位置少等特点,因此在机械、航空航天、船舶等很多领域中有较广泛的应用。

当然这类零件的加工方法有多种,例如车削、冲压、焊接、滚压等,但对于一些截面比较复杂而尺寸精度和表面粗糙度要求又比较高的薄壁零件,经常采用车削的方法来加工,因此车床上车削加工薄壁零件是一种很重要很普遍的加工方法。

在实际车削加工过程中,由于薄壁零件的毛坯刚性差、强度弱,所以容易发生变形,导致零件的几何精度、位置精度、表面质量等受到影响,易保证零件的加工质量,给车削加工带来一定的困难。

因此如何提高薄壁零件的加工精度,减少加工变形,保证产品合格率是业界内越来越关心的话题。

因此对薄壁零件切削过程中的常见问题及解决方法作如下讨论。

1.工件装夹不当产生变形薄壁零件在夹紧力的作用下容易产生变形,影响工件的尺寸精度和形状精度。

车削时为了方便,常采用三爪自定心卡盘装夹工件,如图所示,用三爪自定心卡盘装夹薄壁圆柱零件外圆加工内孔时的示意图。

当卡爪夹紧工件时,由于卡爪和工件外圆表面间的接触面太小,导致夹紧力分布不均匀,在夹紧力的作用下,工件与卡爪接触的部位产生弹性变形,使零件呈现出三棱形如图1。

三棱形内孔经过车削加工为圆柱孔后,不松开卡爪测量孔的尺寸,完全能符合零件图所规定的尺寸要求如图2。

但由于内孔的加工是在工件已产生弹性变形的状态下车出来的,加工完毕松开卡爪后,卸下的工件外圆因弹性变形恢复成圆形,而已加工出的圆柱孔则变成三棱形,如图3所示。

同理用一般三爪卡盘的卡爪涨紧薄壁件的内孔加工外圆表面时,也会出现类似的变形情况。

为避免出现这种情况,可用措施如下:1.1采用开口过渡环根据工件的外径做一个开口过渡环,将其装配在工件在外面,三爪卡盘直接和过渡环接触夹紧,而工件则通过开口过渡环来夹紧,这样夹紧力也就均匀分布在极大的工件接触面上,可避免工件的装夹变形,如图4所示。

1.2采用专用卡爪专用卡爪也就是软卡爪,采用软金属材料并加大接触面,工件夹紧时夹紧力就能较均匀地分布在较大的工件接触面上,可有效地避免装夹变形。

使用软卡爪装夹薄壁零件是一种即简便又行之有效的装夹方法,软卡爪可根据工件的实际情况做成不同的形状。

为提高定位精度,在使用卡爪前,应使其在夹紧或涨紧状态下,根据工件尺寸对其定位基面精车一刀,使它和工件定位基准尺寸一致,如图5所示。

1.3变径向夹紧为轴向夹紧由于薄壁零件径向刚性比轴向差,为减少夹紧力引起的变形,当工件结构允许时,可采用轴向夹紧的夹具,以改变夹紧力的方向,如图6所示。

1.4增加套类薄壁件毛坯刚性在零件的夹持部分增设几根工艺肋或凸边,使夹紧力作用在刚性较好的部位以减少变形,等加工终了时再将肋或凸边切去,如图7所示。

2.切削力引起变形当刀具切入工件挤压被切削金属时,材料内部晶粒变形,分子之间产生滑移,形成材料与晶粒之间的内摩擦。

当切屑形成后,它又沿着刀具前面排出,切屑和刀具前面之间、刀具后面和工件加工表面之间形成外摩擦。

内、外摩擦力在切削过程中作用在刀具上,阻止刀具进行切削,形成切削抗力即切削力。

它是由几个分力组成的空间力,为便于分析计算,一般将其分解为相互垂直的三个力:主切削力、径向切削力和轴向切削力。

径向(轴向)切削力使刀具在切削过程中产生径向(轴向)反作用力,使工件产生弹性变形和振动。

若工件不同部位刚度不同,则在切削加工时产生的弹性变形也不同,使刀具实际切去的材料厚度不同,最终导致工件产生变形。

例如工件两端刚度好,越靠近中间刚度越差,则在径向切削力的作用下,越靠近中间产生的弹性变形越大,即“让刀”越严重,致使刀具在两端切去的金属多,中间切去的金属少,则加工的工件呈现中间厚,两端逐渐减薄的曲面形状。

轴向切削力同样由于工件从中心到外径处刚度的不一致,产生不同的弹性变形,最终导致工件端面不再是一个平面而呈现一个凹心面或凸肚形状。

在实际切削加工过程中,切削力是必然存在不可消除的,但可以采取有效措施来改变切削力的大小,从而减小工件因切削力而产生的变形量,提高加工质量。

对切削力有影响的因素有很多,主要归纳为几下几方面:2.1刀具的几何参数2.1.1前角在一定范围内,切削力随前角增大而减小。

因为前角的大小,决定着切屑变形情况和切屑与刀具前面的摩擦情况,若前角增大会使切屑变形和摩擦均减小,切削力减小。

但前角不能太大,否则会使刀具的楔角减小,刀具强度减弱,刀具散热情况差,磨损加快,所以,一般车削钢件材料的薄壁零件时,用硬质合金刀具,前角取5~20°,粗车时取小值,精车时取大值。

2.1.2后角一般情况下,切削力会刀具后角的增大而减小,因为后角决定着刀具后面与工件切削表面之间的摩擦力大小,后角大,摩擦力小,则切削力减小。

但后角也不能太大,否则会引起刀具强度减弱等不良后果。

在车削钢类薄壁件时,硬质合金刀具后角取2~12°,粗车时取小值,精车时取大值。

2.1.3主偏角刀具主偏角在30~60°时,主切削力随主偏角的增大而减小;主偏角在75 ~90°时,主切削力随主偏角的增大而增大;通常主偏角在60~75°时,主切削力较小。

此外,主偏角的增大,使轴向切削力增大,径向切削力减小。

车削套筒类薄壁零件的外圆表面时,取大的主偏角。

2.1.4刃倾角刃倾角的变化,对主切削力的变化不大,但对轴向、径向切削力的影响却很大。

实验表明,当刃倾角增大时,使轴向切削力增大,径向切削力减小。

2.2切削用量的选择车削过程中,背吃刀量和进给量增大时,切削面积将增大,导致切削力增大。

但当切削面积相同时,增大进给量比增大背吃刀量对切削力增大的影响要小。

所以,粗加工时,背吃刀量和进给量可以取大些,背吃刀量一般在0.2~2mm,进给量一般在0.2~0.35mm/r:精加工时,背吃刀量一般在0.2~0.5mm,进给量一般在0.1~0.2mm/r 甚至更小。

当切削速度大于50m/min时,随着切削速度的增加,前刀面上的摩擦系数减少,剪切角增大,变形系数减小,切削力将减小。

因此粗车时要选用50~80m/min,精车时用尽量高的切削速度,可选用60~120m/min,但不易过高。

因此在切削加工时,需合理选用三要素才能有效减少切削力,从而减少变形。

3.切削热引起变形在车削过程中,由于切屑变形和切屑、刀具、工件间的摩擦,产生大量的热,它传到刀具上使刀具的硬度降低,加速刀具的磨损,使工件加工表面光洁度降低,它传到工件上,使工件产生热变形。

使用切削液能够吸收并带走切削区域大量的热量,减小工件因热变形产生的误差,切削液还能渗透到工件和刀具之间,减小摩擦并冲走吸附在刀具和工件上的细小切屑。

因此合理地使用切削液能减小切削力,提高刀具耐用度,提高加工表面质量,使工件不受切削热的影响而产生变形,保证加工精度要求。

车削钢类薄壁零件时,一般建议使用乳化液,而工件表面质量要求高时使用矿物油较好。

4.振动影响精度车削薄壁工件时,变形与振动相互影响,使工件变形加剧,影响工件加工精度。

虽然振动不可能完全消除,但采取必要的措施可以减少振动。

(1)调整车床的主轴、刀架、床鞍等运动部件的间隙,使其处于最佳运转状态,加强工艺系统自身的刚度。

(2)使用吸振材料。

用软橡胶片、橡胶软管、泡沫塑料等吸振材料,填充或包裹工件后进行车削,有减振甚至消振的作用。

薄壁工件内孔精加工完毕后,精车外圆前可将预先准备好的软橡胶片卷成筒状,塞入工件孔内,当工件旋转时,在离心力的作用下橡胶片将紧贴孔壁,能阻尼减振并防止振动的传播,若薄壁工件的外圆已完成精车,需继续精加工内孔时,可将软橡胶胶管均匀地绕在工件外圆上,也能获得较少振动的效果。

(3)远离振源。

车削中途发生振动应立刻停止,先用降低主轴转速、减小背吃刀量、增大进给量的方法消除振纹。

然后对刀具几何角度是否合格,工艺系统刚度的好坏等进行仔细检查,无误后重新开始车削。

5.工艺路线的拟定薄壁零件由于本身刚度差,易变形,因此其工艺过程可划分为粗车、半精车和精车三个阶段来拟定工艺路线。

在粗车中产生的误差和变形可以通过半精车和精车给予修正,并逐步提高零件的精度和表面质量,得到合格产品。

在考虑工艺路线时还应重视热处理的安排。

在毛坯形成后,粗车前之前应安排人工时效处理,这可消除毛坯制造过程中产生的残余应力,为粗车减少变形量。

在粗车后,精车前,必须再安排一次或多次时效处理,以消除粗加工时产生的应力。

对于提高工件表面硬度、改善工件表面力学性能的淬火、渗碳淬火等热处理通常安排在半精加工和精加工之间。

6.薄壁零件新型加工方法6.1误差补偿技术薄壁零件的数控加工技术是现代制造企业的核心技术,误差补偿技术应用于薄壁零件加工是通过分析各种不同的误差来源及变化规律,建立适当的误差模型进而有效克服切削力变形、热变形等数控机床加工误差因素的影响,提高零件加工精度。

其中南京航空航天大学何宁教授提出的刀具偏摆数控补偿工艺,基本思想是通过建立受力模型、变形模型及数控补偿模型得到数控补偿方案,是使用有限元分析法,模拟分析切削加工时变形的大小,在数控编程时通过刀具偏摆,让刀具在原运动轨迹基础上按变形程度附加连续偏摆,补偿因变形而产生的让刀量,实现一次清除让刀残余材料,使薄壁零件壁厚精度得以保证。

从而保证加工精度。

数控补偿工艺需配备高精度五轴数控机床,适用于高端制造行业,如航天航空加工中。

6.2高速切削加工技术高速切削是当今制造业中一项快速发展的新技术,一般认为应是常规切削速度的5~10倍。

在工业发达国家,高速切削正成为一种新的切削加工理念。

切削温度、切削力通常随切削速度升高而升高,但超过一定范围后,反而随切削速度的升高而下降,如图8所示。

所以高速切削薄壁零件具有以下优越性:(1)高速切削时,由于采用极小的切削深度和很窄的切削宽度,因此和常规切削状态下的切削力相比至少可减小30%,所以在加工薄壁、薄板类零件时可减小加工变形,易于保证零件的尺寸精度和形位精度。

(2)高速切削时由于切削热的95%将被切屑带走,工件温度升不高,工件的热变形小,这对于减小薄壁、薄板类零件的变形非常有利。

(3)由于工件的表面粗糙度对低阶频率最为敏感,而高速切削时,刀具切削的激振频率很高,远离了零件结构工艺系统的低振频率范围,不会造成工艺系统的受迫振动,从而避免切削振动,实现平稳切削降低了表面粗糙度,使加工表面非常光洁,可达到磨削的水平。

相关文档
最新文档