热工基础ppt
合集下载
热工基础PPT课件
第四节 流体静力学基本方程及其应用
一、静力学基本方程
1.方程式的推导 • 建模:一盛有静止液体的容器
• 受力分析 液柱所受的质量力只有重力
G= -mg=-hAg
表面力: 液柱上表面:-p0A 液柱下表面:pA
热工基础 高职高专 ppt 高等职业教育 课件
根据受力平衡有:
p Ap0AghA 0
化简得:
•计示压强会随大气压的变化而改变
• 绝对压强和计示压强的关系
热工基础 高职高专 ppt 高等职业教育 课件
绝对压强和相对压强的应用
属于流体的物性和状态的有关公式、计 算、资料数据等多采用绝对压强,例如 理想气体状态方程,饱和蒸汽压,汽轮 机主汽门前的蒸汽参数,凝汽器或除氧 器参数等的压强值。
属于流体工程的强度、测试等有关压强 值多采用计示压强。例如计算受压容器 强度,管道附件公称压力,高压加热器 水侧压力,汽轮机调节和润滑油压,泵 与风机进出口压强等。
一部分是自由液面上的压强p0;另一部分是该点到
自由液面的单位面积上的液柱重量ρgh。当p0有变
化时,液体内部各点的压强也发生同样大小的变化, 这就是著名的帕斯卡原理,该原理在水压机、液压 传动等水利机械中得到广泛应用。
➢ 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,压强值成正比增大。
• 互不掺混的两种液体的分界面,如水和水
银等。
气 水
液
水银
热工基础 高职高专 ppt 高等职业教育 课件
例2-1 判断连通器中的等压面
油 水
Ⅲ
Ⅲ
9 10 11
Ⅱ5
Ⅱ
6
7
8
Ⅰ 1
Ⅰ
2
3
一、静力学基本方程
1.方程式的推导 • 建模:一盛有静止液体的容器
• 受力分析 液柱所受的质量力只有重力
G= -mg=-hAg
表面力: 液柱上表面:-p0A 液柱下表面:pA
热工基础 高职高专 ppt 高等职业教育 课件
根据受力平衡有:
p Ap0AghA 0
化简得:
•计示压强会随大气压的变化而改变
• 绝对压强和计示压强的关系
热工基础 高职高专 ppt 高等职业教育 课件
绝对压强和相对压强的应用
属于流体的物性和状态的有关公式、计 算、资料数据等多采用绝对压强,例如 理想气体状态方程,饱和蒸汽压,汽轮 机主汽门前的蒸汽参数,凝汽器或除氧 器参数等的压强值。
属于流体工程的强度、测试等有关压强 值多采用计示压强。例如计算受压容器 强度,管道附件公称压力,高压加热器 水侧压力,汽轮机调节和润滑油压,泵 与风机进出口压强等。
一部分是自由液面上的压强p0;另一部分是该点到
自由液面的单位面积上的液柱重量ρgh。当p0有变
化时,液体内部各点的压强也发生同样大小的变化, 这就是著名的帕斯卡原理,该原理在水压机、液压 传动等水利机械中得到广泛应用。
➢ 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,压强值成正比增大。
• 互不掺混的两种液体的分界面,如水和水
银等。
气 水
液
水银
热工基础 高职高专 ppt 高等职业教育 课件
例2-1 判断连通器中的等压面
油 水
Ⅲ
Ⅲ
9 10 11
Ⅱ5
Ⅱ
6
7
8
Ⅰ 1
Ⅰ
2
3
热工基础ppt教学教材
18
活塞,汽轮机,火箭引擎 Piston, Gas Turbine & Rocket Engines
19
热电厂 Power Plants
20
Air Conditioning
21
能量转换装置工作过程简介
1、蒸汽动力装置 2、内燃机
22
在这个循环过程中,为什么要有一个放 热的过程?
如果设有放热过程它不是能更好地利用 能源吗?
三个守恒方程是指质量守恒方程、能量守恒方程 和熵守恒方程等,这是热工分析计算的基础;
27
四个热力过程指的是定温、定压、定容和绝热等 四个基本热力过程。包括过程的特点、过程中状 态参数的变化、热量和功量(机械功)的转化情况 等;
在实际的能量转换过程中,转换的效率不可能达 到100%,工程热力学所要研究的就是怎样使这个 效率达到最大,以更好地利用热能。
26
内容: “一种工质、两个基本定律、三个守 恒方程、四个热力过程、五方面应用”
一种工质是指理想气体,包括理想气体的定义、性 质、状态参数、状态方程等;
两个基本定律是热力学第一定律和第二定律,包括 了定律的定性和定量表达及有关应用等;
和破坏力非常大,每年因污染造成的经济损 失在1000亿元以上
能源供需矛盾十分突出
节能 7
热能的利用
能量的利用过程,实质上是能量的传递与转换过程。*
燃料电池
氢、酒精等二次能源
电能
机械能 辐射能
光电池
发电机
机械 风能、水能、海洋能
机械能
热能 直接利用
煤、石油、天然气
核能
核反应
燃烧 集热器
热机 90%
热 能 直接利用
3
0-1 能量与能源 能量
活塞,汽轮机,火箭引擎 Piston, Gas Turbine & Rocket Engines
19
热电厂 Power Plants
20
Air Conditioning
21
能量转换装置工作过程简介
1、蒸汽动力装置 2、内燃机
22
在这个循环过程中,为什么要有一个放 热的过程?
如果设有放热过程它不是能更好地利用 能源吗?
三个守恒方程是指质量守恒方程、能量守恒方程 和熵守恒方程等,这是热工分析计算的基础;
27
四个热力过程指的是定温、定压、定容和绝热等 四个基本热力过程。包括过程的特点、过程中状 态参数的变化、热量和功量(机械功)的转化情况 等;
在实际的能量转换过程中,转换的效率不可能达 到100%,工程热力学所要研究的就是怎样使这个 效率达到最大,以更好地利用热能。
26
内容: “一种工质、两个基本定律、三个守 恒方程、四个热力过程、五方面应用”
一种工质是指理想气体,包括理想气体的定义、性 质、状态参数、状态方程等;
两个基本定律是热力学第一定律和第二定律,包括 了定律的定性和定量表达及有关应用等;
和破坏力非常大,每年因污染造成的经济损 失在1000亿元以上
能源供需矛盾十分突出
节能 7
热能的利用
能量的利用过程,实质上是能量的传递与转换过程。*
燃料电池
氢、酒精等二次能源
电能
机械能 辐射能
光电池
发电机
机械 风能、水能、海洋能
机械能
热能 直接利用
煤、石油、天然气
核能
核反应
燃烧 集热器
热机 90%
热 能 直接利用
3
0-1 能量与能源 能量
热工基础课件及答案讲解(PPT文档)
问题: 能量是否还有其它的传递方式?
33
观察下面的过程,看热能是如何转换为功的
气缸
活塞
飞轮
热 源
工质、机器和热源组成的系统
假设过程是可逆的。 问题:过程可逆的条件是什么?
34
气缸
可逆过程模拟
活塞
飞轮
热 源
左止点
p
1
v
35
气缸
活塞
续4飞1 轮
热 源
左止点
p
1
2
v
36
气缸
热 源
左止点
p
1
续4飞1 轮
第二章 热力学第一定律
教学目标:使学生深入理解并熟练掌握热力学第一定律 的内容和实质,能将工程实际问题建立热力学模型。 知识点:理解和掌握热力学第一定律基本表达式——基 本能量方程;理解和掌握闭口系、开口系和稳定流动能 量方程及其常用的简化形式;掌握能量方程的内在联系 与共性,热变功的实质。 能力点:培养学生正确、灵活运用基本能量方程,对工 程实际中的有关问题进行简化和建立模型的能力。培养 学生结合系统的特点推导出闭口系、开口系及稳定流动 过程能量方程的逻辑思维能力和演绎思维能力。 1
?进入系统的能量qdvpde???2??111cvdeiwdvpde?22?离开系统的能量?控制容积系统储存能量的增加量57cvidewdvpdeqdvpde??????222111??icvwdvpdedvpdedeq????????111222进入系统的能量离开系统的能量系统储存能量的增加量pvuhgzcuemvvmeef???????212?58iffcvwmgzchmgzchdeq????????????????????????????112112222222此式为开口系能量方程的一般表达式????????????????2f2f?进出系统的工质有若干股则方程为
33
观察下面的过程,看热能是如何转换为功的
气缸
活塞
飞轮
热 源
工质、机器和热源组成的系统
假设过程是可逆的。 问题:过程可逆的条件是什么?
34
气缸
可逆过程模拟
活塞
飞轮
热 源
左止点
p
1
v
35
气缸
活塞
续4飞1 轮
热 源
左止点
p
1
2
v
36
气缸
热 源
左止点
p
1
续4飞1 轮
第二章 热力学第一定律
教学目标:使学生深入理解并熟练掌握热力学第一定律 的内容和实质,能将工程实际问题建立热力学模型。 知识点:理解和掌握热力学第一定律基本表达式——基 本能量方程;理解和掌握闭口系、开口系和稳定流动能 量方程及其常用的简化形式;掌握能量方程的内在联系 与共性,热变功的实质。 能力点:培养学生正确、灵活运用基本能量方程,对工 程实际中的有关问题进行简化和建立模型的能力。培养 学生结合系统的特点推导出闭口系、开口系及稳定流动 过程能量方程的逻辑思维能力和演绎思维能力。 1
?进入系统的能量qdvpde???2??111cvdeiwdvpde?22?离开系统的能量?控制容积系统储存能量的增加量57cvidewdvpdeqdvpde??????222111??icvwdvpdedvpdedeq????????111222进入系统的能量离开系统的能量系统储存能量的增加量pvuhgzcuemvvmeef???????212?58iffcvwmgzchmgzchdeq????????????????????????????112112222222此式为开口系能量方程的一般表达式????????????????2f2f?进出系统的工质有若干股则方程为
热工基础(张学学)第一章.ppt
对于可逆过程1~2:
W pdV
1
2
18
单位质量工质所作的膨胀功用符号 w 表示,单位为 J/kg 或 kJ/kg。 2
w pdv
w pdv
1
膨胀:dv > 0,w > 0; 压缩:dv < 0,w < 0。 (2) 示功图(p-v图)
w 的大小可以用 p-v 图上的 过程曲线下面的面积来表示 。
5
(3)状态参数 用于描述系统平衡状态的物理量称为状态参数,如温度、 压力、比体积等。 状态参数的特点:当状态确定时,状态参数的数值也随
之确定;反之亦然。
(4)非平衡状态 系统内部存在不平衡势(温差或压差),因此存在能量
或质量传递的宏观物理状况。
非平衡状态不能用状态参数来描写。
6
2. 基本状态参数
只有绝对压力 p 才是状态参数。 当绝对压力 p 高于大气压力 pb 时,有:p = pb + pe 当绝对压力 p 低于大气压力 pb 时,有:p = pb - pv
8
(2)温度 1)温度的物理意义
温度是反映物体冷热程度的物理量。温度的高低反映物
体内部微观粒子热运动的强弱。
当两个温度不同的物体相互接触时,它们之间将发生热 量传递,如果没有其它物体影响,这两个物体的温度将逐渐
22
(3)示热图(T-s图) 在可逆过程中,单位质 量工质与外界交换的热量, 可以用 T-s 图(温熵图)上 过程曲线下的面积来表示。 温熵图也称为示热图。
q Tds
1
2
23
热力学温标与摄氏温标的关系:
t = T – 273.15 K 温差:1 K = 1 ℃ 国际单位制(SI)采用热力学温度T 作为基本状态参数。
W pdV
1
2
18
单位质量工质所作的膨胀功用符号 w 表示,单位为 J/kg 或 kJ/kg。 2
w pdv
w pdv
1
膨胀:dv > 0,w > 0; 压缩:dv < 0,w < 0。 (2) 示功图(p-v图)
w 的大小可以用 p-v 图上的 过程曲线下面的面积来表示 。
5
(3)状态参数 用于描述系统平衡状态的物理量称为状态参数,如温度、 压力、比体积等。 状态参数的特点:当状态确定时,状态参数的数值也随
之确定;反之亦然。
(4)非平衡状态 系统内部存在不平衡势(温差或压差),因此存在能量
或质量传递的宏观物理状况。
非平衡状态不能用状态参数来描写。
6
2. 基本状态参数
只有绝对压力 p 才是状态参数。 当绝对压力 p 高于大气压力 pb 时,有:p = pb + pe 当绝对压力 p 低于大气压力 pb 时,有:p = pb - pv
8
(2)温度 1)温度的物理意义
温度是反映物体冷热程度的物理量。温度的高低反映物
体内部微观粒子热运动的强弱。
当两个温度不同的物体相互接触时,它们之间将发生热 量传递,如果没有其它物体影响,这两个物体的温度将逐渐
22
(3)示热图(T-s图) 在可逆过程中,单位质 量工质与外界交换的热量, 可以用 T-s 图(温熵图)上 过程曲线下的面积来表示。 温熵图也称为示热图。
q Tds
1
2
23
热力学温标与摄氏温标的关系:
t = T – 273.15 K 温差:1 K = 1 ℃ 国际单位制(SI)采用热力学温度T 作为基本状态参数。
热工基础复习总结PPT课件
第6页/共16页
四、理想气体的热力过程
1. 理想气体 4 种基本热力过程及多变过程的特点,过 程中状态参数及功与热量的计算,注意过程都是 可逆的。
2. 能按已知条件在 p-v及T-s 图上正确画出过程线, 注意过程线的起点应在 4 条基本过程线的交点上。
五、喷管、绝热节流 1. 喷管中气体流速和流量的计算、出口处压力 p2 与背压的关系、临界压力比的定义 、喷管的选型。
4)掌握热力学能、总能、焓、膨胀功、轴功、技术 功、流动功等概念以及膨胀功、技术功在 p- 图上 的图示。
第4页/共16页
3. 热力学第二定律的实质和经典表述。 1)理解热力学第二定律的实质和 2 种经典表述; 2)循环、卡诺循环(正、逆循环)的组成、经济性
指标, 卡诺定理的指导意义。
4. 熵的定义式,过程中引起熵变的原因,热熵流和熵
第7页/共16页
c 2(h1 h2 )
2. 绝热节流现象及其过程特点。
m A c
六、气体动力循环、致冷循环
1. 活塞式压气机的工作原理、三种压缩过程的分析及功和热量的计算;容积效率、 多级压缩的目的、最佳压力比及其确定原则、多级压缩的优缺点和参数特征。
2. 理解内燃机循环、燃气轮机循环和制冷循环的基 本工作原理;
注意定性温度、定型尺寸(特征尺寸)、特征速度 的选择和修正系数的使用。
三、辐射换热 1. 热辐射的基本概念: 包括热辐射的特点、 黑体、白体、透明体、灰体、辐射力、 有效辐个定律的内容及应用。 3. 角系数的定义、性质
角系数是纯几何参数,与表面性质无关,角系 数满足互换性、完整性和分解性。 4. 空间热阻、表面热阻、热阻网络图。 5. 两黑表面及两灰表面间辐射换热的计算。 6. 遮热板的原理及应用。
《热工基础》绪论PPT
年 中国 世界先进
g / kW. h
1960 1970 600 502
1980 1991 1997 448 424 408
2006 366 305
600 500 400 300 200 100 0 1960 1970 1980 1991 1997 2006 中国 世界先进
二Hale Waihona Puke 火力发电厂生产过程火力发电厂: 利用燃料燃烧放热生产电能的工厂
风 能
风 车
水 力 能
水水 力 车机 械
化 学 能
核 能
燃 裂 聚 烧 变 变
地 热 能
传 热
太 阳 能
光 热 光 电 反 应
热
热 机
温 差 发 电
能 (95%)
磁 流 体 发 电 热 用 户
机 械 能
发 电 机
电 动 机
电
能
太 阳 能 发 电
秦 山 核 电 站
西 藏 羊 八 井 地 热 发 电 站
《热工基础及应用》
课 程 性 质
岗位群
火电厂集控运行值班员、巡视员
专业
火电厂集控运行
课程
热工基础及应用(职业能力核心课程)
本课程为火电厂集控运行专业的职业能力核心课程,是针对大中型火力发
电厂运行与管理等岗位职业能力培养而设置的课程,旨在为大中型火电厂培 养具有运行操作基本技能、确保热力设备安全、经济运行的高素质技能型专 门人才。
传热过程是由导热、热对流、
热辐射三种基本方式组合形 成的
三、本课程主要内容及研究方法
(二)热工学主要研究方法
宏观方法为主,微观方法为辅
①宏观方法:即不考虑物质的微观结构,而是
从宏观现象出发来描述客观规律。用宏观物理量
g / kW. h
1960 1970 600 502
1980 1991 1997 448 424 408
2006 366 305
600 500 400 300 200 100 0 1960 1970 1980 1991 1997 2006 中国 世界先进
二Hale Waihona Puke 火力发电厂生产过程火力发电厂: 利用燃料燃烧放热生产电能的工厂
风 能
风 车
水 力 能
水水 力 车机 械
化 学 能
核 能
燃 裂 聚 烧 变 变
地 热 能
传 热
太 阳 能
光 热 光 电 反 应
热
热 机
温 差 发 电
能 (95%)
磁 流 体 发 电 热 用 户
机 械 能
发 电 机
电 动 机
电
能
太 阳 能 发 电
秦 山 核 电 站
西 藏 羊 八 井 地 热 发 电 站
《热工基础及应用》
课 程 性 质
岗位群
火电厂集控运行值班员、巡视员
专业
火电厂集控运行
课程
热工基础及应用(职业能力核心课程)
本课程为火电厂集控运行专业的职业能力核心课程,是针对大中型火力发
电厂运行与管理等岗位职业能力培养而设置的课程,旨在为大中型火电厂培 养具有运行操作基本技能、确保热力设备安全、经济运行的高素质技能型专 门人才。
传热过程是由导热、热对流、
热辐射三种基本方式组合形 成的
三、本课程主要内容及研究方法
(二)热工学主要研究方法
宏观方法为主,微观方法为辅
①宏观方法:即不考虑物质的微观结构,而是
从宏观现象出发来描述客观规律。用宏观物理量
热工基础基本概念 ppt课件
发电机
凝 汽 器
(2)工质(水,蒸汽)
(3)膨胀做功
(4)循环(加压、加热、 膨胀做功、放热)
给水泵
1.1 热能转变为机械能的过程
过热器 锅 炉
热机
汽轮机 (1) 热动力装置
蒸汽动力装置 发电机 燃气动力装置
凝
汽 (2) 热动力机(热机)
器
给水泵
1.1 热能转变为机械能的过程
(3)工质:实现热能与机械能转换的媒介物质。 如:燃气、烟气、水蒸气、氟利昂、空气。
热工学
Basis of Heat Energy Engineering
2015-03-03
能源转换利用的关系
风 能
水 能
化 学 能
燃 料 电 池
风 车
水水
轮 机
车
燃 烧
核 能
聚裂 变变
热
地
太
一次能源
热 阳 (天然存在)
能能
供 暖
光转 热换
光 电 转
换
能 90%
机械能 发电 电动 机机
热机
直接利用
二次能源
工程热力学与节能
工程热力学
是一门研究热能有效利用及热能和
其它形式能量建转立换节规律能的科学 理论及技术
热工学是重要的技术基础课
四大力学
理论力学:机械系统 热力学与统计物理学:热力系统 电动力学:电、磁系统 量子力学:微观系统 重要性
工程热力学 物理热力学 化学热力学 生物热力学 溶液热力学
热工学的研究内容
1.3 热力学状态及基本状态参数
状态:某一瞬间热力系所呈现的宏观状况 状态参数:描述热力系状态的宏观物理量。
结论:
• 状态一定,则状态参数也一定,反之亦然。 • 状态参数变换,则状态一定发生变化。
热工基础期末复习精品PPT课件
14
六、水定压加热汽化过程
1、水定压加热汽化过程
预热
汽化
过热
t < ts
t = ts
t = ts
t = ts
t >ts
15
第三章 理想气体混合物和湿空气
一、混合气体的分压力定律和分容积定律
质量分数 体积分数 摩尔分数 各种分数之间的换算
二、混合气体的比热容、热力学能、焓
1.比热容
c混 wici c混 xici Cm混xiCmi
们之间的比值是一定的。 热可以变为功,功也可以变为热;一定量的热消失时必定产生相 应量的功;消耗一定量的功时,必出现与之相应量的热。 应用范围:系统、工质、过程
第一定律第一解析式 QUW δQdUδW quw δqduδw 热 功的基本表达式
9
六、稳定流动能量方程式
流入系统的能量 – 流出系统的能量 = 系统内部储能增量: ΔECV 考虑到稳流特征: ΔECV=0 m1=m2=m; 及h=u+pv
3、 cp- cV
cpcVdh d T dudud p T vduduRdgTTduRg
cp cV Rg
迈耶公式
12
三、 理想气体热力学能和焓 仅是温度的函数 1、 因理想气体分子间无作用力
u u k u T d u c V d T
2、 hupvuRgT
hhT dhcpdT
3、利用气体热力性质表计算热量
Qmh2h1mc2f22c2f21mgz2z1W S
(A)
qh2h11 2cf22cf21 gz2z1 ws
(B)
1)改写式(B)为式(C)
q u w s p 2 v 2 p 1 v 1 1 2 c f 2 2 c f 2 1 g z 2 z 1 (C)
热工基础PPT 第一章 基本概念
������������������
状态参数是状态的单值函数,值取决于工质所处 状态,与过程无关
设x为任意状态参数,则
������2 ������1
������������ = ������2 − ������1 ,
������������ = 0
若x = f(y, z),则可得 ������������ ������������ ������������ = ������������ + ������������ ������������ ������������ 状态参数的积分与路径,状态参数 的微量是一个全微分
比体积和密度(v,ρ) ������ = ������ =
������ ������ ������ ������
������������/������3 ������3 /������������
密度单位体积内物质的质量
比体积指的是单位质量的物质所占的体积
比体积是一个状态参数,则密度肯定也是工质的一个状态
绝热 pm
pout
分析:(1)该系统满足弛豫时间短的条件; (2)设过程进行时 a. 无摩擦(无耗散效应); b. 没有压差(无势差损失)。
3.可逆条件
(1) 系统内外要随时处于力平衡和热平衡;
(2) 弛豫时间短; (3) 没有耗散效应 。
结论:可逆过程=没有耗散效应的v
1.2 状态参数 1.3 平衡状态 1.4 准静态过程及可逆过程 1.5 功和热量
系统中各处压力、温度均匀一致的状态,称为平衡状态。
当系统处于平衡状态的时候,系统中所有的状态参数都有
确定的数值,并且是一个定值。只有处于平衡状态的系统,
它的所有状态参数才会有确定的数值。
热工基础优秀课件
3.2.1静止流体所受的力
• 静止流体所受的外力有质量力和压应力两种,流体垂直 作用于单位面积上的力,称为流体的静压强,习惯上 又称为压力。
(1)压力单位 在国际单位制(SI制)中,压力的单位为N/m2,称
为帕斯卡(Pa),帕斯卡与其它压力单位之间的换算 关系为: 1atm(标准大气压)=1.033at(工程大气压)
应根据被测流体的种类及压差的大小选择指示液。
3.2.3 静力学原理在压力和压力差测量 上的应用
思考:若U形压差计安装在倾斜管路中,此时读
数 R反映了什么?
p1p2
(0 )gR(z2 z1)g
p1 z1
p2 z2
R A A’
3.2.3 静力学原理在压力和压力差测量
上的应用
• 2.压差计
(2)双液柱压差计
gz p常数
• 对于静止流体中任意两点1和2,则有:
p 2p 1g (z1z2)
两边同除以g
p2
g
p1
g
z1
z2
——静力学基本方程
3.2.2 流体静力学基本方程
• 讨论
(1)适用于重力场中静止、连续的同种不可压缩性流体;
(2)在静止的、连续的同种流体内,处于同一水平面上各点的压力 处处相等。压力相等的面称为等压面;
(3)压力具有传递性:液面上方压力变化时,液体内部各点的压力 也将发生相应的变化。即压力可传递,这就是帕斯卡定理;
(4)若记, 称为广义压力,代表单位体积静止流体的总势能(即 静压能p与位能gz之和),静止流体中各处的总势能均相等。因
此,位置越高的流体,其位能越大,而静压能则越小。
3.2.3 静力学原理在压力和压力差测量 上的应用
类似地,与x轴、y轴相垂直的面(参见图1-2)上受到 的应力分别为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
Steam Power
13
14
Transportation- Rail RAutomobiles
The first car that ever mastered a drive was built by the German engineer and inventor Carl Benz in 1885 .
HVAC — refrigeration systems, heat pumps, etc. 供热通风与空调工程——制冷系统,热泵等
Cryogenics — gas separation and liquefaction 低温——气体分离及液化
Biomedical applications 生物医学应用
10
热力学涉及领域
Combustion systems 燃烧系统
Power production — engines, power plants, etc. 动力的产生——发动机,电厂等。
Propulsion systems — aircraft, rockets, etc. 驱动系统——航行器,火箭等。
燃烧
太阳能 光合作用
生物质能 食物利用
8
热能的利用
两种基本方式
直接利用:将热能直接用于加热物体 如:烘干、蒸煮、采暖、熔化等等;
间接利用:将热能转变为其它形式的能 * 如:热能向机械能的转换 热能向机械能转换后再由机械能转换为电能 热能向电能直接转换
9
0-2 热工基础的研究内容
1.工程热力学的研究内容与研究方法 2.传热学的研究内容与研究方法
在实际的能量转换过程中,转换的效率不可能达 到100%,工程热力学所要研究的就是怎样使这个 效率达到最大,以更好地利用热能。
26
内容: “一种工质、两个基本定律、三个守 恒方程、四个热力过程、五方面应用”
一种工质是指理想气体,包括理想气体的定义、性 质、状态参数、状态方程等;
两个基本定律是热力学第一定律和第二定律,包括 了定律的定性和定量表达及有关应用等;
3
0-1 能量与能源 能量
能量是物质运动的度量。 世界是由物质构成的,一切物质都处于 运动状态,所以一切物质都具有能量。
能量是人类社会进步的动力。
4
能量的主要形式 :
机械能 : 物体的动能与势能; 热能 :物质分子热运动动能与位能之和,即不涉
及化学变化和核反应的热力学能,也称为内 热能;
电能 :与电荷的运动和积蓄有关的能量; 化学能 :通过化学反应释放的能量; 核能 :通过核反应释放的能量; 辐射能 :物体以电磁波的形式发射的能量。
Alternative energy systems — fuel cells, solar heating, geothermal, wind energy, ocean thermal, etc. 可再生能源的利用——燃料电池,太阳能加热系 统,地热系统,风能,海洋能等等
11
Fluid compression and movement — fans, pumps, compressors, etc. 流体压缩和运动——风机,泵,压缩机等
5
能源
定义:人类采用各种手段获取各类能量的物 质资源
分类:非再生能源(耗竭能源) 再生能源(非耗竭能源)
6
我国能源现状
集中在非再生能源的有效利用上 能源资源蕴藏量和产量居世界第3位 人均占有:世界平均值的1/4,
工业发达国家的1/15~1/20 中国能源开发利用过程中对生态环境的压力
这将是一个工程热力学研究的问题。
工程热力学重点研究热能转换成机械 能的过程
24
内燃机
热力过程 压 : 缩 火 进 花 气 点 燃 火 烧 膨胀 作 排功 能量转换: 热 燃 能 料 机化 械学 能能
25
热能动力装置的特点
从能量转换的角度分析,具有以下几个特点: 1.需要有某些物质作为工质,协助能量转换的 实施; 2.依靠工质膨胀作功产生动力; 3.工质从热源吸收的热能中,只有一部分转换 为功,其余的部分放给冷却水或大气。
和破坏力非常大,每年因污染造成的经济损 失在1000亿元以上
能源供需矛盾十分突出
节能 7
热能的利用
能量的利用过程,实质上是能量的传递与转换过程。*
燃料电池
氢、酒精等二次能源
电能
机械能 辐射能
光电池
发电机
机械 风能、水能、海洋能
机械能
热能 直接利用
煤、石油、天然气
核能
核反应
燃烧 集热器
热机 90%
热 能 直接利用
16
Transportation- Automobiles
17
Aviation: 1900
The world’s first power-driven, controlled and sustained flight invented and built by Wilbur and Orville Wright flown by them at Kitty Hawk, North Carolina December 17, 1903 .They opened the era of aviation.
热工基础
张学学 编著 石油工程学院流体热工教研室
贾敏
1
热工理论基础包括
工程热力学 (Engineering Thermodynamics) 研究热能的性质;热能与机械能以及其它
形式能量之间的相互转换规律 传热学 (Heat Transfer)
研究热量传递的规律
如何有效利用热能
2
绪论
0-1 能量与能源 0-2 热工基础的研究内容
18
活塞,汽轮机,火箭引擎 Piston, Gas Turbine & Rocket Engines
19
热电厂 Power Plants
20
Air Conditioning
21
能量转换装置工作过程简介
1、蒸汽动力装置 2、内燃机
22
在这个循环过程中,为什么要有一个放 热的过程?
如果设有放热过程它不是能更好地利用 能源吗?
三个守恒方程是指质量守恒方程、能量守恒方程 和熵守恒方程等,这是热工分析计算的基础;
27
四个热力过程指的是定温、定压、定容和绝热等 四个基本热力过程。包括过程的特点、过程中状 态参数的变化、热量和功量(机械功)的转化情况 等;
Steam Power
13
14
Transportation- Rail RAutomobiles
The first car that ever mastered a drive was built by the German engineer and inventor Carl Benz in 1885 .
HVAC — refrigeration systems, heat pumps, etc. 供热通风与空调工程——制冷系统,热泵等
Cryogenics — gas separation and liquefaction 低温——气体分离及液化
Biomedical applications 生物医学应用
10
热力学涉及领域
Combustion systems 燃烧系统
Power production — engines, power plants, etc. 动力的产生——发动机,电厂等。
Propulsion systems — aircraft, rockets, etc. 驱动系统——航行器,火箭等。
燃烧
太阳能 光合作用
生物质能 食物利用
8
热能的利用
两种基本方式
直接利用:将热能直接用于加热物体 如:烘干、蒸煮、采暖、熔化等等;
间接利用:将热能转变为其它形式的能 * 如:热能向机械能的转换 热能向机械能转换后再由机械能转换为电能 热能向电能直接转换
9
0-2 热工基础的研究内容
1.工程热力学的研究内容与研究方法 2.传热学的研究内容与研究方法
在实际的能量转换过程中,转换的效率不可能达 到100%,工程热力学所要研究的就是怎样使这个 效率达到最大,以更好地利用热能。
26
内容: “一种工质、两个基本定律、三个守 恒方程、四个热力过程、五方面应用”
一种工质是指理想气体,包括理想气体的定义、性 质、状态参数、状态方程等;
两个基本定律是热力学第一定律和第二定律,包括 了定律的定性和定量表达及有关应用等;
3
0-1 能量与能源 能量
能量是物质运动的度量。 世界是由物质构成的,一切物质都处于 运动状态,所以一切物质都具有能量。
能量是人类社会进步的动力。
4
能量的主要形式 :
机械能 : 物体的动能与势能; 热能 :物质分子热运动动能与位能之和,即不涉
及化学变化和核反应的热力学能,也称为内 热能;
电能 :与电荷的运动和积蓄有关的能量; 化学能 :通过化学反应释放的能量; 核能 :通过核反应释放的能量; 辐射能 :物体以电磁波的形式发射的能量。
Alternative energy systems — fuel cells, solar heating, geothermal, wind energy, ocean thermal, etc. 可再生能源的利用——燃料电池,太阳能加热系 统,地热系统,风能,海洋能等等
11
Fluid compression and movement — fans, pumps, compressors, etc. 流体压缩和运动——风机,泵,压缩机等
5
能源
定义:人类采用各种手段获取各类能量的物 质资源
分类:非再生能源(耗竭能源) 再生能源(非耗竭能源)
6
我国能源现状
集中在非再生能源的有效利用上 能源资源蕴藏量和产量居世界第3位 人均占有:世界平均值的1/4,
工业发达国家的1/15~1/20 中国能源开发利用过程中对生态环境的压力
这将是一个工程热力学研究的问题。
工程热力学重点研究热能转换成机械 能的过程
24
内燃机
热力过程 压 : 缩 火 进 花 气 点 燃 火 烧 膨胀 作 排功 能量转换: 热 燃 能 料 机化 械学 能能
25
热能动力装置的特点
从能量转换的角度分析,具有以下几个特点: 1.需要有某些物质作为工质,协助能量转换的 实施; 2.依靠工质膨胀作功产生动力; 3.工质从热源吸收的热能中,只有一部分转换 为功,其余的部分放给冷却水或大气。
和破坏力非常大,每年因污染造成的经济损 失在1000亿元以上
能源供需矛盾十分突出
节能 7
热能的利用
能量的利用过程,实质上是能量的传递与转换过程。*
燃料电池
氢、酒精等二次能源
电能
机械能 辐射能
光电池
发电机
机械 风能、水能、海洋能
机械能
热能 直接利用
煤、石油、天然气
核能
核反应
燃烧 集热器
热机 90%
热 能 直接利用
16
Transportation- Automobiles
17
Aviation: 1900
The world’s first power-driven, controlled and sustained flight invented and built by Wilbur and Orville Wright flown by them at Kitty Hawk, North Carolina December 17, 1903 .They opened the era of aviation.
热工基础
张学学 编著 石油工程学院流体热工教研室
贾敏
1
热工理论基础包括
工程热力学 (Engineering Thermodynamics) 研究热能的性质;热能与机械能以及其它
形式能量之间的相互转换规律 传热学 (Heat Transfer)
研究热量传递的规律
如何有效利用热能
2
绪论
0-1 能量与能源 0-2 热工基础的研究内容
18
活塞,汽轮机,火箭引擎 Piston, Gas Turbine & Rocket Engines
19
热电厂 Power Plants
20
Air Conditioning
21
能量转换装置工作过程简介
1、蒸汽动力装置 2、内燃机
22
在这个循环过程中,为什么要有一个放 热的过程?
如果设有放热过程它不是能更好地利用 能源吗?
三个守恒方程是指质量守恒方程、能量守恒方程 和熵守恒方程等,这是热工分析计算的基础;
27
四个热力过程指的是定温、定压、定容和绝热等 四个基本热力过程。包括过程的特点、过程中状 态参数的变化、热量和功量(机械功)的转化情况 等;