八年级数学全等三角形旋转综合题专项练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
C
B
图2
C
B
八年级数学全等三角形旋转综合题专项练习
例1.如图1,△ABC 是正三角形,△BDC 是等腰三角形,BD=CD ,∠BDC=1200,以D 为顶点作一个600角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN. (1)探究BM 、MN 、NC 之间的关系,并说明理由. (2)若△ABC 的边长为2,求△AMN 的周长.
(3)若点M 、N 分别是射线AB 、CA 上的点,其他条件不变,此时(1)中的结论是否还成立,在图2中画出图形,并说明理由.
练:在等边三角形ABC 的两边AB 、AC 所在直线上分别由两点M,N,D 为ABC ∆外一点,且
︒=∠︒=∠120,60BDC MDN ,BD=CD.探究:当点M,N 分别在直线AB ,AC 上移动时,BM,NC,MN 之间
的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系。
(1)如图(1),当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是_________;此时
_______=L
Q
(2)如图(2),当点M 、N 在边AB 、AC 上,且DM ≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明。
(3)如图(3),当点M 、N 分别在边AB 、CA 的延长线上时,若x AN ,则Q=______(用L x ,表示)
例2.如图1,E 、F 分别在正方形ABCD 的边BC 、CD 上,且∠EAF =45°。 (1)请猜测线段EF 、BE 、DF 之间的等量关系并证明。
(2)变式:如图2,E 、F 分别在四边形ABCD 的边BC 、CD 上,∠B +∠D =180°,AB =AD ,∠EAF =
1
2
∠BAD ,则线段BE 、EF 、FD 的等量关系又如何?请加以证明。 (3)应用:在条件(2)中,若∠BAD =120°,AB =AD =1,BC =CD (如图3),求此时△CEF 的周长。
C
D
F 图1
图2
C
图3
A
C
(3)
(2)
(1)
练:如图17(1),正方形ABCD ,E 、F 分别为BC 、CD 边上一点.①若∠EAF=45º.求证:EF=BE+DF . ②若⊿AEF 绕A 点旋转,保持∠EAF=45º,问⊿CEF 的周长是否随⊿AEF 位置的变化而变化? (2)如图17(2),已知正方形ABCD 的边长为1,BC 、CD 上各有一点E 、F ,如果⊿CEF 的周长为2. 求∠EAF 的度数.
(3)如图17(3),已知正方形ABCD ,F 为BC 中点E 为CD 边上一点,且满足∠BAF=∠FAE . 求证:AE=BC+CE .
例3.如图1,在正方形ABCD 中,对角线AC 与BD 相交于点E ,AF 平分BAC ∠,交BD 于点F . (1)求证:1
2
EF AC AB +
=; (2)点1C 从点C 出发,沿着线段CB 向点B 运动(不与点B 重合),同时点1A 从点A 出发,沿着BA 的延长线运动,点1C 与1A 的运动速度相同,当动点1C 停止运动时,另一动点1A 也随之停止运动.如图2,11A F 平分11BA C ∠,交BD 于点1F ,过点1F 作1111F E AC ⊥,垂足为1E ,请猜想11E F ,111
2
AC 与AB 三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当113A E =,112C E =时,求BD 的长.
F
E
D
C
B
A
F E D C B
A
B
D A
F
E G
C
例4.如图,在等腰Rt △ABC 与等腰Rt △DBE 中, ∠BDE=∠ACB=90°,且BE 在AB 边上,取AE 的中点F,CD 的中点G,连结GF.
(1)FG 与DC 的位置关系是 ,FG 与DC 的数量关系是 ;
(2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.
例5.如图1,在梯形ABCD 中,AD ∥BC ,︒=∠90C ,点E 为CD 的中点,点F 在底边BC 上,且
DAE FAE ∠=∠.
(1)请你通过观察、测量、猜想,得出AEF ∠的度数;
(2)若梯形ABCD 中,AD ∥BC ,C ∠不是直角,点F 在底边BC 或其延长线上,如图2、图3,其他条件不变,你在(1)中得出的结论是否仍然成立,若都成立,请在图2、图3
中选择其中一图进行证明;
图1
D
图2
D
1
C
B
A
C
若不都成立,请说明理由.
图 3
图 2
图 1
F
F F E
E
E
D
D
D
C C C B
B
B
A
A
A