客车电控空气悬架系统及其发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
客车电控空气悬架系统及其发展趋势_
-
客车电控空气悬架系统及其发展趋势
威巴克空气弹簧在客车上应用
随着人们对车辆乘坐舒适性要求的提高和我国客车悬架技术的发展,空气悬架在客车上的应用日益广泛。传统的空气悬架控制模式是采用机械高度阀,即通过高度阀阀门的开启调节对空气悬架气囊的充放气,从而保持车辆恒定的行驶高度。随着系统应用的推广和车辆控制技术的发展,电子控制逐渐取代传统的机械控制电子控制系统,不仅提高了操作的舒适性和反应的灵敏度,而且可以附加很多辅助功能。
为了确保悬架的主要特性,即避振性(振动衰减力)、弹性常数、减振器行程,不断研制成功了能适应各种行驶工况的最优控制机构。
客车的电子控制主动悬架
对主动悬架的研究目前主要集中两个方面:一个是控制策略;另一个是执行器。最早的主动悬架控制策略是天棚原理,假设车身上方有一固定的惯性参考,在车身和惯性参考之间有一阻尼器,执行器模拟此阻尼器的作用力来衰减车身的振动。这种控制算法简单,在国外某些车型上已经得到了应用。随着现代控制理论的发展,提出了主动悬架的最优控制方法,它比天棚原理考虑了更多的变量,控制效果更好,目前最优控制规律有三种:线性最优控制、HQ最优控制和最优预见控制。由于实际悬架系统中有许多非线性的、时变的、高阶动力系统,使最优控制方法变得不稳定,为此又发展了自适应控制方法。自适应控制方法具有参数识别功能,能适应悬架载荷和元件特性的变化,自动调整控制参数,保持性能最优。自适应控制方法也有增益调度控制、模型参考自适应控制和自校正控制三类。在德国大众汽车公司的底盘上应用了自适应控制规律。目前发展最迅速的控制策略是智能控制(模糊控制和神
经网络控制)。模糊控制方法具有制动调节输入变量的组合、隶属函数的参数和模糊规则数目等学习功能,计算机仿真结果表明该方法更有效。神经网络是一个由大量处理单元组成的高度并行的非线性动力系统,它能进行数据融合、学习适应性和并行处理,研究表明它比传统控制有更好的性能。
执行器是实现控制目标的重要环节,因此作对动器的研究也是主动悬架研究的重要内容。为保证主动悬架的良好性能,执行器必须具有灵敏、隐定、可靠、能耗低、成本和总量低等特点。目前主动悬架上应用的执行器主要是液力式结构。日产公司则开发了蓄能式减振器,它将压力控制阀同小型蓄能器及液压缸结合起来,使路面不平整引起的振动被蓄能器吸收,车身隔振由主动阻尼和被动阻尼共同完成,因而能耗有所降低。不过液压动力系统尚有许多不足之处,比如对工作环境有一定要求;元件制造精度要求高、成本难以下降;处理小信号的数字运算,误差的检测与放大、测试与补偿、自动化与实现远距离等功能不如电气系统灵活准确等。因此现在执行器的研究主要集中在直线伺服电机、电磁蓄能器的方向。
电气动力系统中的直线伺服电机具有较多的优点,永磁直流直线伺服电机,其驱动性能优于液压系统,今后将会取代液压执行机构。运用电磁蓄能原理,结合参数估计自校正控制器,可望设计出高性能低功耗的电磁蓄能式自适应主动悬架。
客车ECAS系统的功能和优势
汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。客车电子控制空气悬架系统(ECAS)系统常有如下功能和优势。
(1)车辆升降功能。车辆行驶时,ECAS维持正常底盘高度,在特殊路况和行驶
条件下,可通过控制开关提升或者降低车辆的底盘高度,方便车辆轮渡或者通过隧道。ECAS还允许电控单元设置车辆速度,通过车速控制整车高度,比如当车速达到20km/h 时,车辆可自动回复正常行程高度。
(2)侧倾功能。此功能是用于城市公交车的专用功能。当车辆到站时,车门侧空气气囊放气,如只有前车门则将该侧前左右二个空气气囊同时放气,如有前、后两个车门,则该侧后空气气囊放气车门侧的踏步高度可自动降低,便于婴儿车、轮椅车的上下,方便老、幼年乘客和残障人士乘车。
ECAS可以实现对侧倾高度的设定和控制,有单侧侧倾或单轴侧倾多种方式供选择,同时系统监视安装在车门下的接触开关来保证降低过程的安全性,如果接触开关在降低过程中有反应,客车将自动回复到正常行车高度。
(3)车辆限高功能。ECAS可以设置车辆的最低和最高底盘高度。一旦达到设定的最低和最高位置,电控单元将自动结束高度调节。
(4)高度集成化的系统。系统零部件少,安装简单降低装配成本。
(5)快速调节过程。由于采用大截面进(出)气口的电磁阀而使所有升降过程变得非常迅速。
(6)减少空气消耗。避免车辆正常行驶振动过程中的空气消耗。以低地板城市客车为例与机械高度阀控制的空气悬架系统相比,ECAS可节省大约25%的空气消耗。
(7)压力监视功能。电控单元检测供气压力,处于安全的考虑如果气压低于一定值,下降和侧倾功能将受限。
(8)安全控制。电控单元根据当前车门开关信息,判断是否能提升/下降车辆。
(9)维修检测。专用诊断软件和检测设备,可做到下线时快速检测及调整;方便的闪码功能,便于售后维修检测。
在我国,ECAS已走进了高档公交车和旅游车市场,它的功能性和便利性越来越多的被市场所接受。在我国公交市场上,已经开始规模使用带ECAS的城市公交车,相信随着我国城市公交车的性能提升和产品换代,可以实现车身“侧倾”功能的ECAS系统,将越来越多的出现在城市公交市场,给公共交通事业增添人文色彩。
客车ECAS系统的结构原理
ECAS系统主要由电控单元(ECU)、电磁阀、高度传感器、空气气囊等部件组成。它的基本工作原理是高度传感器负责检测车辆高度(车架和车桥间的距离)的变化,并把这一信息传递给电控单元,除高度信息外,电控单元还接受其它的输入信息,如车速信息、制动信息、车门信息和供气压力信息等,然后电控单元综合所有的输入信息,判断当前车辆状态按照其内部的控制逻辑,激发电磁阀工作,电磁阀实现对各个空气气囊的充放气调节。
ECAS的一个主要优点是能快速的达到所需的控制高度,这是由于ECAS电磁阀采用大截面的进出气口,然而不管电磁阀的反应有多快,可能过量的空气仍被充入空气气囊,并导致随后的高度高于期望的标准高度,即“过冲”。当车辆处于空载状态时,由于系统储气筒压力和空载时,空气气囊间大的压差造成气流速度非常快,导致这种“过冲”更加频繁。有时“过冲”能导致高度在标准高度周围长久的振荡,这种控制过程不是我们所期望的,同时也减少了电磁阀的寿命。因此,要想达到精确的标准高度,控制过程需按照下面的方式进行:在即将达到标准高度前,减少气流量,降低上升速度。如果系统调整的恰当,将不会出现任何“过冲”。因为电磁阀只能控制气流的通断,不能减少气体的体积,如果用脉冲电流控制电磁阀,那么电磁阀就能短时的中断气体的流通起到了节流的效果。
ECAS电控单元采用脉冲方式控制电磁阀的开启,根据当前实际高度与预期调节高度的偏差,电控单元计算电磁阀的调节脉冲长度,如果需要调节的高度量大、由于没有“过冲”的危险,电控单元将给出一个长的脉冲,同时,快的上升速度将减小脉冲长度,这样就能精确控制车辆的高度调节速度,极大的避免了高度的“过冲”及振荡调节。