第十二章蛋白质代谢

合集下载

生物化学第12章、蛋白质的降解及氨基酸代谢

生物化学第12章、蛋白质的降解及氨基酸代谢

三、蛋白质降解的反应机制:


真核细胞对蛋白质的降解有二体系: 一是溶酶体系,即溶酶体降解蛋白质,是非选 种择性; 二是以细胞溶胶为基础的,依赖ATP机制,即 泛肽标记选择性蛋白质降解方式
四、机体对外源蛋白质的消化
(一)体内的蛋白酶系
1、 按存在部位分: (1)胃:胃蛋白酶 (2)小肠:胰蛋白酶,胰凝乳蛋白酶、弹性蛋白 酶、 羧肽酶(A、B)、氨肽酶。
五、生酮氨基酸和生糖氨基酸
一、生酮氨基酸


1、生酮氨基酸:有些氨基酸在分解过程中转变为 乙酰乙酰CoA,而乙酰乙酰CoA在动物的肝脏中 可变为酮体(乙酰乙酸和β-羟丁酸)。 2、种类:Leu、Lys、Trp、Phe、Tyr。
二、生糖氨基酸


1、生糖氨基酸:凡能生成丙酮酸、α-酮戊二酸、 琥珀酸和草酰乙酸的氨基酸,它们都能导致生成 葡萄糖和糖原。 2、种类:15种
(2)外切酶:从氨基端或羧基端逐一的向内水 解肽链成氨基酸


氨肽酶:从N末端水解肽键; 羧肽酶A:水解除Pro、Arg、Lys外的C末端残基; 羧肽酶B:水解Arg、Lys为C末端的残基;

蛋白质经过上述消化管内各种酶的协同作用, 最后全部转变为游离的氨基酸。
第二节、氨基酸的分解代谢
一、氨基酸降解
二、氨的代谢去路

氨对生物机体是有毒物质,特别是高等动物的 脑对氨极为敏感。血液中1%的氨就可引起中枢 神经系统中毒。
1、 氨的转运

在血液中主要以谷氨酰胺(需谷氨酰胺合成酶) 形式转运到肝脏,形成尿素;
COOH CH2 CH2 CHNH2 COOH Glu
N H3
ATP
A D P+ P i

第十二章 激素对代谢的调节

第十二章 激素对代谢的调节

对心肌的作用
胰高血糖素可使心肌的CAMP(环腺 苷酸)增加,使心跳加快,CO增加,平均 动腺Fe升高,增加心肌耗氧量。
胰高血糖素对运动的 反映和适应
对运动的反应
短时间静维持一 定运动时,血浆胰高 血糖素浓度不变。进 行长时间运动时,血 浆胰高血糖素浓度逐 渐升高。
对训练的适应
耐力训练可使安静 时血浆胰高血糖素浓度 下降。
质合成作用,使该部受损细胞产生多肽类活性物的能力受抑制。
剧烈运动对人体来说也是一种应激刺激。运动一切 的应激称为运动应激,它属于生理应激。生理应激的三 个阶段是:1)机体对刺激的直接反应及代偿反应,如运 动时呼吸频率和心率加快,血压升高;2)机体对刺激的 部分或全部适应,表现为机体某些机能提高以适应所接 受的刺激;3)刺激结束后的恢复阶段,这时应激反应和 适应反应逐渐消失,机体恢复到运动前状态。 应激时各种刺激,作用于外周和中枢神经的不同部 位,最后经下丘脑—腺垂体—肾上腺皮质轴使促肾上腺 皮质激素释放激素(CRH),促肾上皮质激素(ACTH) 和肾上腺皮质激素分泌增加。一次应激可使肾上腺皮质 激素的分泌持续几个小时。刺激愈强,分泌量愈高,持 续时间愈长。
胰岛素的生物学作用 胰岛素对ห้องสมุดไป่ตู้动的反应和适应
胰高血糖素的生物学作用
对心肌的作用
胰高血糖素对运动的反映和适应
胰岛素的生物学作用
对糖代谢的作用
1) 胰岛素促进外周组织细胞 摄取葡萄糖
2) 促进葡萄糖磷酸化生成, 并进步氧化生成丙酮酸, 并通过增强磷酸酶的作用, 使丙酮酸生成乙酰COA, 在乙酰COA酸化酶的作用 下生成脂肪酸,然后转送 到脂肪组织贮存。
甲状腺素对运动的反 应和适应
1) 对运动的反应 一次运动后甲状腺素总浓度没有变 化,但游离T4的浓度提高35%。

第十一章 蛋白质代谢(一)

第十一章 蛋白质代谢(一)
在胞质; 精氨琥珀酸合成酶催化瓜氨酸与Asp缩合; 消耗2个高能键。

D、形成精氨酸

精氨琥珀酸酶催化精氨琥珀酸上Asp骨架 以延胡索酸形式移去。
E、尿素形成、鸟氨酸再生义:
A、有利于生物体的自身保护; B、防止过量氨积累于血液而引起神经中毒。
尿 素 循 环 与 的 关 系
酮体的生成与代谢
CO2的代谢
1)氨基酸脱羧后形成的CO2大部分直接排 出细胞外。 2)小部分可通过丙酮酸羧化支路被固定, 生成草酰乙酸或苹果酸。这些有机酸的 生成对于三羧酸循环以及通过三羧酸循 环产生发酵产物有促进作用。
胺的代谢
大多数胺类对动物有毒,去向: 1)随尿排出; 2)在胺氧化酶作用下可进一步氧化分解:
三大代谢
分解代谢 脱羧 CO2、胺能源
氨 基 酸 代 谢 概 况
酮体
食物蛋白质
消化吸收 合成 分解
尿素

a-酮酸
脱氨基
氧化供能

组织蛋白质
氨基酸代谢库
代谢转变
脱羧基
体内合成氨基酸
(非必需aa)
其它含氮化合物 (嘌呤、嘧啶等)
胺类
(一)脱氨基作用
主要有氧化脱氨、转氨、联合脱氨 1、氧化脱氨作用: 1)概念: α-aa在酶催化下氧化成α-酮酸,反 应需氧并产生氨。 此作用普遍存在于动物细胞中,主要 在肝中进行。
混合食物蛋白质的互补作用
蛋白来源 重量% 单食时BV 混食时BV —————————————————————— 豆腐干 42 65 77 面 筋 58 67 —————————————————————— 小 麦 39 67 小 米 13 57 89 牛 肉 26 69 大 豆 22 64

生物化学第十二章细胞代谢和基因表达调节

生物化学第十二章细胞代谢和基因表达调节
? 基于乳糖对乳糖代谢酶的诱导现象:
大肠杆菌培养基中没有乳糖,则细胞内参与乳糖分解代
谢的3种酶很少( β -半乳糖苷酶 0.5-5个/cell );一旦 加入乳糖或其类似物,则几分钟内酶分子数骤增( β -半 乳糖苷酶 5000 个/cell ,其它两种酶也大量增加)。
为什么加入底物,相应的分解代谢的酶才会合成?
管家基因较少受环境因素影响,在个体各个生长阶段
的大多数或几乎全部组织中持续表达,或变化很小,这类 基 因 表 达 被 视 为 组 成 型 表 达 (constitutive gene expression)。
可诱导和可阻遏表达(可调基因)
( 1 )可诱导 在特定环境信号刺激下,相应的基因被激活,基因表达产 物增加,这种基因称为可诱导基因。可诱导基因在特定环境中
表达增强的过程,称为诱导 (induction)。如分解乳糖的基因。
( 2 )可阻遏 如果基因对环境信号应答是被抑制,这种基因是可阻遏
基因 。 可 阻 遏基因 表达 产 物 水 平降 低的过 程称为阻 遏 (repression) 。如合成 Trp的基因。
在一定机制控制下,功能上相关的一组基因,无论其 为何种表达方式,均需协调一致、共同表达,即为协调表达
胞的某一区域或亚细胞结构 。 1.控制跨膜离子浓度梯度和电位梯度;
2. 控制物质运输
3.膜与酶可逆结合 ——双关酶( HK ,PFK 等)
P631
真核细胞内某些酶的区域化分布
酶或酶系
所在区域
酶或酶系
所在区域
糖酵解酶系 TCA 酶系 磷酸戊糖途径酶系
脂肪酸β氧化酶系
脂肪酸合成酶系 尿素合成酶系
胞浆 线粒体 胞浆
磷酸二酯酶
ATP

生物化学第十二章代谢调节

生物化学第十二章代谢调节

精氨酸 谷氨酰胺 组氨酸 脯氨酸
氨基酸、糖及脂肪代谢的联系 糖
葡萄糖或糖原 磷酸丙糖 磷酸烯醇型丙酮酸
丙氨酸 半胱氨酸 甘氨酸 丝氨酸 苏氨酸 色氨酸
脂肪
甘油三酯 3-磷酸甘油 脂肪酸
丙酮酸
亮氨酸 异亮氨酸 色氨酸
乳酸 乙酰CoA 乙酰乙酰CoA 酮体
亮氨酸 赖氨酸 苯丙氨酸 酪氨酸 色氨酸
天冬氨酸 天冬酰胺
mRNA
阻遏蛋白(无活性)
酶蛋白 阻遏蛋白不能跟操纵基因结合, 结构基因可以表达
D.无活性阻遏蛋白加辅阻遏剂
代谢产物与阻遏蛋白结合,从而使阻遏蛋 白能够阻挡操纵基因,结构基因不表达
代谢产物
原核生物乳糖操纵子
原核生物乳糖操纵子(诱导型操纵子)
•其控制区包括:启动子(P) 和操纵基因。
•结构基因:由β -半乳糖苷酶基因(lacZ),通透 酶基因(lacY)和乙酰化酶基因(lacA)串联在 一起构成。
有色氨酸时,阻遏蛋白与色氨酸结合后才 能与操纵基因结合,从而阻止色氨酸合成 酶类的转录。
trpR P1O trpEtrpD 结合
阻遏物 色氨酸
P2
不转录
trpC trpBtrpA
用于表达载体的trp启动子一般只包含 启动基因、操纵基因、和部分trpE基 因。 目的基因 P1O trpE
大肠杆菌色氨酸操纵子的衰减作用的可能机制
[NADH]/[NAD+]对代谢的调节 金属离子浓度对代谢的调节
酶的含量
合成调节 降解调节
第三节
基因表达的调控
操纵子学说—转录水平的调控 操纵子——由结构基因与上游的启动子、操纵基 因共同构成的原核基因表达的协同单位。
结构基因(编码蛋白质,S)

生物化学第十二章-蛋白质的生物合成

生物化学第十二章-蛋白质的生物合成

第十二章蛋白质的生物合成一、蛋白质生物合成体系:生物体内的各种蛋白质都是生物体利用约20种氨基酸为原料自行合成的。

蛋白质的生物合成过程,就是将DNA传递给mRNA的遗传信息,再具体的解译为蛋白质中氨基酸排列顺序的过程,这一过程被称为翻译(translation)。

参与蛋白质生物合成的各种因素构成了蛋白质合成体系,该体系包括:1.mRNA:作为指导蛋白质生物合成的模板。

mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸的信息,此三联体就称为密码。

共有64种不同的密码。

遗传密码具有以下特点:①连续性;②简并性;③通用性;④方向性;⑤摆动性;⑥起始密码:AUG;终止密码:UAA、UAG、UGA。

2.tRNA:在氨基酸tRNA合成酶催化下,特定的tRNA可与相应的氨基酸结合,生成氨基酰tRNA,从而携带氨基酸参与蛋白质的生物合成。

tRNA反密码环中部的三个核苷酸构成三联体,可以识别mRNA上相应的密码,此三联体就称为反密码。

反密码对密码的识别,通常也是根据碱基互补原则,即A—U,G—C配对。

但反密码的第一个核苷酸与第三核苷酸之间的配对,并不严格遵循碱基互补原则,这种配对称为不稳定配对。

能够识别mRNA中5′端起动密码AUG的tRNA称为起动tRNA。

在原核生物中,起动tRNA是tRNAfmet;而在真核生物中,起动tRNA是tRNAmet。

3.rRNA和核蛋白体:原核生物中的核蛋白体大小为70S,可分为30S小亚基和50S大亚基。

真核生物中的核蛋白体大小为80S,也分为40S小亚基和60S大亚基。

核蛋白体的大、小亚基分别有不同的功能:⑴小亚基:可与mRNA、GTP和起动tRNA结合。

⑵大亚基:①具有两个不同的tRNA结合点。

A位——受位或氨酰基位,可与新进入的氨基酰tRNA 结合;P位——给位或肽酰基位,可与延伸中的肽酰基tRNA结合。

②具有转肽酶活性。

在蛋白质生物合成过程中,常常由若干核蛋白体结合在同一mRNA分子上,同时进行翻译。

蛋白质在人体内的代谢过程

蛋白质在人体内的代谢过程

蛋白质在人体内的代谢过程蛋白质是构成人体细胞的重要组成部分,不仅参与细胞结构的建立,还在体内承担着许多重要的生理功能。

蛋白质的代谢过程是指蛋白质在人体内被合成、降解和利用的整个过程。

这一过程涉及到许多重要的生化反应和调节机制,对于维持人体正常的生理功能具有至关重要的作用。

在人体内,蛋白质的合成主要发生在细胞内的核糖体中。

当身体需要新的蛋白质时,遗传信息将被转录成信使RNA(mRNA),然后被翻译成蛋白质。

这个过程包括启动子、激活子和终止子等一系列复杂的调控元件,确保蛋白质的合成顺利进行。

在此过程中,氨基酸是构成蛋白质的基本单元,它们通过肽键相互连接形成蛋白质的空间结构。

蛋白质合成完成后,它们将被用于细胞的生长、修复和代谢等过程。

然而,随着时间的推移,细胞内的蛋白质也会逐渐老化或受到损伤,需要被降解和清除。

这一过程主要通过细胞内的蛋白酶系统来完成,将老化或受损的蛋白质分解成氨基酸或小的肽段,然后再重新利用。

蛋白质的代谢还涉及到氨基酸的利用和转运。

人体内有20种氨基酸,其中9种是人体必需氨基酸,必须通过食物摄入。

这些氨基酸在体内参与能量代谢、免疫调节、激素合成等重要生理功能。

当身体缺乏某种氨基酸时,会影响到蛋白质合成和代谢,导致健康问题的发生。

总的来说,蛋白质在人体内的代谢过程是一个复杂而精密的调控系统,涉及到许多重要的生化反应和调节机制。

蛋白质的合成、降解和利用相互交织,共同维持着人体正常的生理功能。

因此,保持适当的蛋白质摄入量,保持身体内氨基酸的平衡,对于维持健康至关重要。

希望通过对蛋白质代谢过程的了解,能够更好地关注自己的饮食和生活习惯,保持身体的健康和活力。

基础生物化学第十二章 氨基酸代谢.ppt

基础生物化学第十二章 氨基酸代谢.ppt

氨基酸分解代谢缺陷引起的疾病
代谢途径中催化某一反应的酶缺少或活性异常而引 起的疾病,称为代谢缺陷症。前已知的氨基酸代谢 症约30多种。
苯丙酮尿症:缺少催化苯丙氨酸生成酪氨酸的酶, 导致血液中中苯丙浓度升高(高苯丙氨酸血症), 过量的苯丙氨酸被转氨生成苯丙酮,过量的苯丙酮 随尿液排出。
尿黑酸症:缺少酪氨酸代谢中的尿黑酸氧化酶引起 的,尿黑酸在体内积累,尿液中有大量尿黑酸,在 碱性条件下暴露在空气中可以被氧化,聚合成类似 黑色素的物质,使尿液呈黑色。
合成代谢
高等植物:可以合成全部氨基酸 哺乳动物:只能合成一部分氨基酸,其它氨基酸
必需从食物中获得。 微生物:合成氨基酸的能力差异很大。
必需氨基酸:机体不能合成,必需从外界获得的氨基酸。 非必需氨基酸:机体可以合成的氨基酸。
丙酮酸 乙酰CoA 延胡索酸 琥珀酰CoA Α- 酮戊二酸
生物固氮
豆科植物共生的根瘤细菌
N2
NH3
α-酮戊二酸 谷氨酸 谷氨酸
谷氨酰胺
Arg Gln His Pro
琥 珀 酰 -CoA
Ile M e t Se r Thr Val
脱 羧:氨基酸脱羧产生相应的一级胺
例如,组氨酸脱羧形成组胺,是一种强烈的血管舒 张物质,有降低血压的作用,还可以刺激胃粘膜分泌胃 蛋白酶和胃酸。作为神经组织中感觉神经的一种递质, 组胺还与外周神经的感觉与传递密切相关。
α -酮酸
COOH
转氨酶
H
R2 C NH2 COOH
氨基酸
NH3的去路:
1、游离NH3与α-酮酸结合,重新进入糖代谢。
2、氨的排泄: 水生生物:直接将氨排出体外 陆生脊椎动物:尿素 鸟类和陆生爬行动物:尿酸

第十二章-蛋白质的降解和氨基酸代谢

第十二章-蛋白质的降解和氨基酸代谢

姓名______________学号________________成绩_____________第十二章蛋白质降解和氨基酸代谢一、是非判断题1. 蛋白质的营养价值主要决定于氨基酸的组成和比例。

2. 氨甲酰磷酸可以合成尿素和嘌呤。

3. 磷酸吡哆醛只作为转氨酶的辅酶。

4. L-谷氨酸脱氢酶不仅是催化L-谷氨酸脱氨作用的主要酶, 同时也是联合脱氨基作用不可缺少的酶。

5.天冬氨酸的碳架来源是三羧酸循环的中间产物α-酮戊二酸。

6.谷氨酰胺是体内氨的一种运输、储存形式, 也是氨的暂时解毒方式。

7.氨基酸脱羧酶通常也需要吡哆醛磷酸作辅基。

8.动物产生尿素的主要器官是肾脏。

9.参与尿素循环的酶都位于线粒体内。

10.L-氨基酸氧化酶是参与氨基酸脱氨基作用的主要酶。

11.氨基酸经脱氨基作用以后留下的碳骨架进行氧化分解需要先形成能够进入TCA 循环的中间物。

12.Arg 是哺乳动物的一种非必须氨基酸, 因为在它们的肝细胞之中, 含有足够的合成Arg 的酶。

13.所有的氨基酸都可以进行转氨基反应。

二、选择题1. 转氨酶的辅酶是: ()A. NAD+B. NADP+C. FADD. 磷酸吡哆醛2. 参与尿素循环的氨基酸是: ()A. 组氨酸B. 鸟氨酸C. 蛋氨酸D. 赖氨酸3. 经脱羧后能生成吲哚乙酸的氨基酸是: ()A. GluB. HisC. TyrD. Trp4. L-谷氨酸脱氢酶的辅酶含有哪种维生素: ()A. VB1B. VB2C. VB3D. VB55.在尿素循环中, 尿素由下列哪种物质产生: ()A. 鸟氨酸B. 精氨酸C. 瓜氨酸D. 半胱氨酸6. 氨基酸脱下的氨基通常以哪种化合物的形式暂存和运输: ()A. 尿素B. 氨甲酰磷酸C. 谷氨酰胺D. 天冬酰胺7.人体必须氨基酸是指()A.在体内可由糖转变生成B.在体内不能由其他氨基酸转变生成C、在体内不能生成, 必须从食物获得D.在体内可由脂肪酸转变生成E、在体内可由固醇类物质转变生成8.下列哪组氨基酸, 全是人体必须氨基酸?A.甲硫氨酸、赖氨酸、色氨酸和缬氨酸B.苯丙氨酸、赖氨酸、甘氨酸和组氨酸C.苏氨酸、甲硫氨酸、丝氨酸和色氨酸D.亮氨酸、脯氨酸、半胱氨酸和酪氨酸E、缬氨酸、谷氨酸、苏氨酸和异亮氨酸9.下列哪一种氨基酸是生酮而不是生糖氨基酸?()A.异亮氨酸;B.酪氨酸;C.苯丙氨酸;D.苏氨酸;E、亮氨酸10.组成氨基酸转氨酶的辅酶组分是()A.泛酸;B.烟酸;C.吡哆醛;D.核黄素;E、硫胺素11.经脱氨基作用直接生成α-酮戊二酸的氨基酸是()A.谷氨酸;B.甘氨酸;C.丝氨酸;D.苏氨酸;E、天冬氨酸12.能直接进行氧化脱氨基作用的氨基酸是()A.天冬氨酸;B.缬氨酸;C.谷氨酸;D.丝氨酸;E、丙氨酸13.催化α-酮戊二酸和NH3 生成相应含氮化合物的酶是()A.谷丙转氨酶B.谷草转氨酶C.γ-谷氨酰转肽酶D.谷氨酸脱氢酶E、谷氨酰胺合成酶14.联合脱氨基作用是指()A.氨基酸氧化酶与谷氨酸脱氢酶联合B.氨基酸氧化酶与谷氨酸脱氢酶联合C.转氨酶与谷氨酸脱氢酶联合D.腺苷酸脱氨酶与谷氨酸脱氢酶联合E、以上都不对15.动物体内解除氨毒的主要方式是()A.生成谷氨酰胺;B.生成尿素;C.生成其他氨基酸;D.生成嘧啶;E、生成含氮激素16.下列哪种氨基酸与尿素循环无关?()A.赖氨酸;B.天冬氨酸;C.鸟氨酸;D.瓜氨酸;E、精氨酸17.在尿素合成过程中,下列哪步反应需要ATP?()A.精氨酸→鸟氨酸+尿素B.鸟氨酸+氨甲酰磷酸→瓜氨酸+磷酸C.瓜氨酸+天冬氨酸→精氨琥珀酸D.精氨琥珀酸→精氨酸+延胡索酸E、以上都不是18.合成一分子尿素需要直接和间接消耗()分子ATPA.1;B.2;C.3;D.4;E、519.线粒体内的氨甲酰磷酸合成酶的激活因子是()A.乙酰CoA;B.NADH;C.NADPH;D.N-乙酰谷氨酸;E、叶酸20.在代谢的研究中,第一个被阐明的循环途径是()A.三羧酸循环;B、卡尔文循环;C、尿素循环;D、丙氨酸循环;E、乳酸循环三、填空题⒈尿素循环中产生的两种氨基酸和不参与生物体内蛋白质的合成;尿素分子中的两个N 原子, 一个来自, 另一个来自。

生物化学第12章 核酸代谢与蛋白质的生物合成

生物化学第12章 核酸代谢与蛋白质的生物合成

课外练习题一、名词解释1、嘌呤核苷酸的从头合成途径;2、嘧啶核苷酸的补救合成途径;3、半保留复制;4、冈崎片段;5、逆转录;6、复制;7、转录;8、外显子;9、内含子;10、翻译;11、反密码子;12、密码的简并性。

二、符号辨识1、IMP;2、PRPP;3、SSB;4、cDNA;三、填空1、核苷酸的合成包括()和()两条途径。

2、脱氧核苷酸是由()还原而来。

3、DNA的复制方向是从()端到()端展开。

4、体内DNA复制主要使用()作为引物,而在体外进行PCR扩增时使用人工合成的()作为引物。

5、DNA损伤可分为()损伤和()损伤两种类型,造成DNA损伤的因素有()因素和()因素。

6、基因转录的方向是从()端到()端。

7、第一个被转录的核苷酸一般是()核苷酸。

8、蛋白质的生物合成是以()作为模板,以()作为运输氨基酸的工具,以()作为合成的场所。

9、细胞内多肽链合成的方向是从()端到()端,而阅读mRNA的方向是从()端到()端。

10、某一tRNA的反密码子是GGC,它可识别的密码子为()和()。

11、原核生物蛋白质合成中第一个被掺入的氨基酸是()。

12、DNA拓补异构酶()能够切开DNA的1条链,而DNA拓补异构酶()能同时切开DNA的2条链。

13、大肠杆菌在DNA复制过程中切除RNA引物的酶是()。

14、从IMP合成GMP需要消耗(),而从IMP合成AMP需要消耗()作为能源物质。

15、在大多数DNA修复中,牵涉到四步序列反应,它们的次序是()、()、()和()。

四、判别正误1、嘌呤核苷酸是从磷酸核糖焦磷酸开始合成的。

()2、核苷酸生物合成中的甲基一碳单位供体是S-腺苷蛋氨酸。

()3、所有核酸的复制过程中,新链的形成都必须遵循碱基配对的原则。

()4、所有核酸合成时,新链的延长方向都是从5`→3`。

()5、生物体中遗传信息的流动方向只能由DNA→ RNA,决不能由RNA→DNA。

()6、DNA复制时,先导链是连续合成,而后随链是不连续合成的。

第十二章 蛋白质的生物合成(翻译)

第十二章 蛋白质的生物合成(翻译)
2) 简并性: 除色氨酸、蛋氨酸外均有2-3个或4-6个密码。其三联体上1,2位碱基相同,而第三位上碱基则不同。
密码专一性由头2个碱基决定,三中读二;生物学意义:减少突变的有害效应。
不同生物对密码子具有偏爱性。
3)摆动性:翻译过程氨基酸的正确加入,需靠mRNA上的密码子与tRNA上的反密码子相互以碱基配对辨认。
大小亚基共同组成核糖体。
核蛋白体蛋白(rps,rpl)种类繁多,其中有些就是参与蛋白质合成的酶和各种因子,靠这些蛋白质、rRNA,还有mRNA、 tRNA等特异性的、准确的相互配合,使氨基酸按mRNA上的遗传密码指引依次聚合为肽链。
原核生物转录过程电镜下看到的羽毛状模型,在长短不一的尚未转录完成的mRNA上,已附着了若干个核蛋白体。
(二) 起始肽链合成的氨基酰-tRNA
密码子AUG可编码甲硫氨酸,同时作为起始密码。
氨基酰-tRNA书写规则:Arg-tRNAarg;AA—tRNAaa;
原核生物:起始密码(AUG、GUG、UUG)——编码甲酰蛋氨酸fMet、tRNAfMet,
fMet—tRNAifMet;
真核生物:起始密码Met、Met-tRNAiMet;延长过程: Met、Met-tRNAeMet
一、肽链合成起始 (熟悉)
翻译起始是把带有甲硫氨酸的起始tRNA连同mRNA结合到核蛋白体上,生成翻译起始复合物(translational inition complex)。此过程需多种起始因子参加。原核生物与真核生物所需的起始因子不相同,氨基酰-tRNA、mRNA结合到核蛋白体上的步骤,大致上是一样的。
第二节 蛋白质生物合成过程
RNA的碱基序列是从5’-端自左至右书写至3’端,对应肽链的氨基酸序列从 N-端自左至右书写至 C端。翻译过程从读码框架的5’-AUG……开始,按mRNA模板三联体的顺序延长肽链,直至终止密码出现。终止密码前一位三联体,翻译出肽链 C—端氨基酸。翻译过程也可分起始、延长、终止阶段来描述。氨基酰-tRNA的合成,是伴随着起始、延长阶段不断地进行和配合着的。此外,蛋白质合成后,还需要加工修饰。

第十二章物质代谢的联系与调节

第十二章物质代谢的联系与调节
第十二章
物质代谢的联系与调节
重点
掌握物质代谢的相互联系及特点。了解物质代谢 调节的意义及方式。熟悉重要物质代谢途径的亚 细胞定位;掌握变构酶的概念及其生理意义;了 解酶含量的调节——酶合成的诱导与阻遏。熟悉 激素与受体作用的特点,熟悉整体的物质代谢调 节。
第一节
物质代谢的相互联系
概论
一切生物的生命都靠代谢的正常运转来维持。机 体代谢途径异常复杂,一个细菌细胞的代谢反应 已在1000个以上,其他高级生物的代谢反应之复 杂可想而知了。生物体是一个组成极其复杂但又 非常精密;代谢反应繁多但又有条不紊;各种物 质代谢都有自己的独立过程但相互之间确联系密 切;互相可以转化但又相互制约。总之,机体是 一个完整统一的新陈代谢反应器。
中间代谢
废物排泄
• 各种物质代谢之间互有联系,相互依存。
㈡ 代谢调节
内外环境 不断变化 影响机体代谢
适应环境 的变化
机体有精细的调节 机制,调节代谢的 强度、方向和速度
㈢ 各组织、器官物质代谢各具特色
结构不同 不同的组 织、器官 酶系的种类、 含量不同 代谢途径不同、 功能各异

组织、器官的代谢特点及联系
替,并互相制约。
● 一般情况下,供能以糖、脂为主,并尽量节约
蛋白质的消耗。
● 任一供能物质的代谢占优势,常能抑制和节约
其他物质的降解。
例如
脂肪分解增强 ATP 增多 ATP/ADP 比值增高
糖分解被抑制
6-磷酸果糖激酶-1被抑制 (糖分解代谢限速酶之一)
• 饥饿时
肝糖原分解 ,肌糖原分解
1~2天 肝糖异生,蛋白质分解
•细胞水平的调节主要为细胞内跨膜的集中和隔离的 分布。见P301。

解剖生理学基础—第十二章内分泌系统

解剖生理学基础—第十二章内分泌系统
(4)神经系统:
糖皮质激素具有提高中枢神经系统兴奋性的作用。 小剂量可引起欣快感,大剂量则引起思维不能集中、烦 燥不安和失眠等症状。
.
4.抗炎症和抗过敏作用:
糖皮质激素增强白细胞溶酶体膜的稳定性,减 少蛋白水解酶进入组织液,减轻对组织的损伤和炎 症局部的渗出 + 抑制结缔组织成纤维细胞的增生→ 抗炎症。
慢,甚至发生水中毒。
.
3.对其他组织器官的作用 (1)血细胞:
能增强骨髓造血功能→红细胞↑、血小板↑。当 糖皮质激素增多时,病人红细胞↑,加上皮肤菲薄, 常有多血质外貌。
能抑制淋巴细胞的有丝分裂和促进淋巴细胞的 凋亡→淋巴细胞↓。
通过促进附着血管壁的中性粒细胞进入血液循 环→中性粒细胞↑。
通过增加肺和脾对嗜酸性粒细胞的贮留→嗜酸 性粒细胞↓。
— 下丘脑
? CRH
腺垂体 ACTH
—长 负 反 馈
肾上腺皮质
糖皮质激素
下丘脑-腺垂体-肾上腺皮质轴
三、肾上腺髓质
.
(二)肾上腺素和去甲肾上腺素的作用
• 1.对代谢的调节 • 促使糖原分解,使血糖升高。 • 都能动员脂肪
• 2.对神经系统的作用 • 可提高中枢神经的兴奋性。 • 当机体遭遇紧急情况时,交感-肾上腺髓
(二)抑制肾小管对钙、磷、钠、氯的重吸收和胃酸 的分泌。
(三)抑制1,25-(OH)2-D3生成,降低血钙。
.
PTH激活肾1α-羟化酶,促进25-OH-D3转变为有 活性的1,25-(OH)2-D3,其作用:
①促进肠粘膜重吸收钙和磷; ②调节骨钙的沉积和释放: 维生素D3也称胆钙化醇,主要源自皮肤和动物性食 物。 皮肤在紫外线的作用下,转化成维生素D3,再经过 羟化酶合成活性很高的1,25-(OH)2-D3。 1,25-(OH)2-D3,可促进小肠对钙的吸收,促进肾小 管对钙的重吸收。 缺乏1,25-(OH)2-D3,可导致儿童佝偻病或成人骨质 疏松

第十二章 蛋白质的生物合成

第十二章   蛋白质的生物合成

第十二章蛋白质的生物合成(翻译)蛋白质的生物合成,即翻译,就是将核酸中由4 种核苷酸序列编码的遗传信息,通过遗传密码破译的方式,解读为蛋白质一级结构中20种氨基酸的排列顺序。

反应过程:(1)氨基酸的活化(2)肽链的生物合成(3)肽链形成后的加工和靶向输送本章内容第一节蛋白质生物合成体系第二节氨基酸的活化第三节肽链生物合成过程第四节蛋白质翻译后修饰和靶向输送第五节蛋白质生物合成的干扰和抑制第一节蛋白质合成体系参与蛋白质生物合成的物质模板:mRNA场所:核蛋白体(rRNA和蛋白质)原料:20种氨基酸运载工具:tRNA酶及蛋白因子:氨基酰-tRNA合成酶、转肽酶、起始因子、延长因子、释放因子等能源物质:ATP、GTP无机离子:Mg2+、K+一、mRNA是蛋白质生物合成的直接模板mRNA的基本结构从-端起始密码子AUG 到-端终止密码子之间的核苷酸序列,称为开放阅读框架(open reading frame, ORF)。

遗传学将编码一个多肽的遗传单位称为顺反子(cistron)。

原核细胞中数个结构基因常串联为一个转录单位,转录生成的mRNA 可编码几种功能相关的蛋白质,为多顺反子(polycistron) 。

真核mRNA 只编码一种蛋白质,为单顺反子(single cistron)。

mRNA 上的遗传密码在mRNA 的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸(或其他信息),这种三联体形式的核苷酸序列称为密码子。

mRNA 上四种核甘酸:A 、G 、C 、U 组成64组遗传密码:起始密码子(initiation codon):AUG ;终止密码子(termination codon) :UAA 、UAG 、UGA ;61种编码20种氨基酸,称为有意义密码(AUG 编码Met )。

遗传密码表遗传密码的特点:方向性、连续性、简并性、通用性、摆动性1. 方向性(directional)翻译时遗传密码的阅读方向是5’→3’,即读码从mRNA 的起始密码子AUG 开始,按5’→3’的方向逐一阅读,直至终止密码子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章蛋白质代谢⏹生物体内蛋白质存在不断的更新过程,体内蛋白质一方面分解为氨基酸;同时体内不断合成新的蛋白质⏹异养生物摄取的蛋白质类营养成分在生物体内逐渐消化,吸收。

⏹蛋白质的代谢包括外源和内源蛋白质的降解及内源蛋白质的合成。

⏹作为蛋白质降解产物和合成前体物质的氨基酸的代谢包括氨基酸的分解和合成两方面。

第一节蛋白质的降解一、内源蛋白质的降解⏹1. 内源蛋白质降解的特性⏹选择性降解⏹降解速度由蛋白质的个性决定的。

⏹降解速度与营养状态及激素状态有关。

⏹意义: 排除不正常蛋白质,排除累积过多的酶和调节蛋白,细胞代谢井然有序。

2、内源蛋白的降解机制⏹(1)溶酶体无选择性的降解蛋白质⏹高尔基体产生的初级溶酶体与吞噬泡或自体吞噬泡结合成次级溶酶体,进一步消化降解形成小分子物质,将营养成分供细胞代谢用,多余残渣排出细胞外。

⏹(2)泛肽给选择降解的蛋白质加以标记⏹泛肽与泛肽-活化酶偶连;泛肽形成泛肽-携带蛋白;泛肽与特定待降解蛋白质结合;泛肽连接的降解酶复合体将蛋白降解。

二. 外源蛋白质的降解⏹外源蛋白质进入体内,经水解作用变为小分子的氨基酸,然后被吸收.⏹吞噬作用,低等动物。

⏹消化管内消化吸收,高等动物。

⏹氨基酸进入细胞内:用来合成蛋白质;分解;同时体内也可以合成氨基酸。

•蛋白质的水解消化道中的水解人和动物胃、小肠水解酶:三. 氮平衡⏹机体蛋白质摄入量和排出量的比例关系,用氮含量表示。

⏹总氮平衡:氮的摄入量和排出量相等。

⏹正氮平衡:氮的摄入量大于排出量。

⏹负氮平衡:氮的摄入量小于排出量。

第二节氨基酸的分解代谢⏹氨基酸的降解主要包括:⏹氨基的转移:脱氨,转氨。

⏹羧基的转移:脱羧作用。

⏹氨的代谢:氨的排出或利用。

⏹碳骨架的变化氨基酸的分解过程一. 氨基酸氨基的转移⏹1. 转氨基作用:氨基酸和α-酮酸之间转移,形成新的氨基酸和新的酮酸。

⏹转氨酶:⏹动植物和微生物分布广泛,可存在线粒体和细胞溶胶。

⏹大多数转氨酶需要α-酮戊二酸作为氨基的受体,对两底物之一是专一的,另一底物无严格的专一性,酶的命名是根据催化活力最大的的氨基酸,50种以上转氨酶。

⏹催化L-氨基酸反应,且反应都是可逆的.⏹动物组织中占优势的转氨酶为谷丙转氨酶和谷草转氨酶。

⏹辅酶为磷酸吡哆醛。

转氨基的作用机理常见转氨基形式⏹2. 氧化脱氨基作用⏹氧化脱氨作用将氨基酸氧化为α-酮酸和NH3。

⏹L-氨基酸氧化酶⏹D-氨基酸氧化酶⏹专一性氨基酸氧化酶:L-甘氨酸氧化酶,D-天冬氨酸氧化酶。

⏹最主要的为谷氨酸脱氢酶。

⏹3. 联合脱氨基作用⏹转氨作用只有氨基的转移而没有氨基的真正脱落,氧化脱氨能直接脱氨,但只有Glu脱氢酶活性最高,仅靠它脱氨是不够的.联合脱氨是主要的脱氨方式。

⏹(1)转氨酶和谷氨酸脱氢酶联合脱氨方式⏹(2)嘌呤核苷酸循环的联合脱氨基方式⏹次黄嘌呤核苷酸与天冬氨酸作用形成中间产物腺苷酸代琥珀酸,后者在裂合酶作用下,分裂成腺嘌呤核苷酸和延胡索酸,腺嘌呤核苷酸水解后即产生游离氨基酸和次黄嘌呤核苷酸。

⏹4. 非氧化脱氨形式⏹多发生在微生物体:还原脱氨基水解脱氨基脱水脱氨基脱硫氢基脱氨基5. 脱酰胺基作用二、氨基酸的脱羧基作用三. 氨的命运⏹1. 生物体用来合成其他含氮化合物,如:核酸;被重新合成含氮有机物,参与氨基酸的合成⏹氨甲酰磷酸合成酶催化生成氨甲酰磷酸⏹谷氨酸脱氢酶作用下生成谷氨酸⏹NH4++α-酮戊二酸+ NADPH +H+谷氨酸+NADP++H2O⏹高等植物:将氨以Gln,Asn形式贮存。

⏹谷氨酰胺合成酶催化下将谷氨酸转化为谷氨酰胺,动植物中氨在组织或细胞间的转运方式。

⏹2. 氨的排泄⏹氨对生物体是有毒害性的物质,特别是高等动物的脑对氨极为敏感,因此有机体必须将多余的氨排出体外。

⏹排氨:某些水生动物以氨的形式排出体外。

⏹排尿素:绝大多数陆生脊椎动物将氨转变为尿素。

⏹排尿酸:鸟类,爬行类,以尿酸的形式排出体外。

⏹3. 氨的转运⏹(1)谷氨酰胺形式运输⏹运输到需要部位,排泄部位,如鳃,肝脏形成尿素或尿酸。

⏹谷氨酰胺是中性无毒物质,容易透过细胞膜,是氨的主要运输形式,而谷氨酸带负电荷不能透过细胞膜,谷氨酰胺由血液运送到肝脏,肝细胞的谷氨酰胺酶将其分解为谷氨酸和氨。

⏹(2)葡萄糖-丙氨酸循环转运氨⏹从肌肉到肝脏,或植物组织间转运。

⏹谷氨酸与丙酮酸在谷丙转氨酶催化下,形成丙氨酸和酮戊二酸,丙氨酸经血液循环运送到肝脏,再经谷丙转氨酶形成谷氨酸和丙酮酸,运输氨和组织中产生的丙酮酸。

▪以丙氨酸的形式转运肌肉组织四、尿素循环(鸟氨酸循环)⏹最早发现的代谢循环,Hans Krebs⏹1. 氨甲酰磷酸合成酶⏹真核生物中两类氨甲酰磷酸合成酶⏹线粒体氨甲酰磷酸合成酶I:氨作为氮供体,参与尿素的合成。

N-乙酰谷氨酸别构激活。

⏹细胞溶胶氨甲酰磷酸合成酶II:以谷氨酰胺作为氮供体,参与嘧啶碱基的合成。

⏹催化的反应机理:⏹鸟氨酸转氨甲酰酶,氨甲酸磷酸的氨甲酰基转移到鸟氨酸上形成瓜氨酸。

⏹精氨琥珀酸合成酶, 瓜氨酸的脲基与天冬氨酸的氨基进行缩合成精氨酸代琥珀酸。

⏹精氨琥珀酸裂解酶:精氨酸代琥珀酸裂解精氨酸和延胡索酸,精氨酸成为尿素的直接前体。

⏹精氨酸酶:催化精氨酸产生尿素及再生成鸟氨酸。

⏹尿素循环的总结:⏹ATP消耗,反应部位;尿素氮原子来源;延胡索酸的联系。

五、氨基碳骨架的氧化途径⏹脊椎动物体内的20种氨基酸的碳骨架,由20种不同的酶体系进行氧化分解,虽然氨基酸的氧化分解途径各异,但它们都集中形成5种产物进入TCA 循环,最后氧化为二氧化碳和水。

⏹乙酰-CoA, α-酮戊二酸,琥珀酰CoA,延胡索酸,草酰乙酸。

⏹a.合成新氨基酸⏹b.转变成糖及脂肪酸⏹生糖氨基酸:凡能形成丙酮酸,α-酮戊二酸,琥珀酸和草酰乙酸的氨基酸都称为生糖氨基酸,这些物质都能导致生成葡萄糖和糖原。

⏹生酮氨基酸:苯丙氨酸,酪氨酸,亮氨酸,色氨酸,赖氨酸,在分解过程中转变为乙酰乙酸-CoA,并在动物肝脏中可转变为乙酰乙酸和β-羟丁酸,这些氨基酸称为生酮氨基酸⏹生酮和生糖氨基酸:苯丙氨酸和酪氨酸,既可生成酮体又可生成糖⏹酪氨酸乙酰乙酸+ 延胡索酸⏹C、直接氧化成水和二氧化碳⏹TCA H2O+CO2+A TP第三节氨基酸的合成⏹必需氨基酸:机体不能自己合成,必须自外界获取的氨基酸.苯丙氨酸,赖氨酸甲硫氨酸等大约十种氨基酸。

⏹非必需氨基酸:机体能自身合成的氨基酸。

⏹不同物种必须氨基酸的范畴是不同的⏹氨基基团主要多来自谷氨酸的转氨基反应⏹氨基酸合成的碳骨架来源于柠檬酸循环,糖酵解以及磷酸戊糖途径中的关键中间体第四节蛋白质合成和转运一. 蛋白质合成的分子基础⏹一、蛋白质合成的生物基础⏹㈠. mRNA是蛋白质合成的模板⏹mRNA分子的碱基顺序决定氨基酸的一级结构⏹原核生物其mRNA转录后即可进行翻译,通常是多基因编码,不同位置翻译产生不同蛋白质。

⏹真核生物mRNA前体转录后加工成成熟mRNA,转移到细胞质,通常是单基因编码,合成一条多肽链⏹mRNA翻译的方向5’→3’⏹mRNA的碱基序列如何决定氨基酸排列?⏹㈡. 遗传密码⏹四种碱基决定20中氨基酸,编码氨基酸所需要碱基的最低数目为三个。

⏹遗传密码:核苷酸三联体决定氨基酸的对应关系。

⏹遗传密码不重叠,重叠造成氨基酸序列中每一个氨基酸受上下氨基酸的约束。

⏹遗传密码连续的和无标点符号隔开的。

⏹遗传学实验及现代基因和蛋白质序列的研究证明三联体密码的正确性。

⏹三联体密码与氨基酸的对应关系如何?⏹遗传密码的破译⏹实验体系:⏹Nirenberg等将大肠杆菌破碎,离心,得上清夜,含由蛋白质合成所需的各种成分:DNA, mRNA,tRNA核糖体,氨酰tRNA合成酶以及蛋白质合成必需得各种因子,将上清夜保温,使内源mRNA被降解,该系统自身蛋白合成停止;加入外源mRNA和A TP,GTP和放射性标记的氨基酸成分37℃保温,合成新的蛋白质,根据外源mRNA的序列和合成的多肽链,找出对应关系。

⏹单一核苷酸的多聚物⏹polyU UUU编码苯丙氨酸⏹polyA AAA编码赖氨酸⏹polyC CCC编码脯氨酸⏹polyG GGG编码甘氨酸⏹两种核苷酸的多聚物P509⏹三种核苷酸的多聚物P510⏹四种核苷酸的多聚物P510⏹1966年,全部密码子破译⏹遗传密码的基本特性:⏹基本单位:5’→3’方向编码,不重叠,无标点的三联体密码子,从起始密码子开始到终止密码子结束。

⏹密码简并性:同一种氨基酸有两个或更多密码子的现象称为密码子的简并性,减少有害突变,在物种的稳定性具有一定生物学意义.⏹同义密码子:对应同一氨基酸的密码子。

⏹密码的变偶性:密码子的简并性表现在其第三位碱基上,其专一性主要取决于前两位,当反密码子与密码子配对时,一,二位配对是严格的,三位有一定的变动,所谓的变偶性.反密码子第一位经常出现I ,可与密码子U, A 和C 配对,反密码子能识别更多的简并密码子.⏹通用性:各种低等和高等生物,基本共用同一套遗传密码。

⏹变异性:个别遗传密码在个别物种或不同细胞器存在变异。

⏹密码子的防错系统:密码子中碱基的顺序与其相应氨基酸物理和化学性质之间存在巧妙关系.氨基酸的极性由第二位碱基决定,简并性由第三位决定.中间碱基为U,编码氨基酸为非极性,疏水氨基酸,位于球蛋白内部.密码子的这种分布使基因突变造成的危害降至最低程度,具防错功能.⏹㈢. tRNA转运活化的氨基酸⏹每一种氨基酸至少有一种tRNA负责转运,tRNA Ser⏹与蛋白质合成有关的位点:氨基酸的接受位点,识别氨酰-tRNA合成酶的位点,核糖体识别位点和反密码子位点。

⏹氨基酸与tRNA结合后,进一步的去向由tRNA 反密码子决定。

⏹tRNA凭借自身的反密码子与mRNA分子上的密码子相识别,而把所带的氨基酸送到肽链一定的位置上。

⏹㈣. 核糖体是蛋白质合成的工厂⏹小亚基16SrRNA具有识别起始密码子的作用,能单独与mRNA形成30S核糖体-mRNA复合体,复合体与tRNA专一结合;⏹大亚基能与tRNA结合,有两个位点:氨酰基位点和肽酰基位点,还有一个在肽酰-tRNA移位过程中使GTP水解的位点.⏹大小亚基上有起始因子,延伸因子和释放因子及各种酶相结合的位点二、蛋白质合成过程⏹㈠. 氨酰tRNA合成酶催化形成氨酰tRNA⏹氨酰tRNA合成酶催化的反应过程⏹氨基酸+ATP→氨酰-AMP+PPi⏹氨酰-AMP+tRNA→氨酰tRNA+AMP⏹甲硫氨酰-tRNA合成酶:识别两种甲硫氨酸tRNA,一种为起始甲硫氨酰-tRNA, tRNA i Met,由起始因子识别; 另一种为渗入到蛋白质内部的甲硫氨酸-tRNA, tRNA Met,由延伸因子识别.⏹原核生物甲酰化酶使tRNA i Met中的氨基酸甲酯化,形成甲酰甲硫氨酸-tRNA。

相关文档
最新文档