2.5 共轭梯度法
共轭梯度法公式
![共轭梯度法公式](https://img.taocdn.com/s3/m/e9dad3ea2dc58bd63186bceb19e8b8f67c1cefb2.png)
共轭梯度法公式
共轭梯度法是一种用于求解线性方程组的迭代算法。
其主要思想是通过利用前一次迭代的信息来加速当前迭代的速度,从而减少迭代次数和计算量。
共轭梯度法公式包括以下几个步骤:
1. 初始化:设初始解为x0,残量b0为Ax0-b,共轭方向d0=b0。
2. 迭代求解:对于第k次迭代,计算步长αk,使得xk+1=xk+αkd,其中d是共轭方向,满足dTkAd=0,即d是A的共轭向量。
3. 更新残量:计算新的残量bk+1=Axk+1-b,如果bk+1小于预设精度,则停止迭代。
4. 更新共轭方向:计算新的共轭方向dk+1=bk+1+βkdk,其中βk=(bk+1)Tbk+1/(bk)Tbk,保证dk+1与之前的共轭方向都是A的共轭向量。
5. 重复迭代,直到满足收敛条件,返回最终解xk+1。
共轭梯度法是一种高效的求解大型线性方程组的方法,尤其适用于稀疏矩阵和对称正定矩阵。
公式简单易懂,容易实现,且具有较快的收敛速度。
- 1 -。
共轭梯度法步骤
![共轭梯度法步骤](https://img.taocdn.com/s3/m/f28d6a226fdb6f1aff00bed5b9f3f90f76c64dbe.png)
共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。
以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。
其中,A为系数矩阵,b为常数向量。
步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。
步骤3:计算步进长度令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。
α0表示迭代过程中每个方向向量的步进长度。
步骤4:更新解向量令x1=x0+α0d0,表示迭代后的解向量。
步骤5:计算新残量令r1=r0-α0Ad0。
步骤6:判断终止条件如果r1的范数小于预设阈值,或者迭代次数达到预设次数,终止迭代。
否则,进入下一次迭代。
步骤7:更新方向向量令β1=(r1·r1)/(r0·r0),表示更新方向向量的轴线。
步骤8:计算新方向向量令d1=r1+β1d0,表示新的迭代方向向量。
步骤9:计算新的步进长度令α1=(r1·r1)/(d1·Ad1)。
步骤10:更新解向量令x2=x1+α1d1。
步骤11:更新残量令r2=r1-α1Ad1。
步骤12:重复步骤6至11,直至满足终止条件。
总结起来,共轭梯度法的步骤主要包括初始化、计算方向向量、计算步进长度、更新解向量、计算新残量、判断终止条件、更新方向向量、计算新的步进长度、更新解向量和更新残量等。
该算法迭代次数较少,收敛速度快,适用于大规模线性方程组的求解。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/ac6f4d2eccbff121dd3683d1.png)
共轭梯度法1.算法思想:共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。
2.算法步骤:用共轭梯度法求无约束多维极值问题min (),n f x x R ∈的算法步骤如下:(1) 给定初始点(0)x ,及精度0ε>; (2) 若(0)()f x ε∇≤,停止,极小值点为(0)x ,否则转步骤(3);(3) 取(0)(0)()p f x =-∇,且置0k =;(4) 用一维搜索法求k t ,使得()()()()()0()mink k k k k t f x t p f x tp ≥+=+,令,(1)()()k k k k x x t p +=+,转步骤5; (5) 若(1)()k f x ε+∇≤,停止,极小值点为(1)k x +,否则转步骤(6);(6) 若1k n +=,令(0)()n x x =,转步骤(3),否则转步骤(7); (7) 令(1)(1)()()k k k k p f x p λ++=-∇+,2(1)2()()()k kk f xf x λ+∇=∇,置1k k =+,转步骤(4)。
3.算法源程序:#include<stdio.h> #include<math.h>#define N 10#define eps pow(10,-6)double f(double x[],double p[],double t){double s;s=pow(x[0]+t*p[0],2)+25*pow(x[1]+t*p[1],2); return s;}/*以下是进退法搜索区间源程序*/void sb(double *a,double *b,double x[],double p[]) {double t0,t1,t,h,alpha,f0,f1;int k=0;t0=2.5; /*初始值*/h=1; /*初始步长*/alpha=2; /*加步系数*/f0=f(x,p,t0);t1=t0+h;f1=f(x,p,t1);while(1){if(f1<f0){h=alpha*h; t=t0;t0=t1; f0=f1;k++;}else{if(k==0){h=-h;t=t1;}else{*a=t<t1?t:t1;*b=t>t1?t:t1;break;}}t1=t0+h;f1=f(x,p,t1);}}/*以下是黄金分割法程序源代码*/double hjfg(double x[],double p[]){double beta,t1,t2,t;double f1,f2;double a=0,b=0;double *c,*d;c=&a,d=&b;sb(c,d,x,p);/*调用进退法搜索区间*/printf("\nx1=%lf,x2=%lf,p1=%lf,p2=%lf",x[0],x[1],p[0],p[1]); printf("\n[a,b]=[%lf,%lf]",a,b);beta=(sqrt(5)-1.0)/2;t2=a+beta*(b-a); f2=f(x,p,t2);t1=a+b-t2; f1=f(x,p,t1);while(1){if(fabs(t1-t2)<eps)break;else{if(f1<f2){t=(t1+t2)/2;b=t2; t2=t1;f2=f1; t1=a+b-t2;f1=f(x,p,t1);}else{a=t1; t1=t2;f1=f2;t2=a+beta*(b-a);f2=f(x,p,t2);}}}t=(t1+t2)/2;return t;}/*以下是共轭梯度法程序源代码*/void gtd(){double x[N],g[N],p[N],t=0,f0,mod1=0,mod2=0,nanda=0; int i,k,n;printf("请输入函数的元数值n=");scanf("%d",&n);printf("\n请输入初始值:\n");for(i=0;i<n;i++)scanf("%lf",&x[i]);f0=f(x,g,t);g[0]=2*x[0]; g[1]=50*x[1];mod1=sqrt(pow(g[0],2)+pow(g[1],2));/*求梯度的长度*/if(mod1>eps){p[0]=-g[0]; p[1]=-g[1]; k=0;while(1){t=hjfg(x,p);/*调用黄金分割法求t的值*/printf("\np1=%lf,p2=%lf,t=%lf",p[0],p[1],t);x[0]=x[0]+t*p[0]; x[1]=x[1]+t*p[1];g[0]=2*x[0]; g[1]=50*x[1];/*printf("\nx1=%lf,x2=%lf,g1=%lf,g2=%lf",x[0],x[1],g [0],g[1]);*/mod2=sqrt(pow(g[0],2)+pow(g[1],2)); /*求梯度的长度*/if(mod2<=eps) break;else{if(k+1==n){g[0]=2*x[0]; g[1]=50*x[1];p[0]=-g[0]; p[1]=-g[1]; k=0;}else{nanda=pow(mod2,2)/pow(mod1,2);printf("\nnanda=%lf,mod=%lf",nanda,mod2);p[0]=-g[0]+nanda*p[0];p[1]=-g[1]+nanda*p[1];mod1=mod2;k++;}}printf("\n--------------------------");}}printf("\n最优解为x1=%lf,x2=%lf",x[0],x[1]);printf("\n最终的函数值为%lf",f(x,g,t));}main(){gtd();}4.运行结果:5.结论与总结:通过这次运筹学的课程设计,,从中让我学到了很多知识,对共轭梯度法的设计与实现有了进一步的认识,搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定,本次课程设计通过上网查找和在图书馆查找相关资料但从中还有很多不足之处,在日后的学习中不断完善。
共轭梯度法(精品文档)
![共轭梯度法(精品文档)](https://img.taocdn.com/s3/m/843e28ac7f1922791688e89e.png)
1
g2T (g2 d1T (g2
g1) g1)
g2T g2 g1T g1
4) 一般地,在第 k 次迭代中,令
k 1
dk gk idi i0
适当选取 i ,使 dkTGdi 0 ( i 0,
, k 1),可得到
i
gkT Gdi diT Gdi
gkT (gi1 gi ) diT (gi1 gi )
§4.2 共轭梯度法
提纲
1、共轭梯度法---F-R共轭梯度法 2、共轭梯度法性质定理及例题 3、再开始FR共轭梯度法 4、Beale三项共轭梯度法 5、预条件共轭梯度法(了解)
共轭梯度法
在上一节中讨论了共轭方向法,其中n个共轭方向是预先设定好的。但是如何 让获取这些共轭方向并为提及。本节讨论一种重要的共轭方向法——共轭梯 度法。这种方法是将共轭性和最速下降方向相结合,利用已知迭代点处的梯 度方向构造一组共轭方向,并沿此方向进行搜索,求出函数的极小点。因在 迭代过程中通过对负梯度方向进行适当校正获得共轭方向,故而称之为共轭 梯度法。
算法步骤—FR共轭梯度法
1、选取初始数据,选取初始点 x0 ,给定允许误差 0 ;
2、检查是否满足终止准则,计算 f (x0 ) ,若 || f (x0 ) || ,迭代终
止,x0为近似最优解,否则转向3;
3、 构造初始搜索方向,计算 d0 f (x0 ), k 0;
而
k 1
gkT (gk gk1)
dT k 1
(
gk
gk 1 )
gkT gk gkT1 gk 1
共轭梯度法的迭代公式为:
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/2491bee60b4e767f5bcfcec8.png)
最速下降法1.最速下降方向函数f(x)在点x处沿方向d的变化率可用方向导数来表示。
对于可微函数,方向导数等于梯度与方向的内积,即:Df(x;d) = ▽f(x)T d,因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划:min ▽f(x)T ds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成立。
因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。
2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λk d(k) ,其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即d = -▽f(x(k)).λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ R n,允许误差ε> 0,置k = 1。
(2)计算搜索方向d = -▽f(x(k))。
(3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λk d(k),置k = k + 1,转步骤(2)。
共轭梯度法1.共轭方向无约束问题最优化方法的核心问题是选择搜索方向。
以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。
设有二次函数:f(x) = 1/2 (x - x*)T A(x - x*) ,其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面1/2 (x - x*)T A(x - x*) = c是以x*为中心的椭球面,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极小点。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/567f967101f69e314332947c.png)
2 2 min f ( x ) = x1 + 2x2 x
⎛1⎞ 给定初始点 x (0) = ⎜ ⎜1⎟ ⎟。 ⎝ ⎠
13
⎛ 2 x1 ⎞ ⎛ 2 0⎞ 2 首先, ∇f ( x ) = ⎜ ⎜ 0 4⎟ ⎟ ,以下利用(4.14)确定 β k 。 ⎜ 4x ⎟ ⎟ ,H= ∇ f ( x ) = ⎜ ⎝ ⎠ ⎝ 2⎠ k=0:
0
k +1
) 与搜索方向 s 0 ," , s k 均正交。同时,利用引理 4.1 马上
设 H ∈ R n×n 是对称正定阵,s ," , s
0
n −1
0
n −1
是非零 G—共轭方向组,x ∈ R 。 若对问题(UQP),
0
n
从 x 出发,依次沿 s ," , s
0
进行最优一维搜索,最终得到 x ,则 x 是(UQP)的最优解。
为保证 H-共轭性,在 x 处必须取 s 为搜索方向,而不能取 α s (α > 0) 为搜索方向。
k k
k
利用定理 4.3,马上得到上述算法的有限终止性。 定理 4.4 设 H ∈ R n×n 是对称正定阵。若用凸二次规划的共轭梯度法求解 (UQP) 时产生迭代点
x1 ," , x K ,则 x K 是(UQP)的最优解,并且 K ≤ n 。
首先由(4.7)知, g = ∇f ( x ) ( j = 0, " , k -1)是 s ," , s 的线性组合,因此根据定理 4.2,
j j 0 j
( g k )T g j =0, j = 0, " , k -1
由于
25共轭梯度法
![25共轭梯度法](https://img.taocdn.com/s3/m/ac45d6adeefdc8d376ee32fd.png)
共轭,即 piT Apj 0, i j ,i , j 1,2, ,k。 则称这组方向是关于A共轭的,也称它们是一组A共轭方向。
注:如 果A是 单 位 矩 阵 , 则
p1T I p2 0 p1T p2 0
p1 p2
§2.5 共轭梯度法
预备知识 最速下降法 共轭梯度法 数值试验算例
21:26
预备知识:内积的定义
I II
方程组问题: 极值问题:
Ax =
min
b
f
(x)
1
xT Ax
bT
x
xRn
设 x, y Rn , 记 ( x , y) = xT y
2
▪( x, y ) = ( y, x ); ▪( tx, y ) = t ( x, y); ▪( x+ y, z ) = ( x, z ) + ( y, z ); ▪( x, x) ≥ 0, 且( x, x) = 0 x = 0;
p(k 1) r (k 1) k p(k )
进行下一次迭代
例:用CG迭代法求解下列方程组: x(0) (0 0 0)T
2 0 1 x1
3
0 1 0 x2 1
1 0 2 x3
3
解: 易验证系数矩阵是对称正定的.
Step1 计算 p(0) r(0) b Ax(0) (3 1 3)T
0
x2 x1
x*
x3
注 最速下降方向反映了目 标函数的一种局部性质。它只是 局部目标函数值下降最快的方向。 最速下降法是线性收敛的算法。
f(x1,x2)=100x12+x22
最速下降法
共轭梯度法详细解读
![共轭梯度法详细解读](https://img.taocdn.com/s3/m/1033b242c381e53a580216fc700abb68a982ad93.png)
共轭梯度法详细解读
嘿,朋友们!今天咱就来好好唠唠共轭梯度法。
你想想啊,咱平常解决问题就像走迷宫似的,有时候会在里面转来转去找不到出路,而共轭梯度法呀,就像是在迷宫里给咱指了一条明路!比如说你想找一条最快从山这头到那头的路,共轭梯度法就能帮上大忙啦!
它可不是随随便便就出现的哦,那可是数学家们绞尽脑汁研究出来的宝贝呢!就好比一个超级英雄,专门来打救我们这些在复杂问题里苦苦挣扎的人。
在实际应用里,它可厉害着呢!比如说在工程计算中,要设计一个最完美的结构,共轭梯度法就能迅速算出最优解。
哇塞,这不就相当于有个超厉害的军师在帮咱出谋划策嘛!
你再想想,我们日常生活中很多事情都可以类比成用共轭梯度法来解决问题呀。
比如说你要规划一次旅行,怎么安排路线最合理,不就是在找那个最优的旅行路径嘛,这时候共轭梯度法的思路就能派上用场啦!它就像一个隐藏在幕后的高手,默默地为我们排忧解难。
而且哦,一旦你掌握了它,那种感觉就像是你突然掌握了一种绝世武功,能在各种难题面前游刃有余。
这可太酷了吧!
哎呀呀,共轭梯度法真的是太神奇、太有用啦!大家可一定要好好去了
解它、运用它呀,你绝对会被它的魅力折服的!相信我,没错的!。
共轭梯度法和基本性质
![共轭梯度法和基本性质](https://img.taocdn.com/s3/m/ab37a5f5fe4733687e21aae7.png)
共轭梯度法及其基本性质预备知识定义1设吐竺是对称正定矩阵。
称回凹是A-共轭的,是指況如=0, Pl Ap^ > o p p^Apy >0性质1设有怡久…化⑶s )l 是彼此共轭的即维向量,即则鬥心諾一定是线性无关的[证明]若有一组数1% ■…心討满足则对一切P=°」旳一定有是线性无关的.性质2 设向量国"弧…厨諾是线性无关的向量组,则可通过它们的线性组合得出一组向量 冋丿“…护討,而|円貯,…申詞是两两共轭的.[证明]我们用构造法来证实上面的结论.T_注意到腕弘由此得出:Cfj = O.j即所有的区1=0 .因此,%珂十…+ %P 純^ = Pi + ・・・ +=应住;^Pi r容易验证:列…&胡符合性质2的要求.性质3设1%几…护』是两两A —共轭的,怜已必 是任意指定的向量,那么 从囲出发,逐次沿方向 应1「…化|搜索求际/加-能旬的极小值,所得序列k"i ,满足:[证明]由下山算法可知,从 二出发,沿2方向搜索,获得从而取 Pl 二 El +%弘Jt-iZ =心+乞碍耳,id性质4设 兀乃;匚几-』是两两A 共轭的,则从任意指定的注門出发,依次 沿弘山「'"MI 搜索,所得序列kJz 满足:(1)(2) 或,其中曰是方程组(5.1.1)的解.[证明](1)是性质3的直接推论,显然成立.(2)由于是两两A 共轭的,故血“,…申”11是线性无关的.所 以对于向量卜一咄可用…申』线性表出,即存在一组数Rof ■经J 使,得出F] P\由于于是,再由得出M-l木=心+乞爲P于是 ---------- 旦 ---- ,与得出 也旦一样地,我们可以陆续得出:对比区]和的表达式可知,I©二兀证明完毕性质4是性质3的直接推论.但它给出了一种求(5 . 1. 1)的算法,这种 算法称之为共轭方向法•结合性质2,我们可以得到如下的性质5.性质5设 陽卧…是丽上的一组线性无关的向量,则从任意指定的S2:计算显然:根据性质4可知,不论采用什么方法,只要能够构造 个两两A 共轭的向量作为搜索方向,从任一初始向量出发,依次沿两两A 共轭的方向进行搜索, 经門 步迭代后,便可得到正定方程组匡可的解.nM-l -T A久一1如一,得出 心二 U+ 计算 出发,按以下迭代产生的序列®二环+%肌.-------------------------------------------------- ?,得出应二咼+冏輕I;如此进行下去,直到第n 步:(521 )共轭梯度法算法步骤如下:[预置步]任意 如三兰I ,计算并令取:肚込J 指定算法终 止常数置肛=D |,讲入主步;[主步](1)如果%终止算法,输出丈列;否则下行;上rL^Apj, r(3) 计算:(4) 置出弓丘可,转入(1)定理5 .2.1由共轭梯度法得到的向量组丄和二具有如下性质:[证明]用归纳法•当时,因为(2)计算:Po 二巾” h 二円二G+A J F U---------------------------------------------------------------------------------------------------------------------------------------------------- ?卩詁=耐广1 = M (% - %期0)=币6 —Cfp;山刊=5= 01 +几巩)孑禺=X占心-因此定理的结论成立.现在假设定理的结论对冋成立,我们来证明其对曰也成立.利用等式n】二G 一及归纳假设,有P訂如二於%- %云旳\二0 OWi三上1.又由于故定理的结论(1)对比+ 1|成立.利用归纳假定有如毗•・・・/』=零诚% TvPtK而由(1)所证知,二与上述子空间正交,从而有定理的结论(2)对 __ 也成立.利用等式p如二厂屏1+久刃|和二疗.丐母)并利用归纳法假定和(2)所证之结论,就有=丄咕仮一加)+屁分如「心CU…上-1成立;而由円的定义得这样,定理的结论(3)对U也成立.由归纳法假定知进而再注意到(2)和(3)所证的结论表明,向量组hf 宀j和”"戸“1'"险1 都是线性无关的,因此定理的结论(4)对匸U同样成立.定理证毕定理521表明,向量「「引和|弘,W「珂|分别是Krylov子空间空如匕也的正交基和共轭正交基.由此可见,共轭梯度法最多明步便可得到方程组的解二.因此,理论上来讲,共轭梯度法是直接法.定理5.2.2 用共轭梯度法计算得到的近似解U满足义的Krylov子空间.证明注意到:”⑶斗疋也=広一忌)。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/757f9e4c336c1eb91a375d1f.png)
证明:采用数学归纳法, 不过, 还是省略它
(5.8)意味着 d iT Qd j 0, j i, i 1, 2, , n - 1 即Broyden 族在用精确搜索求解凸二次函数极小化问题 时, 所产生的方向关于矩阵Q相互共轭.属于共轭方向法.
前面讨论的共轭方向法 需要在算法之初 产生 n个共轭方向,因而需要很大的存贮量,而且 不能用来求解非二次问题.
j 0 k
dT j Qp k 1 d Qp j
T j
d j,
(5.5)
步2 若k n - 2, 则停止, 否则, 令k : k 1, 转步1.
容易验证, 由算法5.1产生的向量组 d 0 , d1 , , d n-1 R n 关于矩阵Q相互共轭
下面的定理解释了第四章介绍的Broyden 族具有二次终 止性的根本原因 :
其中 k 是待定参数, 适当选取 k , 使得 d kT Qd k -1 0.
一般地, 搜搜方向的计算公式为: - f ( x0 ), dk - f ( xk ) k d k -1 , k 0 k 1 (5.10)
在下面我们来推导 (5.10) 参数 k 的计算公式 :
d k -f ( xk ) k d k -1
其中 k 是由精确搜索得到的步长. 即满足
于是求得
d kT-1Qf ( xk ) k T dk -1Qd k -1
在该计算式中含矩阵Q, 为减少计算量及使共轭梯度能 用于求解非二次函数的优化问题, 在计算式中消除 Q.
由上面的条件得到
T T T p0 Qp1 - p0 Qf ( x1 ) p0 Qp 0 0
等值线
f ( x1 )
由此解得 所以 p Qf ( x1 ) T p0 Qp 0
共轭梯度法总结
![共轭梯度法总结](https://img.taocdn.com/s3/m/caa41c4603768e9951e79b89680203d8ce2f6a8f.png)
共轭梯度法总结
共轭梯度法总结
一、什么是共轭梯度法
共轭梯度法(Conjugate Gradient Method),是一种用于求解线性方程组的迭代优化算法,它是一种搜索梯度的迭代算法。
共轭梯度法的基本思想是沿梯度的反方向搜索,并在每一步令搜索的方向接近更新的局部梯度。
它是一种非常有效的求解有约束的非线性优化问题的方法,是求解线性方程组的有效算法。
共轭梯度法可以看作是一种极小化函数的迭代方法,它最主要的思想是不断更新梯度的方向,从而寻找函数值最小的点。
二、共轭梯度法的原理
共轭梯度法是一种迭代优化算法,它以凸二次型函数为例,可以用来求解最小值问题。
它的基本思想是:
(1)首先求得函数的梯度,即每一步优化的搜索方向,使梯度变为最小;
(2)以梯度的反方向搜索,令搜索的方向接近更新的局部梯度,而不是与旧的梯度成正比的步长;
(3)逐步更新搜索的方向为新的梯度;
(4)重复这个过程,直到所有的自变量满足限制条件。
三、共轭梯度法的优缺点
共轭梯度法最大的优点是它具有收敛速度快,可以在有限的迭代步数内收敛到最优解;另外,它还具有计算量小,不需要计算精确的
Hessian矩阵的优点。
共轭梯度法的缺点是它不能用来求解非凸优化问题,因为它只能求解凸优化问题;另外,它也不能用于强不可约的优化问题。
共轭梯度方法
![共轭梯度方法](https://img.taocdn.com/s3/m/ce24d9fa370cba1aa8114431b90d6c85ec3a88d4.png)
共轭梯度方法(Conjugate Gradient Method)是求解线性方程组的一种迭代算法。
该方法适用于求解大型稀疏的对称正定线性方程组,可以显著减少计算量和存储空间。
该方法的主要思想是利用共轭方向(Conjugate Directions)的性质,在有限次迭代中求解方程组的解。
共轭梯度方法的基本步骤如下:
选取一个初值$x_0$,并令$r_0=b-Ax_0$,其中$b$ 为方程组的右端向量,$A$ 为系数矩阵。
计算一个共轭方向$p_0=r_0$,即$p_0$ 与$r_0$ 正交,并满足$Ap_0 \neq 0$。
对于$k=0,1,2,\ldots$,执行以下操作:
a. 计算$\alpha_k=\frac{r_k^Tr_k}{p_k^TAp_k}$。
b. 更新解向量$x_{k+1}=x_k+\alpha_kp_k$。
c. 计算残差向量$r_{k+1}=r_k-\alpha_kAp_k$。
d. 计算$\beta_k=\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}$。
e. 更新共轭方向$p_{k+1}=r_{k+1}+\beta_kp_k$,即$p_{k+1}$ 与$p_k$ 具有共轭性。
如果残差向量$r_k$ 较小,则停止迭代,输出解向量$x_k$。
共轭梯度方法具有收敛速度快、存储空间小等优点,但对于非对称和非正定的线性方程组,该方法可能不收敛。
同时,该方法也有一些变体,如预处理共轭梯度法、共轭残差法等,可以更好地解决不同类型的线性方程组求解问题。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/e1ba2c11b7360b4c2e3f645b.png)
共轭梯度法1. 算法原理求解一个系数矩阵为正定矩阵的线性方程组可通过求泛函)(x f 的极小值点来获得,进而可以利用共轭梯度法来求解。
共轭梯度法中关键的两点是,确定迭代格式)()()1(k k k k d x x α+=+中的搜索方向)(k d 和最佳步长k α。
实际上搜索方向)(k d是关于矩阵A 的共轭向量,在迭代中逐步构造之;步长k α的确定原则是给定迭代点)(k x 和搜索方向)(k d 后,要求选取非负数k α,使得)()()(k k k d x f α+达到最小,即选择0≥k α,满足)(min )()()(0)()(k k k k k d x f d x f kααα+=+≤。
设迭代点)(k x和搜索方向)(k d已经给定,k α可以通过一元函数)()()()(k k d xf g αα+=的极小化)()(min )()(0k k d xf g ααα+=≤来求得,所以最佳步长)()()()(k k k k k Addd r TT=α。
在给定初始向量)0(x 后,由于负梯度方向是函数下降最快的方向,故第1次迭代取搜索方向)0()0()0()0()(Ax b x f r d-=-∇==。
令)0(0)0()1(d x x α+=,其中)0()0()0()0(0Addd r TT=α。
第2次迭代时,从)1(x 出发的搜索方向不再取()1r,而是选取)0(0)1()1(d r d β+=,使得)1(d与()0d 是关于矩阵A 的共轭向量,即要求)1(d 满足()()()0,01=Ad d ,由此可求得参数)0()0()0()1(0-Ad d Ad r TT=β,然后从()1x 出发,沿方向)1(d进行搜索得)1(1)1()2(d x xα+=,其中1α已由上面k α的计算式获得。
一般地,设已经求出)()()1(k k k k d x x α+=+,计算)1()1(++-=k k Ax b r。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/3d98be3e2379168884868762caaedd3383c4b538.png)
共轭梯度法共轭梯度法(also known as Pearson-Newman gradient method)是电化学反应动力学中一种很有用的技术,主要应用于分析化学、环境工程、农药学、微生物学等领域。
用共轭梯度法时,以活性高的配体替代催化剂上的固定配体(一般为固定相),使原来的催化剂仍能发挥作用,但具有选择性更好、灵敏度更高、应用范围更广的特点,同时能降低毒性和提高催化活性,还可改善催化剂的稳定性。
共轭梯度法(reaction-coordinate density technique,缩写为coAPD),是由美国著名的电化学家S.C.R.(赫维斯特)于1976年提出的,最早是应用于考察水溶液中蛋白质在二级胺诱导下的变性行为。
后来,此方法被用于研究Cu(I)-Zn(II)氧化偶联反应,可用于测定其它一些金属离子。
它能够选择性地催化多种反应,并且操作简便,灵敏度高,催化效率高。
它与同样是基于电极过程机理的原位催化比较,在原理上具有优越性。
对于活性组分分子内部的小的不均匀结构,可以采用共轭梯度法实现更精确的测量。
在这个技术中,如果采用共轭体系,一般可以考虑将其作为一个三电子体系,而与电子得失的量子化运动相联系,即以共振状态作为激发条件。
因此,实验装置也称之为共振极限溶剂。
目前,已经开发了一些共轭体系,其中主要包括共轭二烯体系、共轭异戊二烯体系、共轭二炔体系等。
根据不同的选择性要求,又可将它们划分成几类:双齿配体系列、共轭乙炔体系列、共轭苯炔体系列、共轭乙烯体系列、共轭苯乙炔体系列、双烯类配体系列。
由于选择性较高,该技术广泛用于化学反应机理及反应产物分析。
特别是随着计算机技术的迅速发展,其应用更加广泛。
例如,在定量方面,可以在很短的时间内给出定量结果,可以很快地绘制出实验曲线或计算出数据。
在这个技术中,反应机理以原子轨道理论为基础。
根据反应机理,按照共振条件进行合理的实验设计,通过电化学反应测定反应的产物或催化剂的量,并绘制电位-时间图,即可达到定性、定量的目的。
共轭梯度法 计算化学
![共轭梯度法 计算化学](https://img.taocdn.com/s3/m/583c2867dc36a32d7375a417866fb84ae45cc39b.png)
共轭梯度法计算化学
共轭梯度法是一种常用于求解线性方程组的迭代方法,也可以用于计算化学中的一些问题。
在计算化学中,共轭梯度法常用于求解分子结构优化、能量最小化、电子结构计算等问题。
其中最常见的应用是求解非常大的线性方程组,如Hartree-Fock方程,即通过求解一个自洽的线性方程组来得到分子的基态电子结构。
共轭梯度法利用了线性方程组的特殊性质,通过迭代计算逼近线性方程组的解。
它不需要事先知道线性方程组的解的精确形式,只需要知道线性方程组的系数矩阵和右端向量。
在每一次迭代中,共轭梯度法利用之前的迭代结果和当前的残差信息来计算一个新的搜索方向,从而逼近解的位置。
通过多次迭代,共轭梯度法可以逐渐接近线性方程组的解。
在化学计算中,尤其是量子化学计算中,共轭梯度法经常用于求解大型稠密矩阵的特征值问题。
这些问题通常涉及求解特征方程,得到能量的本征值和本征函数。
共轭梯度法的迭代性质使得它非常适合处理大型稠密矩阵的特征值计算问题,因为它只需要存储和计算与当前解和残差相关的信息,而不需要存储和计算整个矩阵。
总之,共轭梯度法是一种非常有效的迭代方法,可以用于求解线性方程组以及一些涉及大型矩阵的计算化学问题。
在实际应用中,共轭梯度法经常与其他优化算法结合使用,以获得更高效、更准确的结果。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/b83555a6d1f34693daef3eed.png)
v
i 0
p Api
n
i T i
pi
证明:
任意向量 v (v R ) 可以表示成
v c j Pj
j 0
n 1
用 Pi A
T
(i 1,2,,n-1) 左乘式(1)得
n 1 j 0
PiT Av c j PiT APj ci PiT APi
ci P iT Av P i APi
共轭梯度法
(Fletcher-Reeves)
梯度法的特点 优点 迭代过程简单,编制程序较易,一次迭代的工作量较少,计 算机内存量小。 函数值下降方向明确,对初始点没有严格要求。 缺点 跌代过程中走许多弯路,有些情况下,收敛速度较慢。
d ( k ) -f (x ( k ) ) f (x ( k 1) ) d ( k ) 0
f (x )
(1)
f (x* ) A (x(1) 1d1 ) B A x (1) B 1Ad1 0
=
d (1)
f (x(1) ) 1Ad1 0
x*
1d (1)
d (f (x d f (x
( 0) T (0) T
(1)
) 1Ad(1) )
提供共轭向量系的方法有多种,如共轭梯度法,Powell方法等。
(二)共轭梯度法
Fletcher & Reeves (1964)
构造共轭方向的具体方法
x
(k )
x
( 0)
id(i )
i 0
k 1
(1) 初始搜索方向的确定 选定初始点
x (0) ,下降方向 d (0)
取
x (0) 处的负梯度方向;
最优化方法 共轭梯度法
![最优化方法 共轭梯度法](https://img.taocdn.com/s3/m/c3cdcb5eaeaad1f346933fcb.png)
而对于形为上述二次函数,其中G为实对称正定矩 阵,只要我们适当选取Rn的一组{p1,p2,...pn},使得pi 满足条件piTQpj=0(i≠j)
则易见在新的基下,f(x)就成为变量分离的形式。 于是,从任何一个初始点x(1)出发,分别沿每个pi方向 作线搜索,经过一轮后,肯定就能得到最优解,我们把 满足上述条件的n维方向称为是G-共轭的。
共轭梯度法
贺小燕
二、共轭梯度法 共轭梯度法是针对二次函数f(x)=(1/2)xTGx+bTx+c ,x=
(x1,x2,...,xn)T的无约束极小问题,考虑出一种搜索 方向的合理选取方法,然后形式地推广到一般的可微函 数。
首先注意到,对于变量分离的函数 f(x)=f1(x1)+f2(x2)+....+fn(xn)
Hale Waihona Puke 三、算法特点:1、全局收敛(下降算法);线性收敛;
2、每步迭代只需存储若干向量(适用于 大规模问题);
3、有二次终结性(对于正定二次函数, 至多n次迭代可达opt.)
注:对不同的β k公式,对于正定二次函 数是相等的,对非正定二次函数,有不 同的效果,经验上PRP效果较好。
定义:设G为n阶实对阵正定矩阵,若n维方 向x和y满足xTGy=0则称方向x和y是G-共轭 的。
共轭梯度法就是在每个迭代点x(k)处,以负 梯度- ▽f(x(k))和前一个搜索方向pk-1适当组合, 构成和前面k-1个搜索方向p1,p2,...pk-1均两两G共轭的搜索方向pk,故以此命名。
基于上面的考虑,现在的问题是如何构造出 两两G-共轭的方向?
共轭梯度法最简明解释
![共轭梯度法最简明解释](https://img.taocdn.com/s3/m/834f5746974bcf84b9d528ea81c758f5f61f2930.png)
共轭梯度法最简明解释
嘿,你知道啥是共轭梯度法不?这玩意儿可神奇啦!就好比你在一
个迷宫里找出口,有好多条路可以走。
共轭梯度法呢,就是一种找到最优解的方法。
想象一下,你要去山
顶看最美的风景,但是山有很多坡,你得选择最合适的路往上爬。
比
如说你一开始随便选了一条路走,走着走着发现不太对,那咋办?这
时候共轭梯度法就发挥作用啦!它会帮你调整方向,让你更接近山顶。
我给你举个例子哈,就像你要减肥,你试过各种方法,节食啦,运
动啦。
那共轭梯度法就像是有个智慧的教练在旁边,告诉你啥时候该
多吃点,啥时候该加大运动量,让你能最快地达到减肥的目标。
它不是那种死板的方法,而是很灵活的。
比如说在解决一个复杂的
问题时,它会根据实际情况不断调整策略。
这多厉害呀!
咱再想想,要是没有共轭梯度法,那得多费劲呀!就像你在黑夜里
没有手电筒,摸黑走路,多容易摔跤呀!
共轭梯度法真的是数学和科学领域的一个大宝贝!它能让很多难题
变得简单起来,能帮我们更快地找到答案。
我觉得吧,共轭梯度法就像是一把神奇的钥匙,能打开很多知识和
技术的大门,让我们看到更广阔的世界!你说是不是?。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/d9d0933c87c24028915fc359.png)
共轭梯度法对于任意形式的目标函数()f X ,在极值点*X 附近展开成泰勒级数,且取前三项,有()()()****2**1()...2TT f X f Xf X X X X X f X X X ⎡⎤⎡⎤⎡⎤⎡⎤≈+∇-+-∇-⎣⎦⎣⎦⎣⎦⎣⎦因在极值点*X 处()*0f X ∇=,而()2**()f X H X ∇=为()f X 在*X 的二阶偏导数矩阵,即Hessian 矩阵,故()****1().().2T f X f X X X H X X X ⎡⎤⎡⎤≈+--⎣⎦⎣⎦ 对于二次函数来说,若令()()()2*2*2*221122,,f X f X f X a b c x x x x ∂∂∂===∂∂∂∂则()**1(),a b H X f X d b c ⎡⎤==⎢⎥⎣⎦而—常数 则,得到()()()()()()()()()()()()()()11221212121122*1**112*2**12**112**1222****11122-1()+--2---1=+--2--1-2---2x x a b f X d x x x x b c x x a x x b x x d x x x x b x x c x x d a x x b x x x x c x x ⎡⎤⎡⎤⎢⎥⎡⎤≈⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦⎡⎤+⎢⎥⎡⎤⎣⎦⎢⎥+⎣⎦⎡⎤=+++⎢⎥⎣⎦由上式可知,当12*1**2x x X X x x ⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦时,得到目标函数的极小值()*1()f X f X d ==,当22(),,...f X d d =时,则有等值线族。
令2()f X d =,代入上式,则有()()()()112222****2111221()-2---2f X d d a x x b x x x x c x x ⎡⎤=≈+++⎢⎥⎣⎦所以目标函数()f X 在*X 点附近的等值线方程为()()()()112222****1122-2---0a x x b x x x x c x x d +++=式中,122()d d d =-=常数。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/43b9657f590216fc700abb68a98271fe910eaf2f.png)
共轭梯度法简介共轭梯度法是一种迭代的最优化算法,用于求解线性方程组或求解非线性优化问题。
它在解决大规模线性方程组时表现出色,尤其适用于对称正定矩阵的问题。
共轭梯度法结合了最速下降法和共轭方向法的优点,能够在有限次数的迭代中快速收敛到最优解。
背景在数值计算和优化问题中,线性方程组的求解是一个常见且重要的问题。
例如,在图像处理、数据分析和机器学习等领域,我们经常需要求解一个大规模的线性方程组。
然而,传统的直接方法,如高斯消元法或LU分解,对于大规模问题往往计算量巨大,耗时较长。
因此,我们需要寻找一种高效的迭代方法来解决这些问题。
共轭梯度法的核心思想是通过一系列共轭的搜索方向来逼近最优解。
具体来说,对于一个对称正定的线性方程组Ax=b,共轭梯度法的步骤如下:1.初始化解向量x0和残差x0=x−xx0。
2.计算初始搜索方向x0=x0。
3.进行共轭梯度迭代:重复以下步骤n次或直到收敛为止。
a.计算步长$\\alpha_k=\\frac{r_k^Tr_k}{d_k^TAd_k}$。
b.更新解向量$x_{k+1}=x_k+\\alpha_kd_k$。
c.更新残差$r_{k+1}=r_k-\\alpha_kAd_k$。
d.计算新的搜索方向$d_{k+1}=r_{k+1}+\\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}d_k$。
共轭梯度法与其他迭代方法相比有以下特点:1.高效性:共轭梯度法能够在有限次数的迭代中收敛到最优解,尤其适用于对称正定矩阵。
相比于直接方法,其计算量较小,具有更高的计算效率。
2.无需存储完整矩阵:共轭梯度法只需知道矩阵A的乘法运算结果,不需要存储完整的矩阵。
这对于大规模问题是一个很大的优势。
3.不需要计算矩阵的特征值:相比于其他迭代方法,共轭梯度法不需要计算矩阵的特征值,因此在实际问题中更加实用。
算法应用共轭梯度法广泛应用于各个领域的优化问题和线性方程组求解问题,包括:1.图像处理:共轭梯度法用于图像恢复、图像去噪和图像分割等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(0)
T
(r , r ) 19 0 ( 0) ( 0) ( Ar , r ) 55
( 0)
x
0r
(0)
19 (3 1 3)T 55
最好
+ 最好 =
最好 ?
• 方向(最速下降) (best rk) • 步长(精确搜索) (best k)
( k 1) (k ) (k ) x x r • 是否最好 ? k
The Best of the 20th Century: Editors Name Top 10 Algorithms, SIAM News
现代迭代方法: Krylov子空间方法
共轭梯度法的关键是构造一组两两共 轭的方向(即一组线性无关向量)。巧妙的是 , 共轭方向可以由上次搜索方向和当前的梯 度方向之组合来产生。
的几何意义
2
x
p(1)
r (1)
x
(1)
p
(0)
此时 ( x ) 在 2 上可表示为
H x (1) r (1) p(0)
( , )
T 1 (1) (1) (0) (1) (1) (0) x r p A x r p 2 T (1) (1) (0) b x r p
Hestenes和Stiefle(1952)提出来的,用于解正定系数矩阵的 线性方程组, Fletcher和Reeves(1964)首先提出了解非线性最优化问题的 共轭梯度法。 由于共轭梯度法不需要矩阵存储,且有较快的收敛速度和二次 终止性等优点,现在共轭梯度法已经广泛地应用与实际问题, 已经成为求解大型稀疏线性方程组最受欢迎的一类方法。
19:41
(k ) x 则由前述最速下降算法产生的序列 满足
Th
设
A 的特征值为 0 1
n ,
x
其中
(k )
x
A
x A b。
1
n 1 n 1
k
x
(0)
x
A
上述定理说明,当 1
n时最速下降法收敛非常慢。
锯齿现象
H ( x) x Ax 2b x aij xi x j 2 b j x j
T T
n
n
n
i 1 j 1
j 1
的极小值点 x 是线性方程组 Ax = b 的解。
19:41
若
H ( x ) min H ( x ), 则由极值的必要条件得 n
xR
H ( x ) 2 Ax 2b 0.
d (r , r ) ( 0) ( 0) H(x r ) 0 0 ( 0) ( 0) d ( Ar , r )
(0) (0)
d ( 0) ( 0) ( 0) ( 0) 注意到 2 ( x r ) 2( Ar , r ) 0 d
2
min ( x
( 0)
r 0 ,则 x 就是方程组的解; (0) (0) 如果 r 0 ,则沿 r 方向进行一维极小搜索: ( 0) ( 0) 求 0 使得 H ( x r ) 达到最小值, 则
如果
(0)
(0)
x x
(1)
( 0)
0r .
( 0)
H ( x ( 0 ) r ( 0 ) )= 1 (0) ( x r ( 0 ) )T A( x ( 0 ) r ( 0 ) ) bT ( x ( 0 ) r ( 0 ) ) 2
Barzilai-Borwein方法
局部思想: 最速下降法思想简单,但是收敛速度慢。本 质上是因为负梯度方向函数下降快是局部性质。 全局思想: N 维空间的任意向量可以由N个线性无关 的向量线性表示。
19:41
3、共轭梯度法/*Conjugate-Gradient Method*/
共轭梯度法不仅是解决大型线性方程组最有用的方法之一, 也是解大型非线性最优化最有效的算法之一。
(0)
下面以 x
为新的迭代值,重复上述过程即可
共轭梯度法的算法
T
1T
设 p1 , p2 ,, pk 是 Rn 中一组非零向量,如果 它们两两关于 A
则称这组方向是关于 A共轭的,也称它们是一 组A共轭方向。
注:如果A是单位矩阵,则
1T 2
p I p 0 p p2 0
1T
p1 p2
共轭是正交的推广!!
共轭梯度法 选取初始向量
x
设A是 n 阶对称正定阵 ( Ax, y ) = ( x, Ay ) ; ( Ax,x ) ≥0, 且( Ax, x) = 0 x = 0
2/16
预备知识
梯度:
f ( x ) gradf ( x )
xf f1 f ( x ) x 2 f x 3
§2.5 共轭梯度法
预备知识
最速下降法 共轭梯度法
数值试验算例
19:41
预备知识:内积的定义 I 方程组问题: Ax = b 1 T T m in f ( x ) x Ax b x II 极值问题: xR n 2 n 设 x , y R , 记 ( x , y) = xT y ( x, y ) = ( y, x ); ( tx, y ) = t ( x, y); ( x+ y, z ) = ( x, z ) + ( y, z ); ( x, x) ≥ 0, 且( x, x) = 0 x = 0;
lim x ( k ) x *。
k
从瞎子下山到最优化方法
Science of Better
19:41
瞎子与计算机
• 瞎子: 能感觉到脚下的坡度(这是海拔函数 在当前点的梯度值),但不知道山上其它点 的任何情况 • 计算机: 计算目标函数在该点的信息(如函 数值和梯度值), 但不知道其它点的信息
19:41
2.5.2 最速下降法
几何意义:
等值线
x
(0)
x
思 想
最速下降法是指每次沿着函数值 下降最快的方向寻找最小值点。
而函数值下降最快的方向是函数的负梯度方向
最速下降法实现过程: (0) 选取初始向量 x ,由二次函数 H ( x ) 的基本性质 ( 0) (0) (0) H ( x ) b Ax r
设x0是f ( x )的一个极值点, 且f ( x )在x0处导数存在, 则 f ( x0 )=0
注释: 费马引理的价值在于将极值问题转化为 方程的求解问题。
19:41
初等变分原理 设 Ax b, 其中 A (aij ) Rnn为对称正定矩阵, T x ( x1 , , xn ) , b (b1 , , bn )T ; x* A1b.
在极小点附近,目标函数可以用二次函数近似,其等值面近似
椭球面。
x2 x3
x*
x1
注
最速下降方向反映了目 标函数的一种局部性质 。 它只是
局部目标函数值下降最快的方向。 最速下降法是线性收敛的算法。
f(x1,x2)=100x12+x22
19:41
最速下降法
f(x1,x2)=100x12+x22
19:41
若
r
( k )T
(k )
,停止
收敛速度?????
缺陷:收敛速度慢!
否则,进行下一次循环
例:用最速下降法求解方程组:
x
( 0)
(0 0 0)
T
2 0
0
1
0
1
0
计算
( 0)
x1 x2
3
1
3
( 0)
(1)
1
Step1
2
x3
r
( 0)
解: 易验证系数矩阵是对称正定的.
b Ax
(3 1 3)
Ax b
该性质说明:求解方程组的解等价于求上述 二次函数的最小值。
(k ) { x } 使得 迭代法构造思想:构造
H ( x( 0) ) H ( x(1) )
k
H ( x( k 1) ) H ( x( k ) )
H ( x* )
且 lim H ( x ( k ) ) H ( x* ),
由极值的必要条件得
(1)T (1) (1)T (0) (1)T (1) r Ar r Ap r r 0 r (1)T Ap(0) p(0)T Ap(0) 0
x x 0 r
(1)
(1)
0 p
思 想
共轭梯度法将求解方程组问题等价转化为一个 二次 泛函的极值问题。
一、与方程组等价的二次泛函问题 定义二次函数
T
:R R
n
H ( x) x Ax 2b x aij xi x j 2 b j x j
T
n
n
n
i 1 j 1
j 1
定理(初等变分原理) 设A =(aij )n×n为实对称正定 n 矩阵,x, b R ,则 x是二次函数
pk+1 := rk+1 + tau*pk
19:41
共轭方向和共轭方向法
若有
共轭,即
n 1 2 设 A 是 n n 的对称正定矩阵,对于 R 中的两个非零向量 p 和 p , 定义
p Ap 2 0 ,则称 p1和p 2关于A共轭。
p i Ap j 0 , i j , i , j 1 , 2 ,, k 。
r ) (x
( 0)