最新最全面初二数学上册知识点汇总(精华版)
2024年初二上册数学知识点总结范本(二篇)
2024年初二上册数学知识点总结范本数学是一门极其重要的学科,是创造性思维和逻辑推理的基础。
初二上册数学主要学习的内容有整数、分数、有理数、比例与均值、百分数、实数、平面图形、数轴、数据及统计等。
下面是初二上册数学知识点的详细总结。
一、整数1. 整数及其概念2. 整数的分类(正整数、负整数、零)3. 整数的比较与大小排序4. 整数的加减法运算(同号相加、异号相减)5. 整数的乘法与除法运算(正负数相乘、正负数相除)6. 整数的混合运算二、分数1. 分数及其概念2. 分数的表示方法(真分数、假分数、带分数)3. 分数的比较与大小排序4. 分数的约分与通分5. 分数的加减法运算6. 分数的乘法与除法运算7. 分数与整数、小数的相互转化8. 分数的混合运算三、有理数1. 有理数的概念2. 有理数的分类(整数、分数)3. 有理数的加减法运算4. 有理数的乘法与除法运算5. 有理数的混合运算四、比例与均值1. 比例的概念与性质2. 比例的表示与计算3. 比例的应用(比例定理、比例线段分割、相似三角形)4. 均值的概念与计算(平均数、中位数、众数)五、百分数1. 百分数的概念与计算2. 百分数与分数、小数的相互转化3. 百分数的应用(百分比、利率、折扣、提成等)六、实数1. 实数的分类(有理数、无理数)2. 无理数的概念与性质(开方、无理数的大小比较)3. 实数的运算4. 实数的应用(开平方、计算器使用)七、平面图形1. 基本概念(点、线、面、角)2. 三角形(分类、性质、判定、计算)3. 四边形(分类、性质、判定、计算)4. 圆(概念、性质、计算)5. 多边形(分类、性质)6. 空间图形(长方体、正方体、球等)八、数轴1. 数轴的概念与表示2. 正数与负数的数轴表示3. 数轴上点的坐标与距离九、数据及统计1. 数据的概念与表示方法(频数、频率、累计频数、分组频数)2. 统计图(条形图、折线图、折线图等)3. 中心倾向量(平均数、中位数、众数)4. 离散程度(极差、方差、标准差)5. 数据的整理与分析以上是初二上册数学的主要知识点总结,希望可以帮助到你。
初二数学上册知识点汇总(精华15篇)
初二数学上册知识点汇总(精华15篇)初二数学上册知识点汇总1①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。
②角有一条对称轴,是角平分线所在的直线。
③等腰三角形有一条对称轴,是顶角平分线所在的直线。
④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。
⑤矩形有两条对称轴,是相邻两边的垂直平分线。
⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。
⑦菱形有两条对称轴,是对角线所在的'直线。
⑧等腰梯形有一条对称轴,是两底垂直平分线。
⑨正多边形有与边数相同条的对称轴。
⑩圆有无数条对称轴,是任何一条直径所在的直线。
初二数学上册知识点汇总2①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;②根据具体问题确定单位长度;③在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。
平移后图形的位置改变,形状、大小不变。
2.在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的`新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
3.图形平移与点的坐标变化之间的关系:(1)左、右平移:原图形上的点(x、y),向右平移a个单位(x+a,y);原图形上的点(x、y),向左平移a个单位(x-a,y);(2)上、下平移:原图形上的点(x、y),向上平移a个单位(x,y+b);原图形上的点(x、y),向下平移a个单位(x,y-b)。
初二数学上册知识点汇总31.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
2.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的'最高次数是1的不等式叫一元一次不等式。
八上数学知识点总结初中
八上数学知识点总结初中一、实数1. 有理数与无理数:理解有理数可以表示为两个整数的比,无理数则不能表示为这种形式。
2. 实数的运算:掌握加、减、乘、除等基本运算规则,了解分配律、结合律和交换律。
3. 绝对值:理解绝对值的概念,即一个数距离0的距离,掌握绝对值的计算方法。
4. 估算:学会对无理数进行近似计算,使用四舍五入法进行估算。
二、代数式1. 单项式与多项式:理解单项式是由数字和字母相乘组成的,多项式则是单项式的和。
2. 同类项:识别并合并同类项,即具有相同字母和相同指数的项。
3. 代数式的加减:掌握代数式加减的运算规则,注意去括号和合并同类项。
4. 代数式的乘除:理解单项式与多项式相乘的方法,以及多项式除以单项式的运算过程。
三、方程与不等式1. 一元一次方程:解一元一次方程,掌握移项、合并同类项、系数化为1的方法。
2. 二元一次方程组:了解代入法和消元法解二元一次方程组。
3. 不等式的概念:理解不等式的含义,掌握不等式的表示方法。
4. 一元一次不等式:解一元一次不等式,注意在解集表示中使用大于、小于符号。
5. 一元一次不等式组:解一元一次不等式组,学会找到不等式组的解集。
四、几何1. 平行线与角:理解平行线的性质,掌握同位角、内错角和同旁内角的概念。
2. 三角形的基本概念:了解三角形的分类,包括等边、等腰和直角三角形。
3. 三角形的性质:掌握三角形的内角和定理,了解三角形的中位线定理。
4. 四边形:学习矩形、平行四边形、菱形和正方形的性质和判定方法。
5. 圆的基本性质:掌握圆的基本概念,包括圆心、半径、直径、弦、弧等。
6. 圆的性质:理解圆周角定理,掌握切线的性质和判定。
五、统计与概率1. 统计的基本概念:了解数据的收集、整理、描述和分析过程。
2. 频数与频率:学会计算频数和频率,理解它们之间的关系。
3. 概率的初步认识:理解概率的定义,掌握概率的计算方法。
4. 简单事件的概率:计算简单事件发生的概率,了解概率的加法原理。
初二数学上册知识点总结归纳
初二数学上册知识点总结归纳一、整数和有理数1. 整数运算:加法、减法、乘法、除法2. 整数的性质:相等性、大小关系、相反数、绝对值3. 有理数的性质:相等性、大小关系、相反数、绝对值4. 有理数的加法和减法:同号相加、异号相减5. 有理数的乘法和除法:同号得正、异号得负二、代数式与方程1. 代数式的概念:字母、数字和运算符号的组合2. 代数式的运算:加法、减法、乘法、除法3. 方程的概念:等号两边的代数式4. 方程的解:使方程成立的值5. 一元一次方程:解一次方程的方法6. 一元一次方程的应用:问题的转化和解答三、图形的认识1. 图形的分类:平面图形和立体图形2. 平面图形的名称和性质:点、线、线段、射线、角、三角形、四边形、多边形、圆3. 立体图形的名称和性质:球体、圆柱体、圆锥体、棱锥体、棱柱体四、相交线与平行线1. 相交线的性质:相互垂直、补角相等、同位角相等、对顶角相等2. 平行线的判定:相交线与平行线的性质3. 平行线的性质:对应角相等、内错角相等、同位角相等4. 直线与平面的关系:直线与平面有一个公共点,直线与平面没有公共点五、数的倍数与约数1. 数的倍数的概念:一个数除以另一个数,商是整数2. 数的倍数的性质:公倍数、最小公倍数3. 数的约数的概念:能整除给定数的数4. 数的约数的性质:公约数、最大公约数六、四则运算与算式1. 公式与算式的概念:有运算符号和等号的式子2. 算式的运算法则:先乘除后加减、先括号后计算3. 利用四则运算解决实际问题七、角与直线的关系1. 角的概念:角的三要素、角的分类2. 角的比较与度量:角的大小比较、度量角的单位3. 角的平分线和角的三等分线4. 直线的分类:与角有关的直线、与平行线有关的直线八、方形与平行四边形1. 方形的性质:四个角都是直角的四边形2. 平行四边形的性质:对边平行、对边相等、对角相等3. 平行四边形的判定:各边的长度、对角线的关系4. 平行四边形的性质应用九、单位换算与量的计算1. 常用单位的换算:长度、面积、体积、质量、时间2. 运用单位换算解决实际问题3. 人口密度、文明程度等综合计算十、比例与比例应用1. 比例的概念:比值相等的关系2. 解决比例问题的方法:分离两比值、求未知数3. 按比例象形、小学生由高到低站队、分数排数等应用4. 面积比例、速度比例、比例尺及其应用十一、数轴与大小关系1. 数轴的概念:用线段表示数及其大小2. 数轴上点的坐标:规定数轴上一个点的坐标3. 数轴上的加法和减法:根据坐标的变化进行运算4. 数轴上的倍数:根据坐标的变化进行运算十二、综合与实践1. 基本依据:理论与实际结合2. 实际问题:通过解答实际问题,理解和应用所学知识通过对初二数学上册的知识点进行总结归纳,可以加深对这些知识的理解和掌握。
初二数学上册知识点汇总(文库)
初二数学上册必背知识点默写版+解析版专题01三角形(解析版)知识点1:三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.细节剖析:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.细节剖析:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,细节剖析:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.细节剖析:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.知识点2:三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.细节剖析:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.知识点3:三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.知识点4、:、多边形及有关概念1.多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.细节剖析:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.细节剖析:各角相等、各边也相等是正多边形的必备条件,二者缺一不可.如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.细节剖析:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.知识点5:、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数).细节剖析:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.细节剖析(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.知识点6:、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.细节剖析:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.专题02全等三角形(解析版)知识点1:全等三角形的判定与性质知识点2:全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边知识点3:角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等知识点4:全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法. 1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.专题03轴对称(解析版)知识点1:轴对称图形1.轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点2:轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.知识点3:轴对称与轴对称图形的性质1.轴对称、轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点4:线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.知识点5:对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.知识点6:用坐标表示轴对称1.关于x轴对称的两个点的横(纵)坐标的关系已知P点坐标,则它关于x轴的对称点的坐标为,如下图所示:即关于x轴的对称的两点,坐标的关系是:横坐标相同,纵坐标互为相反数.2.关于y轴对称的两个点横(纵)坐标的关系已知P点坐标为,则它关于y轴对称点的坐标为,如上图所示.即关于y轴对称的两点坐标关系是:纵坐标相同,横坐标互为相反数.3.关于与x轴(y轴)平行的直线对称的两个点横(纵)坐标的关系P点坐标关于直线的对称点的坐标为.P点坐标关于直线的对称点的坐标为.专题04整式的乘法与因式分解(解析版)知识点1:幂的运算 1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0,m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点2:整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++知识点3:乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点4:因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法,分组分解法,十字相乘法,添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.专题05分式(解析版)知识点1:分式的有关概念及性质1.分式一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M 为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.知识点2:分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±=;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方。
数学-初二数学上册知识点归纳大全最新
初二数学上册知识点归纳大全最新初二数学上册知识点归纳大全有哪些你知道吗?只有我们在教学过程中勤分析,善反思不断总结,才能提高学生数学成绩。
而我们教学理念和能力才能与时俱进。
一起来看看初二数学上册知识点归纳大全,欢迎查阅!初二数学上册知识点归纳有理数及其运算板块:1、整数包含正整数和负整数,分数包含正分数和负分数。
正整数和正分数通称为正数,负整数和负分数通称为负数。
2、正整数、0、负整数、正分数、负分数这样的数称为有理数。
3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。
整式板块:1、单项式:由数与字母的乘积组成的式子叫做单项式。
2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3、整式:单项式与多项式统称整式。
4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。
一元一次方程。
1、含有未知数的等式叫做方程,使方程左右两边的.值都相等的未知数的值叫做方程的解。
2、移项:把等式一边的某项变号后移到另一边,叫做移项等。
其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。
大家平时要注意整理与积累。
配合多加练习。
一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。
一个个知识点去通过。
我相信只要做个有心人,就可以在数学考试中取得高分。
初二上册数学部分知识点总结1、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称2、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^23、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形4、定理四边形的内角和等于360°5、四边形的外角和等于360°6、多边形内角和定理n边形的内角的和等于(n-2)×180°7、推论任意多边的外角和等于360°8、平行四边形性质定理1平行四边形的.对角相等9、平行四边形性质定理2平行四边形的对边相等10、推论夹在两条平行线间的平行线段相等11、平行四边形性质定理3平行四边形的对角线互相平分12、平行四边形判定定理1两组对角分别相等的四边形是平行四边形13、平行四边形判定定理2两组对边分别相等的四边形是平行四边形七年级数学上册学习方法一、看书习惯这是自学能力的基本功。
初二数学上册知识点汇总
数学知识提纲姓名初二上册初二数学(上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a,b,c 有关系222c b a =+,那么这个三角形是直角三角形,且最长边所对的角是直角.3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实 数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0。
1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值.(|a |≥0).零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a |=—a,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和—1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用. 5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a,那么这个正数x 就叫做a 的算术平方根。
八上数学重要知识点(全册)
八上数学重要知识点(全册)
本文档旨在总结八年级上学期数学课程的重要知识点,以帮助同学们更好地回顾和复。
1. 整数与计算
- 正数与负数的概念及表示方法
- 整数的加法、减法、乘法、除法运算规则
- 绝对值的计算方法和性质
- 倒数的概念及计算方法
2. 分数的运算
- 分数的基本概念和表示方法
- 分数的加法、减法、乘法、除法运算规则
- 分数与整数之间的转化
- 带分数的概念及计算方法
3. 代数式与方程
- 代数式的基本概念和表示方法
- 代数式的加法、减法、乘法运算规则
- 方程的概念和解方程的方法
- 一元一次方程的解法和应用
4. 几何形状与变换
- 平面图形的基本概念、性质和分类标准
- 直角三角形、等腰三角形和等边三角形的特点- 多边形的性质和分类标准
- 空间几何体的基本概念和计算方法
- 平移、旋转、翻折和对称变换的概念和方法5. 数据与统计
- 统计调查和统计图的制作和解读
- 数据的整理、展示和分析
- 众数、中位数和平均数的计算以及应用
以上是八年级上学期数学课程的重要知识点概述。
同学们可以根据这些内容进行系统的复习,以提高数学学习的效果。
祝愿大家取得优异的成绩!。
八上数学知识点总结整理(通用8篇)
八上数学知识点总结整理八上数学知识点总结整理(通用8篇)新的学期开始的,在新学期开始之前,你是是否整理好了之前的知识呢?以下是小编精心整理的八上数学知识点总结整理,希望能够帮助到大家。
八上数学知识点总结整理篇1等腰三角形判定中线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形角平分线1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。
八上数学知识点总结整理篇21全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32定理1关于某条直线对称的两个图形是全等形33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形八上数学知识点总结整理篇3一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
初二数学上册知识点汇总(最新版)
初二数学(上册)知识点总结知识提纲第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形,且最长边所对的角是直角。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实 数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
八年级上册数学知识点
八年级上册数学知识点
1. 数的性质
- 自然数、整数、有理数、无理数的概念和特征
- 常见数集及其元素的性质:自然数集、整数集、有理数集和实数集
- 数的比较和大小关系:大小判断、绝对值的概念和性质
2. 代数式与方程
- 代数式的概念和基本运算法则
- 一元一次方程的概念和解法:列方程、解方程的基本步骤,解的判断和检验,含有括号的方程等
- 解一元一次方程的应用题:简单的实际问题转化成一元一次方程
3. 几何图形
- 直线、射线、线段的概念及其表示方法
- 平行线、相交线和垂直线的判定方法
- 角的概念及其分类:锐角、直角、钝角、平角
- 三角形的概念和分类:直角三角形、等腰三角形、等边三角形
- 多边形的概念和分类:四边形、正多边形
- 圆的概念:圆心、半径、直径等
4. 数据与统计
- 数据的搜集与整理:频率表、频率分布直方图
- 数据的分析与应用:平均数、中位数、众数的概念和计算
- 折线图的绘制方法
5. 概率与统计
- 事件、样本空间和概率的概念
- 简单事件和复合事件的计算
- 使用频率和概率判断事件的发生可能性
6. 平面坐标系
- 平面直角坐标系:横轴、纵轴、原点、象限等概念
- 点的坐标表示和确定:横坐标、纵坐标
- 点在坐标系中的位置关系:同一直线上、同一平行线上等概念
7. 直线与平行线
- 直线的概念和性质:直线上的点、直线上的点的坐标表示
- 平行线与相交线的特点和性质
- 直线之间的位置关系:相互平行、相交、垂直等
以上是八年级上册数学的主要知识点。
希望对你的研究有所帮助!。
八上数学总复习各章知识点总结及整理
八上数学总复习各章知识点总结及整理.doc八年级上册数学总复习各章知识点总结及整理引言随着学期的结束,对八年级上册数学知识点进行全面的复习和整理是十分必要的。
这不仅有助于学生巩固已学知识,还能帮助他们为即将到来的考试做好准备。
以下是对八年级上册数学各章节知识点的详细总结及整理。
第一章:实数1.1 实数的概念理解实数的分类:有理数和无理数。
掌握实数的性质和运算规则。
1.2 算术平方根学习如何计算一个数的算术平方根。
理解平方根的性质。
1.3 平方根掌握平方根的概念和计算方法。
了解平方根与算术平方根的区别。
第二章:代数基础2.1 代数式理解代数式的定义和基本运算。
学习合并同类项的方法。
2.2 一元一次方程掌握一元一次方程的解法。
学习方程的应用问题。
2.3 因式分解学习因式分解的基本方法:提公因式法和公式法。
理解因式分解在解方程中的应用。
第三章:几何初步3.1 线段、角学习线段的性质和角的概念。
掌握角度的分类和计算。
3.2 相交线与平行线理解相交线的性质。
学习平行线的判定和性质。
3.3 三角形掌握三角形的基本性质。
学习三角形的分类和内角和定理。
第四章:函数4.1 函数的概念理解函数的定义和表示方法。
学习函数的三种表示形式:解析式、列表和图形。
4.2 一次函数掌握一次函数的性质和图象。
学习一次函数的解析式和应用问题。
4.3 反比例函数理解反比例函数的概念和性质。
掌握反比例函数的图象和解析式。
第五章:统计与概率5.1 数据的收集与处理学习数据收集的方法和数据的整理。
掌握数据的描述性统计指标。
5.2 概率初步理解概率的基本概念。
学习概率的计算方法。
复习策略系统复习:按照章节顺序,系统地复习每个知识点。
重点强化:针对重点和难点进行强化训练。
习题练习:通过大量的习题练习,巩固知识点。
错题回顾:对错题进行总结和回顾,避免重复错误。
模拟测试:定期进行模拟测试,检验复习效果。
结语通过对八年级上册数学各章知识点的总结及整理,学生可以更加清晰地掌握每个章节的核心内容,为期末考试和未来的学习打下坚实的基础。
2024年初二上册数学知识点总结(2篇)
2024年初二上册数学知识点总结____年初二上册数学知识点总结一、数字与代数1. 自然数与整数的概念和性质:自然数与整数的定义、自然数与整数之间的大小关系、整数的加法、减法、乘法和除法规则等。
2. 有理数的概念和性质:有理数的定义、有理数的四则运算、有理数的大小比较、有理数的绝对值和相反数等。
3. 方程与不等式的解法:一元一次方程、一元一次不等式的解法、方程与不等式问题的实际应用等。
4. 分式的概念和运算:分式的定义、分式的四则运算、分式的约分与化简等。
5. 百分数与实际问题:百分数的意义和转化、百分数的运算法则、百分数与实际问题的应用等。
二、空间与图形1. 点、线、面和空间的概念:点、线、面和空间的定义、点与线、点与面、线与面的关系等。
2. 角的概念和性质:角的定义、角的种类、角的度量和度的转化、角的平分线等。
3. 平面图形的性质和应用:三角形、四边形的性质、平面图形的分类、平面图形的面积计算等。
4. 空间图形的性质和应用:长方体、正方体、球的性质、空间图形的表面积与体积计算等。
5. 坐标系和平面向量:笛卡尔坐标系的概念和性质、平面向量的定义和运算、平面向量的模、方向和共线等。
三、数据与统计1. 数据的整理和统计:数据的收集和整理、频数表的制作、统计图表的绘制等。
2. 数据的分析和应用:数据的分布特征、数据的集中趋势(平均数、中位数、众数)、数据的离散程度(极差、方差、标准差)等。
3. 概率与统计实际应用:随机事件、概率的定义和性质、概率运算、统计实际问题的概率计算等。
四、函数与方程1. 函数的概念和性质:函数的定义和性质、函数的图象、函数的增减性和奇偶性等。
2. 反函数和复合函数:反函数的概念和性质、复合函数的定义和性质等。
3. 一元一次方程与一元一次不等式:一元一次方程的解法、一元一次不等式的解法、一次函数的图象与方程的关系等。
4. 一元二次方程与不等式:一元二次方程的解法、一元二次不等式的解法、二次函数的图象与方程的关系等。
八年级上册数学知识点归纳大全
八年级上册数学知识点归纳大全一、数与式1.数的整除:整除的定义、性质;0的整除性;素数与合数。
2.代数式:代数式的概念;代数式的运算法则(加、减、乘、除、乘方)。
3.一元一次方程:一元一次方程的定义;一元一次方程的解法(代入法、消元法、加减法)。
二、平面直角坐标系1.坐标与图形:平面直角坐标系的概念;原点、坐标、象限;点的坐标。
2.直线与坐标轴:直线的概念;直线的方程(点斜式、两点式、一般式);坐标轴与直线的关系。
3.坐标与图形:通过坐标表示点、直线、角;平面内的图形变换(平移、旋转、对称)。
三、三角形1.三角形的基本性质:三角形的内角和;三角形的外角和;三角形的角平分线;三角形的中线。
2.三角形的分类:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形。
3.三角形的面积:三角形的面积公式(海伦公式、底乘高公式);三角形面积的应用。
四、整式的乘法与因式分解1.整式的乘法:同底数幂的乘法;积的乘方;幂的乘方与积的乘方。
2.整式的因式分解:因式分解的方法(提公因式法、公式法、分组法);因式分解的应用(解方程、求值)。
五、方程与函数1.一元一次方程:一元一次方程的性质;一元一次方程的解法(代入法、消元法、加减法)。
2.一元一次不等式:一元一次不等式的性质;一元一次不等式的解法(代入法、消元法、加减法)。
3.一次函数:一次函数的概念;一次函数的图像与性质;一次函数的应用。
4.反比例函数:反比例函数的概念;反比例函数的图像与性质;反比例函数的应用。
六、数据的整理与描述性统计1.数据的整理:数据的收集与整理(调查、实验、观察);数据的表示与呈现(表格、条形图、折线图)。
2.数据的描述性统计:平均数、中位数、众数;频数与频率;数据的分布(集中趋势、离散程度)。
七、几何图形初步1.图形的认识:基本图形的认识(点、线、面);基本图形的性质。
2.几何变换:图形的旋转;图形的对称(轴对称、中心对称、中心对称图形);图形的平移。
八年级上册数学知识点归纳
八年级上册数学知识点归纳八年级上册数学知识点归纳11、函数一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
3、函数的三种表示法及其优缺点关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
图象法用图象表示函数关系的方法叫做图象法。
4、由函数关系式画其图像的一般步骤列表:列表给出自变量与函数的一些对应值。
描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
5、正比例函数和一次函数①正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k 不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。
②一次函数的图像:所有一次函数的`图像都是一条直线。
③一次函数、正比例函数图像的主要特征一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。
④正比例函数的性质一般地,正比例函数有下列性质:当k>0时,图像经过第一、三象限,y随x的增大而增大;当k⑤一次函数的性质一般地,一次函数有下列性质:当k>0时,y随x的增大而增大;当k⑥正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。
八年级数学上册知识点总结(推荐12篇)
八年级数学上册知识点总结第1篇第十一章三角形一、知识框架:知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的.外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
第十二章全等三角形一、知识框架:二、知识概念:1、基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
八年级上册数学知识点总结(热门14篇)
八年级上册数学知识点总结第1篇一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
第七章知识点1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的'整式方程叫做二元一次方程。
2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4、二元一次方程组的解二元一次方程组中各个方程的。
公共解,叫做这个二元一次方程组的解。
八年级上数学知识点总结
1.小数与分数:小数与分数之间的互相转化是八年级数学的基础内容之一、需要掌握小数和分数的定义、性质,以及它们之间的转换方法。
2.整数:整数的加法、减法、乘法和除法是八年级数学的重要内容。
需要掌握整数的加减乘除的计算法则,以及应用到实际问题中的解决方法。
3.代数与方程:代数是数学的重要分支,在八年级数学中,代数的基本概念和运算是必不可少的。
代数的知识包括变量、常数、系数、项、代数式等方面的内容。
方程是代数的重要应用,需要掌握一元一次方程的解法以及应用到实际问题中。
4.三角形与平行四边形:三角形是平面图形的重要一类,八年级数学中主要学习三角形的定义、分类、性质,以及三角形的内角和外角等内容。
平行四边形也是八年级数学中重要的几何图形之一,需要掌握平行四边形的定义、性质,以及平行四边形的面积计算方法。
5.初中数学常用几何工具:尺规作图、直尺、圆规、量角器等是八年级数学中常用的几何工具。
需要掌握使用这些几何工具进行正交、平行、相等等几何构造的方法。
6.百分数与实际应用:百分数是数学中常见的一种表示方法,八年级数学中需要掌握百分数的定义、性质,以及百分数在实际应用中的计算方法。
7.数据与统计:数据与统计是数学的一个分支,八年级数学中需要学习数据的收集、整理、展示以及数据的平均数、中位数等统计指标的计算方法。
8.函数与图像:函数是数学中的重要概念,八年级数学中主要学习函数的定义、性质,以及函数的图像、增减性等内容。
9.平方根与立方根:平方根和立方根是数学中常见的开方运算,八年级数学中需要掌握平方根和立方根的定义、性质,以及在实际应用中的计算方法。
10.综合应用题:综合应用题是八年级数学的重点和难点,需要综合运用以上的知识点进行解答。
这些应用题通常与日常生活、实际问题、几何问题等密切相关,需要动脑筋解决。
以上是八年级上学期数学的主要知识点总结,掌握这些知识点可以帮助同学们更好地理解和应用数学知识,提高数学学习的效果。
初二上册数学知识点总结
初二上册数学知识点总结一、数的认识1.自然数、整数和普通分数2.数轴及其应用3.负数的引入4.数的倍数和因数5.最大公因数和最小公倍数6.实数及其性质二、代数式及字母表达式1.代数式及其实质2.字母的代表数和位置3.字母的代数运算三、一次函数1.自变量、因变量和函数的关系2.一次函数的概念及图象3.一次函数的性质四、平面图形1.点、线、面2.角及其分类3.三角形及其分类4.四边形及其分类5.平行四边形的性质6.五边形及其分类五、垂直1.垂直与平行2.平行线和相交线3.平行线的判定4.平行线性质5.平行线的位置关系六、多边形1.多边形的概念和命名规则2.正多边形3.边和角4.对称图形5.轴对称图形6.平行四边形的对角线7.多边形的内角和七、图形的平移1.平移的基本概念2.平移和向量的关系3.图形的平移4.向量的运算八、统计1.统计调查和基本步骤2.数据的整理和表示3.频数分布表4.频数分布直方图5.频数分布折线图九、函数1.函数的概念及记法2.函数的图象及性质3.函数的概念及记法4.函数的图象及性质5.函数的运算及性质十、平面直角坐标系1.直角坐标系及其概念2.图象和坐标的关系3.平面直角坐标系初二上册数学知识点总结一、数的认识1.自然数自然数是指0、1、2、3、4……这些正整数称为自然数,自然数是从小到大的排列,没有尽头。
2.整数和普通分数整数包括了:正整数1,2,3,4,.. 负整数-1,-2,-3…0 。
分数包括了:基本分数、带分数。
例:带分数的分数表示,例:3 1/5。
它是一个真分数,真分数的分子小于分母。
3. 数轴及其应用这里我们再讲数轴及其应用。
;(1)数轴的概念:数轴是一个用来表示数值的一条直线。
(2)数轴上各点的坐标:直线上任意点A到直线上选定点O的距离对应于有理数a。
(3)数轴上整数的位置:了解很多的知识点,想象数轴上整数的位置;练习排列,通过训练做到心中有底。
4. 负数的引入负数就如同热咖啡和冰咖啡一样不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学知识提纲姓名初二上册初二数学(上册)知识点总结第一章勾股定理1、勾股定理2a 2b 2c直角三角形两直角边 a , b 的平方和等于斜边 c 的平方,即 2、勾股定理的逆定理(直角三角形的判定条件)a2b2c 2,那么这个三角形是直角三角形,且最长边所对的角是如果三角形的三边长 a , b , c 有关系 直角。
222abc 的三个正整数,称为勾股数。
3、勾股数 :满足 第二章实 数一、实数的概念及分类1、实数的分类正有理数零 负有理数 正无理数有理数有限小数和无限循环小数实数无理数无限不循环小数负无理数2、无理数: 无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: 7, 3(1)开方开不尽的数,如2 等;π 3(2)有特定意义的数,如圆周率 π,或化简后含有 π的数,如+8 等;(3)有特定结构的数,如 0.1010010001, 等; (4)某些三角函数值,如 sin60o等二、实数的倒数、相反数和绝对值1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 2、绝对值a 与b 互为相反数,则有a+b=0, a=— b ,反之亦成立。
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
的相反数,若 |a|=a ,则 a ≥0;若 |a|=-a ,则 a ≤0。
3、倒数( |a|≥0)。
零的绝对值是它本身,也可看成它如果 a 与 b 互为倒数,则有 4、数轴ab=1,反之亦成立。
倒数等于本身的数是 1 和 -1。
零没有倒数。
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可) 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算 三、平方根、算术平方根和立方根。
21、算术平方根:一般地,如果一个正数x 的平方等于 a ,即 x =a ,那么这个正数 x 就叫做 a 的算术平方根。
特别地, 0 的算术平方根是 0。
a ”,读作根号 表示方法:记作“a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
22、平方根:一般地,如果一个数x 的平方等于a,即x =a,那么这个数x 就叫做a 的平方根(或二次方根)。
a”,读作“正、负根号表示方法:正数 a 的平方根记做“a”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数 a 的平方根的运算,叫做开平方。
a0注意 a 的双重非负性:a03、立方根一般地,如果一个数x 的立方等于x 3a,即=a 那么这个数x 就叫做a 的立方根(或三次方根)。
3表示方法:记作a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
33注意:a a ,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b 是实数,a b0a b,a b0a b,a b0a bab b ;abab;ab111a b;(3)求商比较法:设a、b 是两正实数,a a(4)绝对值比较法:设a、b 是两负实数,则a b b。
a 2b 2 a b 。
(5)平方法:设a、b 是两负实数,则五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数 a 必须是非负数。
22、性质:(1)(a) a(a 0) a(a 0)a 2 a(2)a(a 0)ab a b(a 0,b 0) a b ab(a 0,b 0))(3)(a b a(ababa(ab0,b 0) 0, b 0) )(4)(a ”形式,必须满足:3、运算结果若含有“(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式; 六、实数的运算( 3)分母中不能含有根号。
( 1)六种运算: 加、减、乘、除、乘方 ( 2) 实数的运算顺序、 开方先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
( 3)运算律加法交换律: a b b a 加法结合律: (a b) c a (b c)abba 乘法结合律: (ab)c a(bc)a(b c) ab ac乘法交换律: 乘法对加法的分配律:第三章位置与坐标一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。
它们的公共原点 O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被象限、第三象限、第四象限。
x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二[注意 ]:x 轴和 y 轴上的点(坐标轴上的点) 3、点的坐标的概念,不属于任何一个象限。
●对于平面内任意一点P,过点 P 分别 x 轴、 y 轴向作垂线,垂足在上x 轴、 y 轴对应的数 a ,b 分别叫做点 P 的横坐标、纵坐标,有序数对(a ,b )叫做点 P 的坐标。
●点的坐标用( a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“, ”分开,横、纵坐标的位置不能a b 时,( a , b )和( b , a )是两个不同点的坐标。
颠倒。
平面内点的坐标是有序实数对,当 ●平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征 ( 1)、各象限内点的坐标的特征x x x x 0, y 0, y 0, y 0, y 0 0 0 0点 P(x,y) 在第一象限 点 P(x,y) 在第二象限 P(x,y) 在第三象限 P(x,y) 在第四象限 点 点 ( 2)、坐标轴上的点的特征y x 0 , x 为任意实数0 ,y 为任意实数 点 P(x,y) 在 P(x,y) 在 x 轴上 y 轴上点 点 P(x,y) 既在 x 轴上,又在 y 轴上x , y 同时为零,即点 P 坐标为( 0, 0)即原点( 3)、两条坐标轴夹角平分线上点的坐标的特征点 P(x,y) 在第一、三象限夹角平分线(直线 点 P(x,y) 在第二、四象限夹角平分线上y=x )上x 与 y 相等x 与 y 互为相反数( 4)、和坐标轴平行的直线上点的坐标的特征位于平行于 x 轴的直线上的各点的纵坐标相同。
y 轴的直线上的各点的横坐标相同。
位于平行于 ( 5)、关于 x 轴、 y 轴或原点对称的点的坐标的特征点 P 与点 P 与点 P 与点 p ’关于 p ’关于 x 轴对称 y 轴对称 横坐标相等, 纵坐标互为相反数, 即点 P ( x ,y )关于 x 轴的对称点为 即点 P ( x ,y )关于 y 轴的对称点为 P ’( x ,-y ) P ’( -x ,y ) 点 纵坐标相等, 横坐标互为相反数, 点 p ’关于原点对称横、纵坐标均互为相反数,即点P ( x , y )关于原点的对称点为P ’(-x , -y )(6)、点到坐标轴及原点的距离点 P(x,y) 到坐标轴及原点的距离:y ( 1)点 P(x,y) 到 x 轴的距离等于 xx(2)点 P(x,y) 到 y 轴的距离等于 22y(3)点 P(x,y) 到原点的距离等于 三、坐标变化与图形变化的规律:坐标( x , y )的变化图形的变化被横向或纵向拉长(压缩)为原来的× a 或 × a , -1 )或 -1 ), x +a 或 x +a , × × a 倍x x x ×( x ×( y y y y a a 放大(缩小)为原来的 a 倍 ×( ×( ) )关于 y 轴或 x 轴对称 关于原点成中心对称 -1 -1 沿 x 轴或 y 轴平移 x 轴平移 a 个单位,再沿 a 个单位y 轴平移 y+ a y+ a沿 a 个单第四章 一次函数一、函数:一般地,在某一变化过程中有两个变量x 与 y ,如果给定一个 x 值,相应地就确定了一个y 值,那么我们称 y是 x 的函数,其中 二、自变量取值范围x 是自变量, y 是因变量。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数) ,分式(分母不为0)、二次根式(被开方数为非负数) 三、函数的三种表示法及其优缺点(1)关系式(解析)法、实际意义几方面考虑。
两个变量间的函数关系, (解析)法。
(2)列表法有时可以用一个含有这两个变量及数字运算符号的等式表示, 这种表示法叫做关系式把自变量 x 的一系列值和函数 (3)图象法y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数1、正比例函数和一次函数的概念 x ,y 间的关系可以表示成 ykx b ( k , b 为常数, ●一般地,若两个变量0)的形式,则称 y 是 x 的一k次函数( x 为自变量, y 为因变量) 。
y kx b 中的 b=0 时(即 y kx )( k 为常数, k 0),称 y 是 x 的正比例函数。
●特别地,当一次函数2、一次函数的图像 所有一次函数的图像都是一条直线 :3、一次函数、正比例函数图像的主要特征: 一次函数 y kx b 的图像是经过点( y kx 的图像是经过原点( 图像特征0,b )的直线;正比例函数0, 0)的直线。
k 的符号b 的符号函数图像 y图像经过一、二、三象限, 的增大而增大。
随 y xb>00 xk>0y图像经过一、三、四象限, 的增大而增大。
随 y xb<0xy图像经过一、二、四象限, 的增大而减小随 y xb>0xK<0y图像经过二、三、四象限, 的增大而减小。
随 y xb<0x注:当 b=0 时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质 一般地,正比例函数 ykx 有下列性质:(1)当 (2)当 k>0 时,图像经过第一、三象限, k<0 时,图像经过第二、四象限, y 随 y 随 x 的增大而增大; x 的增大而减小。