计算智能信息处理_何振亚

计算智能信息处理_何振亚
计算智能信息处理_何振亚

第11卷第2期1996年6月数据采集与处理Jo urna l o f D ata A cquisition &P ro cessi ng V o .l 11N o .2Jun .1996

计算智能信息处理

何振亚

(东南大学无线电系 南京,210018)

收稿日期:1996-03-20;修改稿收到日期:1996-04-20

摘要 论述了基于计算的智能信息处理系统可以分为两大类:即基于传统计算机的人工智能系统和基于神经计算机的人工智能系统。比较了两者的本质区别,介绍了神经计算智能研究的当前进展及未来发展趋势。

关键词:信息处理;人工智能;神经网络;计算智能;

认知科学;信息科学

中图分类号:T N 911.7

在信息社会里,信息产生的增量越来越大。要使信息得到及时利用,为国民经济和科学技术以及国防工业的发展服务,必须对信息数据的采集、加工处理、传输、存储、决策和执行等手段进行高新技术改革,以适应社会发展形势的需求。《数据采集与处理》的宗旨就是交流和传播此方面的最新研究成果论文,反映并促进我国信息科学的发展。

信号与信息数据的采集和处理过程都内涵“计算”的意思,这个广义的含义使从信号处理到人工智能都属于信息处理学科的范畴,即要求用计算机运算方法来实现智能信息处理系统,将计算引向计算智能。智能是人的信息处理能力高级活动形式的表现。认知科学的主要研究内容将涉及到认知心理学与人工智能,它的主导思想就是认知的计算理论,广称为“认知即计算”,现已处在神经计算(即人工神经网络)的革命时代。目前国际上提出计算智能就是以人工神经网络为主导,与模糊逻辑系统、进化计算以及信号与信息

处理学科的综合集成,由此设计和研制成的

智能信息处理系统,对信息高速公路与多媒体通信等朝高度智能化的发展,将起到重大的关键性作用。

一般来说,智能信息处理可以划分为两大类,一类为基于传统计算机的智能信息处理,另一类为基于神经计算的智能信息处理。基于传统计算机的智能信息处理系统包括智能仪器、自动跟踪监测仪器系统、自动控制制导系统、自动故障诊断系统等。在人工智能系统中,它们具有模仿或代替与人的思维有关的功能,通过逻辑符号处理系统的推理规则来实现自动诊断、问题求解以及专家系统的智能。这种智能实际上体现了人类的逻辑思维方式,主要应用串行工作程序按照一些推理规则一步一步进行计算和操作,目前应用领域很广。基于计算机(包括高速信号处理器开发系统)和人工智能的智能信息处理系统仍在继续向高新技术发展,但其发展速率已不太适应社会信息数量增长速率的需求,因而促使人们注意到新型智能信息处理系统的研究。

人工神经网络是模仿延伸人脑认知功能的新型智能信息处理系统。由于大脑是人的智能、思维、意识等一切高级活动的物质基础,构造具有脑智能的人工智能信息处理系统,可以解决传统方法所不能或难以解决的问题。以联接机制为基础的神经网络具有大量的并行性、巨量的互连性、存贮的分布性、高度的非线性、高度的容错性、结构的可变

性、计算的非精确性等特点,它是由大量的简单处理单元(人工神经元)广泛互连而成的一个具有自学习自适应和自组织性的非线性动力系统,也是一个具有全新计算结构模型的智能信息处理系统。它可以模仿人脑处理不完整的、不准确的、甚至具有处理非常模糊的信息的能力。这种系统能联想记忆和从部分信息中获得全部信息。由于其非线性,当不同模式在模式特征空间的分界面极为复杂时,仍能进行分类和识别。由于其自适应自学习功能,系统能从环境及输入中获取信息来自动修改网络结构及其连接强度,以适应各种需要而用于知识推广及知识分类。由于分布式存贮和自组织性,而使系统连接线被破坏了50%,它仍能处在优化工作状态,这在军事电子系统设备中有着特别重要的意义。因此,基于神经计算的智能信息处理是模拟人类形象思维、联想记忆等高级精神活动的人工智能信息处理系统。

总的来说,上述两类智能信息处理系统有何不同呢?这可以由传统计算机与神经计算机(即人工神经网络信息处理系统)的主要特征来看出其本质上的区别。

(1) 神经计算机由大量简单神经处理系统连成,解剖学表明人脑有1011个神经元,每个神经元相当于一个处理器,神经网络是以网络形式进行计算的并行处理系统。而传统计算机是以冯.诺依曼计算机思想设计的,即使用并行机连接成超高速的信息处理系统,但每个分机仍按一系列指令串行计算工作的,且并行机之间的信息运算很少有相互协作关系,故在计算原理上两者有本质的差异。

(2) 从存贮记忆功能来看,冯.诺依曼计算机中信息与知识是存贮在与处理器分开的独立存贮器中的,而神经计算机是以各处理器本身的状态与它们连接形式分布存贮信息的,这使神经计算机具有强的自学习性、自组织性和高的鲁棒性。

(3) 传统计算机和人工智能采取逻辑符号推理的途径去研究人类智能的机器化,其智能信息处理系统可具有人类的逻辑思维功能,而神经网络计算机则以神经元连接机制为基础,从网络结构上去直接地模拟人类的智能,有人类的联想思维功能。其智能信息处理系统可具有形象思维、灵感,当然也有推理意识诸功能。

(4) 从知识处理来看,在处理能明确定义的问题或运用能明确定义的概念作为知识时,计算机一般具有极快的速度和很高的精度。但是对于无法将知识用明确的数学模型表达,或者解决问题所需的信息是不完整的或局部的,或者问题中许多概念的定义是非常模糊的,例如从人群中迅速识别出一个熟人,从车辆繁忙的马路上迅速决定自己能否通过等,这类智能处理,即使用超级计算机也显得无能为力或相当笨拙,而模仿人脑功能的新型智能信息处理系统就能极快地处理。

从智能产生的定义演化,认知科学认为神经计算给人工智能带来一场革命。国际上非常重视研究神经网络,相继成立了I EEE 神经网络委员会、国际神经网络学会、欧洲神经网络协会、亚太地区神经网络联合会和中国神经网络委员会、日本神经网络学会、俄罗斯神经网络协会等,每年召开神经网络会议,发表论文数千篇。还有I EEE电路系统学会、信号处理学会等年会,也有多个分组会发表许多神经网络论文,反映并推动了神经网络理论和应用的发展。在理论上,神经网络模型学习算法以及结构是相关联的,由于脑系统(生物模型)十分复杂,人工神经网络并不是脑系统的逼真描写,而只是它的某种简化抽象和模拟。现在已有30多种模型可作为神经计算的人工智能信息处理系统的各种工程应用,已取得了许多引人注目的突破性成果。例如美国研制出一种能辨认人的面孔的神经网络新型智能机器或神经计算机,只要让它看一下某人或他的照片,就能记住描述此人面貌的256个数字参数,在人群中就能认出这个人。这种神经计算机是由许多神经元组成的,可以记住达500人,思考辨认时间总共约1/10s。把它安装在机场、火车站等人群进出

86数据采集与处理第11卷

口,可以辨认正被搜寻的罪犯。美国HN C公司研制出的神经计算机,其性能远超过目前国际上巨型超级计算机,而且具有体积小、鲁棒性高等特点。

从1995年I EEE国际声学、语言及信号处理会议所发表的神经网络理论与应用方面的论文来看,也可了解到当前神经网络研究的动态,神经网络和智能信息处理理论研究仍在向纵深方向发展。美国M I T RE公司Jar rin K M等利用新的子波神经网络树结构和不同模比函数给以不同信号分辨率来选择最佳子波系数,使子波神经网络能精确地检测非平稳信号。美国匹兹堡大学计算神经科学实验室T su i F C等提出用回归神经网络(RNN)与离散子波变换混合模型的新方法来观察和预测病人的生理状态,其效果比单用RNN大有提高。美国代顿大学信号处理实验室Je m iliK等用子波变换与径向基函数神经网络作自适应估计时变的诱发电位,能很好地抑制不断变化发生的脑电波(EEG)干扰。美国圣地亚哥海军指挥中心和海军监视中心K undu A等用集成混合神经网络(I-H NN)和隐马尔柯夫模型(HM M)做分类器,可具有超分辨能力,分类精度可达98.7%。加拿大M c M aster大学H ayk in S等利用混沌神经网络做伪随机序列发生器,将其用在直接序列相干的BPSK通信系统中,具有很大的优越性,克服了常规信息处理方法用大量反馈移位寄存器构成伪噪声发生器的缺点。我国台湾省海洋大学C hang S H等研究了一种新的酉分解神经网络(U n itary D e-co m po sition ANN,UN I DANN)和广义H ebb算法,可以快速求解信号处理中计算量大的特征结构分解和主分量分析问题,且有引人注目的特点。在语声识别与信号分离方面,神经网络应用成果较多,这里只能简单介绍几项:瑞士ETH计算机工程与网络实验室H u tter H P提出了一个混合连接主义与半连接HMM(简写成SCHM M)模型方法和以多层感知器代替SCHM M通用码书的新方法,它的识别率为93.2%,高于语音元素码书用LVQ3最佳化结果(92.9%)。德国慕尼黑工业大学人机通信研究所Re iche W 等用径向基函数神经网络与HMM混合系统作连续语音识别,以V iterb i算法来计算个别的混合语音模型的贝叶斯概率,用最小分类误差目标函数训练混合系统,用广义概率下降(G PD)算法使分类器具有最小误差概率,从而使混合系统具有与最大似然估计相比拟的性能,对非特定人的连续语音识别其音素的识别率较优,约63.8%。美国加州La-Jo lla计算神经生物学实验室Be llA J等利用静态非线性理论和信息论目标函数拟合导出一个新的算法,它能近于完善分离10位讲话者的话音。当它用作盲解卷积时,可自动抵消回波和混响,并消除低通滤波效应。此外,神经网络在信道均衡、图象处理与识别、数据压缩等方面的应用,也有较多的创新研究成果。这充分表明神经网络在信号处理学科有很大的应用潜力,不仅能解决常规信号处理方法难解决的问题,而且使信号与信息处理系统能向神经计算的新型智能信息处理系统上发展,把信息高速公路与多媒体通信等推向最高级的水平。

总的来说,具有神经计算的智能信息处理正朝着生物智能方向发展,“计算智能”是其重要的理论基础。一般认为计算智能包括神经网络、模糊系统和进化计算三个主要方面,其积极意义在于促进了基于计算和基于物理符号相结合的各种智能理论、模型、方位的综合集成,以利于发展思想更先进、功能更强大并能够解决更复杂系统的智能行为。目前国际上计算智能研究正注意几个结合:神经网络与模糊系统和进化计算的结合;神经网络与模糊及混沌三者的结合;神经网络与近代信号处理方法子波、分形等的结合,以更有效地模拟人脑的思维机制,使人工智能导向生物智能。在神经网络本身又分为人工神经网络(ANN)、生物神经网络(BNA)及计算神经网络,即所谓A BC神经网络。总之要研究的内容非常丰富,正向纵深方向发展。

我国也很重视计算智能的研究。国家攀

87

第2期何振亚:计算智能信息处理

登计划重大关键项目“认知科学前沿领域中若干重大问题的研究”,有一个分项目就是神经网络理论与应用基础研究,这是一支强大的基础性研究的国家队。开展神经网络理论研究,包含神经网络模型、神经网络基本理论、神经网络智能系统理论模型以及神经网络实现方法四个课题。由此分解为18个子课题,分别由东南大学、北京大学、清华大学、复旦大学等10个单位承担研究。参加人员112名中有院士3人、教授30人、青年博士23人。三年来,每年都发表高水平论文百余篇,已取得了较多的创新研究成果,不少是有突破性的。在神经网络模型研究方面,提出了具有独创性的视、听觉神经网络的计算模型以及生物似然模型、多模式神经网络模型、模糊神经网络模型,研究了多种改进型模型,包括动态神经元模型的若干形式的现实性模型,在一定程度上体现了生物智能的特点。在神经网络基本理论方面,提出了多种优化的联想记忆、模式分类模型,建立了一种极高速信号处理的神经网络体系结构,给出了模糊感知器的严格定义及相应的学习算法,定义了一种组合优化设计的满意度的概念,研究和提出了前馈神经网络对非线性函数逼近能力、神经网络收敛性、联想记忆容量、容错性的定理,发现了细胞神经网络中新型的混沌吸引子,扩宽了混沌神经网络动力学方程模型参数,给出了混沌同步和混沌控制的新方法。在神经网络智能系统理论方面,建立了一种抗噪声的神经网络语音压缩和识别系统,提出了神经网络用于图象复原的新方法,成功地将分形和神经网络理论运用于图象编码和识别,提出了有效的编码和识别方法;集模糊逻辑推理的结构性知识表达能力与神经网络的强大学习能力于一体构成异步传输模式(A TM)网络的业务量管制系统,提出了用神经网络自动提取模糊系统的隶属函数和模糊规则的新方法,并研制了一个自动生成工具软件Po lyneuFuz;其主要功能比目前国际上最先进的同类系统N euFuz4为强。在神经网络实现方法上,构成一种虚拟神经计算系统和高性能的PC机仿真处理系统,提出了一种新型联想记忆V LS I电路阵列结构。用5片3009系列FPGA研制成具有64个神经元的离散时间细胞神经网络。提出了两种新的双极性光互连编码方案,已基本建成一台1024元光电混合可编程和可重构的光互连神经网络处理器,这是我国光神经网络计算机的第一代样机,在国际上也是先进的。此外,我们国家队也注意到基础性课题的应用研究,开展神经网络智能信息处理系统在高炉滑料、电力系统调度、铁路货运及安全检查等方面也取得了一定的成果。

总之,国家队是开展重大关键性的基础性问题研究的有力保证,能使我国神经网络及其智能信息处理研究达到国际先进水平。

Co mputational Intelligent

Infor mation Processi ng

H e Zhenya

(D epar t m en t o f R ad i o Eng i nee ring,S ou theas t

U niv er sity N anji ng,210018)

Abstract T w o k i nds o f i n telli g en t i n fo rm ation pro cessi ng sy ste m ba sed o n com pu ta tion,i.e.,the a r tifical inte lli g ence sy stem s ba sed o n traditi o nal com pu te rs and neu ro com pu te rs,are discussed.T he i n sti nc t diffe rences be t w een these t w o k i nds o f i n-te lli g en t infom a tion p ro cessing sy s tem s are com-pared.F ur the r m o re the cu rren t pro g ress and th e re-sear ch tendency o f neu ra l com pu ta tiona l i n telli g ence a re in trodu ced.

K ey words:i n fo rm ation pro cessi ng;a rt ificia l i n te lli-

g en ce;neura l ne t w o rks;com pu ta ti o nal

i n tellig en ce;co ngn itive sci ence;info r m a-

tion science

作者简介 何振亚 男,教授,1923年7月生,《数据采集与处理》编委会主任。著有《数字信号理论与应用》(上下册)(人民邮电出版社,1983年)、《多维数字信号处理》(国防工业出版社,1995年12月)、《神经网络》(主编丛书之一,湖南科学技术出版社, 1996年)等著作13本,发表论文350余篇。

88数据采集与处理第11卷

智能信息处理课程教学大纲

《智能信息处理》课程教学大纲 一、课程基本信息 1、课程代码:IE426 2、课程名称:智能信息处理/Intelligent Signal Processing 3、学时/学分:36学时/2学分 4、先修课程:信号与系统,高等数学,计算机程序语言 5、面向对象:电子信息类各专业本科生 6、开课院(系)、教研室:电子信息与电气工程学院(电子工程系)、电路与系统教研室 7、教材、教学参考书: 《人工智能原理及其应用》,王万森,电子工业出版社,2000 《人工神经网络与模拟进化计算》,阎平凡,张长水,清华大学出版社,2000 《遗传算法原理及应用》,周明,孙树栋,国防工业出版社,1999 《人工免疫系统原理与应用》,莫宏伟,哈尔滨工业大学出版社,2002 二、本课程的性质和任务 智能信息处理是当前科学技术发展中的前沿学科,同时也是新思想、新观念、新理论、新技术不断出现并迅速发展的新兴学科,具有非常广泛的应用领域。该课程的主要任务是通过各个教学环节,运用各种教学手段和方法,使学生掌握智能信息处理的基本概念、基本原理、基本计算方法;培养学生分析、解决问题的能力和实验技能,为日后从事工程技术工作、科学研究以及开拓新技术领域,打下坚实的基础。 三、教学内容和要求 第一章人工智能导论(8) 要求:理解并掌握人工智能的基本概念和范畴、基本原理和研究方法;了解人工智能的发展历史、目前的实际状况、未来的发展前景和实际的应用领域;掌握人工智能中的知识和知识表示方法:演绎系统、产生式系统、框架结构、语义网络、过程性知识;掌握人工智能中采用的搜索策略:无变量盲目搜索算法、带变量盲目搜索算法、启发式搜索算法、博弈树搜索;理解非经典逻辑和非经典推理;理解自然语言理解:语法学、语义学、语用学。 第二章人工智能的应用(2) 要求:理解专家系统的基本概念;理解机器学习的基本概念和方法;理解模式识别的基本概念;理解智能决策支持系统的基本概念。 第三章人工神经网络(10) 要求:了解人工神经网络的发展历史;理解人工神经网络所借鉴的生物学上的人脑神经元的信息处理模式;掌握人工神经元和感知器的基本模型;掌握人工神经网络的结构、特点、学习方式和工作方式;掌握前向神经网络中的多层感知器模型和反向传播(BP)算法,理解径向基函数(RBF)网络模型;掌握反向神经网络中离散型和连续型的Hopfield网络模型,了解模拟退火算法和玻尔兹曼机;理解自组织神经网络的Hebb学习规则和ART模型;理解模糊神经网络。 第四章模糊数学基础(4) 要求:掌握模糊集合的概念;掌握模糊规则与推理;理解模糊推理系统。 第五章进化算法(4)

蚁群算法(C++版)

// AO.cpp : 定义控制台应用程序的入口点。 #pragma once #include #include #include const double ALPHA=1.0; //启发因子,信息素的重要程度 const double BETA=2.0; //期望因子,城市间距离的重要程度 const double ROU=0.5; //信息素残留参数 const int N_ANT_COUNT=34; //蚂蚁数量 const int N_IT_COUNT=1000; //迭代次数 const int N_CITY_COUNT=51; //城市数量 const double DBQ=100.0; //总的信息素 const double DB_MAX=10e9; //一个标志数,10的9次方 double g_Trial[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间信息素,就是环境信息素 double g_Distance[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间距离 //eil51.tsp城市坐标数据 double x_Ary[N_CITY_COUNT]= { 37,49,52,20,40,21,17,31,52,51, 42,31,5,12,36,52,27,17,13,57,

62,42,16,8,7,27,30,43,58,58, 37,38,46,61,62,63,32,45,59,5, 10,21,5,30,39,32,25,25,48,56, 30 }; double y_Ary[N_CITY_COUNT]= { 52,49,64,26,30,47,63,62,33,21, 41,32,25,42,16,41,23,33,13,58, 42,57,57,52,38,68,48,67,48,27, 69,46,10,33,63,69,22,35,15,6, 17,10,64,15,10,39,32,55,28,37, 40 }; //返回指定范围内的随机整数 int rnd(int nLow,int nUpper) { return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1); } //返回指定范围内的随机浮点数 double rnd(double dbLow,double dbUpper) { double dbTemp=rand()/((double)RAND_MAX+1.0); return dbLow+dbTemp*(dbUpper-dbLow); }

智能信息处理

什么是智能信息处理?及其起源、发展与应用。 智能信息处理是模拟人与自然界其他生物处理信息的行为,建立处理复杂系统信息的理论、算法和系统的方法和技术。智能信息处理主要面对的是不确定性系统和不确定性现象的现象处理问题。智能现象处理在复杂系统建模、系统分析、系统决策、系统控制、系统优化和系统设计等领域具有广大的应用前景。 起源:20世纪90年代以来,在智能信息处理研究的纵深发展过程中,人们特别关注到精确处理和非精确处理的双重性,强调符号物理机制与联结机制的综合,倾向于冲破“物理学式”框架的“进化论”新路,一门称为计算智能的新学科分支被概括地提出来了,并以更快的目标蓬勃发展。 首次给出计算智能定义的是美国学者James C. Bezdek。他在题为“什么是计算智能”的报告中讲到:智能有三层次,第一层是生物智能(BI),第二层是人工智能(AI),第三层是计算智能(CI)。目前,国际上提出计算智能就是以人工神经网络为主导,与模糊逻辑系统、进化计算以及信号与信息处理系统的综合集成。 我们认为新一代的计算智能信息处理技术应该是神经网络、模糊系统、进化计算、混沌动力学、分型理论、小波变换、人工生命等交叉学科的综合集成。一般来说,智能信息处理分为两大类,一类为基于传统计算机的智能信息处理,另一类为基于神经计算的智能信息处理。

为了适应信息时代的信息处理要求,当前信息处理技术逐渐向智能化方向发展,从信息的载体到信息处理的各个环节,广泛地模拟人的智能来处理各种信息。人工智能学科与认知科学的结合,会进一步促进人类的自我了解和控制能力的发挥。研究具有认知机理的智能信息处理理论与方法,探索认知的机制,建立可实现的计算模型并发展应用,有可能带来未来信息处理技术突破性的发展。 现阶段信息处理技术领域呈现两种发展趋势:一种是面向大规模、多介质的信息,使计算机系统具备处理更大范围信息的能力;另一种是与人工智能进一步结合,使计算机系统更智能化地处理信息。智能信息处理是计算机科学中的前沿交叉学科,是应用导向的综合性学科,其目标是处理海量和复杂信息,研究新的、先进的理论和技术。智能信息处理研究涵盖基础研究、应用基础研究、关键技术研究与应用研究等多个层次。它不仅有很高的理论研究价值,而且对于国家信息产业的发展乃至整个社会经济建设、发展都具有极为重要的意义。 总的来说,具有神经计算的智能信息处理正朝着生物智能方向发展,“计算智能”时期重要的理论基础。一般认为计算智能包括神经网络、模糊系统和进化计算三个主要方面,其积极意义在于促进了基于计算和基于物理符号相结合的各种智能理论、模型和方法的综合集成,有利于发展思想更先进,功能更强大并能够解决更复杂系统问题的智能行为。目前国际上计算智能研究正注意几个结合:神经网络与进化计算结合;神经网络与模糊及混沌三者的结合;神经网络与近代信号处理方法子波、分型等的结合,以更有效地模拟人脑的思维机

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

蚁群算法

蚁群算法报告及代码 一、狼群算法 狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。 算法采用基于人工狼主体的自下而上的设计方法和基 于职责分工的协作式搜索路径结构。如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。 二、布谷鸟算法 布谷鸟算法 布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS 算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS 也采用相关的Levy 飞行搜索机制 蚁群算法介绍及其源代码。 具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。 应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能 三、差分算法 差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。 算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体

的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。 四、免疫算法 免疫算法是一种具有生成+检测的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。 五、人工蜂群算法 人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。为了解决多变量函数优化问题,科学家提出了人工蜂群算法ABC模型。 六、万有引力算法 万有引力算法是一种基于万有引力定律和牛顿第二定律的种群优化算法。该算法通过种群的粒子位置移动来寻找最优解,即随着算法的循环,粒子靠它们之间的万有引力在搜索空间内不断运动,当粒子移动到最优位置时,最优解便找到了。 GSA即引力搜索算法,是一种优化算法的基础上的重力和质量相互作用的算法。GSA 的机制是基于宇宙万有引力定律中两个质量的相互作用。 七、萤火虫算法 萤火虫算法源于模拟自然界萤火虫在晚上的群聚活动的自然现象而提出的,在萤火虫的群聚活动中,每只萤火虫通过散发荧光素与同伴进行寻觅食物以及求偶等信息交流。一般来说,荧光素越亮的萤火虫其号召力也就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的萤火虫周围。人工萤火虫算法就是根据这种现象而提出的一种新型的仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中,然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。通过每一代的移动,最终使的萤火虫聚集到较好的萤火虫周围,也即是找到多个极值

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

智能信息处理课程设计报告

智能信息处理课程设计报告 班级:11电科2 姓名:张俊为 学号: Xb11640218 浙江理工大学科技与艺术学院

1. 课程设计目的 1. 提高分析问题、解决问题的能力,进一步巩固智能信息处理算法的基本原理与方法。 2. 熟悉掌握一门计算机语言,可以进行智能信息处理的应用开发设计。 2. 课程设计内容及实现 1. 掌握BP 网络的基本原理,能利用BP 网络解决Hermit 多项式的逼近问题,具体内 容如下: 考虑Hermit 多项式的逼近问题,该问题由Mackay 提出: ()()22 1.112exp 2x F x x x ?? =-+- ??? ,式中,x ∈R 。 训练样本产生方式如下:样本数N=100,其中样本输入x i 服从区间[-4, 4]内的均匀分布,样本输出为F(x i )+e i , e i 为添加的噪声,服从均值为0,标准差为0.1的正态分布。 对于该函数逼近问题,可以用一个单输入单输出的3层BP 网络对样本进行拟合,网络的隐节点数选为10。 其它学习参数设定如下:神经网络采用标准Sigmoid 激活函数,输出层采用线性激活函数,即:()f u u =。 学习率η=0.003,目标误差ε=0.5,最大学习次数20000,初始权值和偏移取[-0.1, 0.1]内的随机数。 2. 掌握模糊C 均值聚类算法的基本原理,并用该算法实现彩色图像分割。 2.1、BP 网络解决函数逼近 2.1.1、BP 神经网络设计 图 1创建BP 神经网络 2.1.2、BP 神经网络训练

图 2训练图2.1.3、BP神经网络测试及结果分析 图 3仿真结果图 P=linspace(-4,4,100);%均匀产生随机数 T=1.1.*(1-P+2.*P.^2).*exp(-P.^2/2)+sqrt(0.1)*rand n(1); %样本输出fx+ei t net=newff(P,T,10); %产生bp网络,10个神经元net.trainParam.show = 50;%显示周期 net.trainParam.lr = 0.003; %学习率 net.trainParam.epochs = 20000;%最大学习次数 net.trainParam.goal = 0.001; %目标误差 net.IW{1,1}=rand(10,1)*0.2-0.1;%初始权值 net.b{1,1}=rand(10,1)*0.2-0.1; net.b{2,1}=rand(1)*0.2-0.1;%初始偏移量 [net,tr]=train(net,P,T); p=8.*rand(1,100)-4; A = sim(net,P); %仿真figure; plot(P,T,'o',P,A,'x'); 2.2、基于模糊C均值聚类的彩色图像分割 2.2.1、基本原理及实现流程 在数字图像由于存在混合像素的原因,也就是说一个像素中不仅存在一类地物,因而采用硬分类方式往往不合适,而模糊C均值就是引入模糊集对每个像素的划分概率不单单是

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

中国传媒大学信号与信息处理专业方向介绍

中国传媒大学信号与信息处理专业方向 介绍 1.DSP技术与应用方向 当前,数字音频广播(DAB、数字AM)、数字视频广播(DVB)和高清晰度电视(HDTV)技术发展迅速。数字技术在卫星广播、微波通信领域的应用越来越普遍,广播电视多功能信息网已投入商业运营。国际和国内的广播电视覆盖网正在或即将由模拟信号传输过渡为数字信号传输网。DSP技术与应用研究方向着眼于广播电视数字信号传输系统中信源编码、信道编码和数字调制的实现和相关测试信号的产生,着重研究数字信号的实时处理。本研究方向是信号与信息处理学科的重要组成,也是该学科中十分活跃,近年来发展十分迅速的技术。 DSP技术与应用研究方向利用数字信号处理方法和通用DSP芯片,FPGA芯片,依靠软件无线电技术,计算机仿真技术,研究并实现数字信号传输系统中信源编解码、信道编解码、调制解调、多工复用和同频组网。重点跟踪研究数字音频广播、数字视频广播、高清晰度电视和广播电视综合信息网中的关键技术,探索下一代数字广播电视的新技术及新技术标准。本研究方向对我国广播电视单频网覆盖网的数字化进程作出了重要贡献,参加了多项国家重大科技攻关项目,研制调频数字同步广播系统国内占有率第一。 本方向培养的学生应具有扎实的学科基础和专业基础知识,具有软、硬件分析和设计能力,较强的创新与实践能力,能独立分析和解决实际问题,可在广播电视领域、现代通信领域、信息产业以及其他国民经济部门从事各类数字电视广播、数字视频和多媒体系统设计、研究、教学、管理等工作。 2.多媒体技术方向 多媒体的含义是使声音、图片、文字、图像、视频等多种信息成为一个整体,并具有实时的交互性,而这种统一性及交互性是由逻辑连接起来。多媒体技术融合了信息处理、计算机、网络与通信等多种学科,具有表现力丰富、符合人们的思维和认知习惯的特点,成为当今信息技术中的热点,它也是当今数字媒体技术或新媒体技术的本源,强调了媒体信息的多样化、集成化、智能化以及交互性。 多媒体技术近年来在广播影视传媒领域受到了广泛关注:以视/音频非线性编辑为代表的多媒体技术已经成为广播影视编辑、制作、播出技术的主流,而广播电视台全台制播网络一体化、多媒体综合业务网、新媒体技术及应用、虚拟现实技术及应用等则代表了广播电视技术领域未来的发展方向。另外,基于多媒体技术的智能视频监控系统在各行各业也有了广泛且深入的应用:借助数字图像处理(DIP)、智能视频分析(IVA)、计算机视觉(CV)、计算机图形学(CG)以及地理信息系统(GIS)等多媒体技术手段的实用系统已经在广播电视信号监测、广播电视内容监播、广播电视广告监播与监管、安全防范系统工程、智能交通系统、平安城市工程等诸多系统中发挥出越来越重要的作用。 本研究方向的主要研究内容包括: (1)智能视/音频分析与处理(对象提取、目标检测、目标识别与跟踪、广播电视内容监播、广告监播) (2)多媒体先进编辑技术(新型高/标清、多格式混编技术,基于对象的影视编辑技术) (3)多媒体技术与艺术的结合(表情识别、表情移植、变形动画,基于场景视频的三维虚拟重现)

智能信息处理技术考试复习重点

人工智能有能力做三件事:知识存储 解决问题 获取新知识 人工智能的三个关键部分:表示 学习 推理 神经网络至今经历了兴起、萧条和兴盛三个时期。 神经网络动力学过程有 过程--计算过程 和 过程--学习过程 前馈神经网络的发展经历了:兴起 萧条 和 兴盛 三个时期 前馈神经网络模型有:感知器、BP网络、RBF网络 遗传算法的三个算子:选择算子、交叉算子、变异算子 遗传算法主要由三种运算组成:选择运算 交叉变异 变异运算 编码方法可以分为三大类:二进制编码方法、浮点数编码方法、符号编码方法。 Hopfield神经网络模型一般由单层全互连的神经元u i(i=1,…,n)组成。 自组织映射神经网络模型SOM)它是一种无监督学习神经网络 计算智能包括神经网络、模糊信息处理 和 遗传算法 。 计算智能核心内容:神经网络、进化计算和模糊系统 模糊数学是研究和处理模糊性现象的数学方法. 经典数学是以精确性为特征的. 关系的特性:自反性、对称性和传递性 典型的学习规则:hebbian学习规则和Delta学习规则 遗传算法 主要用于函数最优化计算,它是模拟生物在自然环境中的遗传和进化过程的一种自适应全局寻优的随机搜索算法。 遗传编码: 把问题的可行解从其物理解空间转换到遗传算法所能处理的搜索空间(编码空间)的转换方法称为编码 描述神经网络模型的六个要素:传播规则 活跃规则 输出规则 互连模式 学习规则 环境 神经网络 :是由大量的、同时也是很简单的处理单元(神经元)广泛地互相连接而形成的复杂网络系统。反映了人脑功能的许多特性,是对人脑功能进行某种简化、抽象和模拟。 BP反向传输算法的基本过程:初始化阶段前馈阶段 权值调整阶段 学习精度计算 学习结束判断 智能:智慧和能力。个体有目的的行为、合理的思维以及有效适应环境的能力。 神经计算的特点 大规模并行性、集团运算和容错能力。 信息的分布式表示。学习和自组织能力。多层神经网络系统具有强大的解算能力和处理实际问题的能力。 计算智能:借鉴仿生学思想,基于生物体系的生物进化、神经细胞网络等机制,用数学语言抽象描述的计算方法,用以模仿生物体系和人类的智能机制。 SOM模型计算的基本原理 当某个模式输入时,输出层某一神经元得到最大刺激而竞争获胜(产生最大输出值)。 同时该获胜神经元周围的一些神经元也因侧向相互作用而受到较大刺激,修改这些神经元和输入神经元之间的连接权值。 当输入模式发生变化时,输出层上获胜的输出神经元也发生改变。通过神经网络权值的调整,使得输出层特征分布能反映输入样本的分布情况。 根据SOM模型的输出状态,不但能够判断输入模式所属的类别,并使得输出神经元代表某一模式类别,还能够得到整个数据区域的大体分布情况,即从样本数据中获得数据分布的大体本质特征。 遗传算法的主要过程如下: 1) 初始化。设置进化代数计数器 t =0 ,设置最大进化代数T,随机生成N个个体作为初始群体P(0)。 2) 个体评价。计算群体P(t)的各个个体的适应度。

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

四.蚁群算法的基本原理

四.蚁群算法基本原理 引言: 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。这就是要讲的蚁群算法。 一.蚁群算法 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID 控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。 二.蚁群算法原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,

对智能信息处理的认识

一、智能信息处理技术的概述智能信息处理技术的概述处理 这是一个信息时代,现在我们每天和信息打交道,人类社会的进步在一定程度上取决对于信息的了解、处理和利用的水平。当前计算网络与大型数据库的广泛使用,使决策者与经营者面临巨量的数据而无所适从,用智能信息处理方法解决这一问题是当今信息社会的重要手段。智能信息处理的主要目的就是要制造出具有学习、理解和判断能力的人工智能系统。它的本质就是要研究一些算法来提取出信号中的有用信息,从而实现系统的智能控制。归纳起来智能信息处理研究以下重要问题: (1).人、机器、环境的智能交互与协作,研究文字、语音的自动识别及自然语言理解,研究视觉信息与各种图像的自动处理,其目的是使人与机器、机器与环境的信息交流更为有效。(2.)从大规模数据库中提取关键信息与有用的规律。其主要方向有约简数据,和机器学习,即利用已有知识与模式识别理论对大量数据简化,并变换为决策者可以阅读的形式;对大量数据自动学习,以实现对数据的分类、评价,并预测可能产生的结果。(3.)智能系统的规划、决策、协作与优化。建立计算机辅助规划与决策系统,在某些优化指标下提高全社会的经济与社会效益。研究系统建模,优化,最优化的智能规划与决策以及多智能体系的协作与竞争的理论与方法。 二、智能信息处理技术的发展史智能信息处理技术的发展史处理 智能信息处理最早起源于本世纪30 年代,但是由于智能信息处理系统运作过程需要大量的计算,而当时又没有快速的计算工具,这样就极大的约束了智能信息处理技术在初期的发展。自从40 年代后期计算机问世后,给智能信息处理技术的发展创造了良好的条件。一些具备智能信息处理功能的高科技产品相继被推出,并产生了巨大的社会及经济效益。例如英国科学家A.M.Cormack和C.N.Hounsfield 利用智能信息处理技术的一些结果提出了图由于它可以获得人象的重建算法,并于1972 年设计制造出了医用的CT 机。 体内部的横截面的立体图象,因此在医学诊断中得到了重要应用,成为各大医院的基础设备。另外60 年代初由美国科学家J.W.Cooley等人提出的用于频谱分析的快速Fourier 算法(FFT),也在科学界引起轰动。该算法用硬件电路实现后,被迅速应用于智能测量仪器等一系列高自动化检测设备中去,获得了极大的成功。 三、智能信息处理技术的应用 智能信息处理的一个非常重要的目标,就是要制造出能看会说、有感情会思维的机器人。这使该领域的研究工作主要集中于语音处理、图象处理、计算机视觉等几个方面。语音处理目的,就是对人们所发出语音的规律及特点进行研究,以便让计算机能够“说话”和听懂人的语言。这也就是我们通常所说的语音信号的合成与识别。语音合成技术发展最快,已基本达到实用化成度。不过利用现有技术合成的语音在自然度方面与人的发音仍有很大差距,这也是语音合成技术今后研究的目标。语音识别技术经过多年的努力,已经提出了一些比较有效的方法。目前对特定人发音的正确识别率可以达到95%以上,但是对非特定人发音的正确识别率还很低。总之,语音识别技术离实用化尚有一段距离。在语音信号的识别技术和方法上,仍需要进行深人的研究。为了适应通信技术的发展,人们还对语音信号的编码方法进行了深人的研究,以便把语音信号压缩在一个更窄的频带内传输。目前利用CE 一LPC 等多种方法,已使语音信号在 4.skb/s 传送速率下,

《智能信息处理》教学大纲

《智能信息处理》教学大纲 一、课程基本信息 课程中文名称:智能信息处理 课程英文名称:Intelligent Signal Processing 课程类型:信息管理及相关专业方向选修课 总学时:33 理论学时:33 实验学时:0 学分:3 适用专业:信息管理 先修课程:高等数学、(信号与系统、)概率统计、线性代数、离散开课院系:信息科学与工程学院 二、课程性质和任务 智能信息处理是就是将不完全、不可靠、不精确、不一致和不确定的知识和信息逐步改变为完全、可靠、精确、一致和确定的知识和信息的方法。智能信息处理是当前科学技术发展中的前沿学科,同时也是新思想、新观念、新理论、新技术不断出现并迅速发展的新兴学科,它涉及到信息科学的多个领域,是现代信号处理、人工神经网络、模糊理论、人工智能等理论和方法的综合应用。 该课程的主要任务是通过各个教学环节,运用各种教学手段和方法,使学生掌握智能信息处理的基本概念、基本原理、基本计算方法;能够阅读相关中外文献,了解其最新动态;培养学生分析、解决问题的能力,为日后从事工程技术工作、科学研究以及开拓新技术领域,打下坚实的基础。 三、课程教学目标 在学完本课程之后,学生能够: 1.了解人工智能的概念和应用、智能信息的处理方法综述; 2.熟悉模型理论的基础,掌握模糊规则与推理;理解模糊推理系统,了解其在生活中的应用; 3.掌握神经网络信息处理的基本原理及模型,了解其在生活中的应用; 4.掌握粗糙集的基本理论及其应用,了解其应用; 5.掌握遗传算法的基本算法及改进算法,了解其应用; 6.掌握信息融合的模型与算法,了解其应用; 7.理解反向选择算法和人工免疫系统模型;了解人工免疫系统在计算机安全中的应用。 四、理论教学环节和基本要求 (一)人工智能导论 1.理解并掌握人工智能的基本概念和范畴、基本原理和研究方法;2.理解知识和知识表示的概念,掌握四种表示法;3.了解常见的智能信息的处理方法及各个处理方法的应用 教学重点:人工智能的基本原理,四种知识表示方法教学难点:四种知识表示方法 (二)模糊理论及其应用 1.掌握模糊集合的基本概念、基本运算及隶属函数的确定方法;2.理解模糊逻辑系统的组成;3.掌握模糊信息处理方法:模糊熵方法、模糊聚类分析、模糊关联分析、模糊信息优化方法。4.了解模糊信息处理方法的应用。 教学重点:隶属函数的确定方法;模糊信息的处理方法。 教学难点:模糊信息的处理方法。

专业解析-智能信息处理

智能信息处理 一.专业介绍 1.学科简介: 智能信息处理属于自设专业(自设专业是指在教育部专业目录中没有,而学校根据自己的特点和社会发展的需要设立的专业),属于计算机科学与技术一级学科下的二级学科,也有学校归类为信息与通信工程下的二级学科。 智能信息处理是计算机科学中的前沿交叉学科,是应用导向的综合性学科,其目标是处理海量和复杂信息,研究新的、先进的理论和技术。智能信息处理研究涵盖基础研究、应用基础研究、关键技术研究与应用研究等多个层次。它不仅有很高的理论研究价值,而且对于国家信息产业的发展乃至整个社会经济建设、发展都具有极为重要的意义。 2.研究方向: 智能信息处理的研究方向有:01 网络智能信息处理、计算智能与模式识别02 智能信息/图像、目标检测、跟踪与编码03 进化计算04 机器学习与计算智能、医学影像可视化技术05 智能信息处理、多源信息融合。 (注:各大院校的研究方向有所不同,以西安电子科技大学为例)3.考试科目: ①101政治理论 ②201英语

③301数学(一) ④821信号、电路与系统 (注:各大院校的研究方向有所不同,以西安电子科技大学为例)二.专业培养目标 本专业学位获得者在智能信息处理方面应具有坚实、深厚的理论基础,深入了解国内外智能信息处理方面的新技术和发展动向,系统、熟练地掌握现代信息处理的专业知识,具有创造性地进行理论与新技术的研究能力,具有独立地研究、分析与解决本专业技术问题的能力,并具有一定的组织才能,熟练掌握一门外国语。 三.与此专业相近的自设专业 智能信息系统 四.相同一级学科下的其他专业(二级学科) 计算机科学与技术的二级学科:计算机系统结构、计算机软件与理论、计算机应用技术。 信息与通信工程的二级学科:通信与信息系统、信号与信息处理。五.招收此自设专业的院校及开设年份 上海交通大学(2002年)、西安电子科技大学(2003年) 六.就业方向 毕业生可到研究机构、公司、企事业、军队及大专院校从事智能信息处理方面的工作以及研究、教学等工作。 七.就业前景 为了适应信息时代的信息处理要求,当前信息处理技术逐渐向智

蚁群算法的基本原理

2.1蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素 的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:j(0)0为信息素初始值,可设0 m L m,L m是由最近邻启发式方法构 造的路径长度。其次,蚂蚁k(k 1,2丄m),按照随机比例规则选择下一步要转

蚁群算法

蚁群算法 学号:1101500449 姓名:赵亮民 摘要:蚁群算法是优化领域中新出现的一种仿生进化算法。该算法采用分布式并行计算机制,具有较强的鲁棒性;但有搜索时间较长,易陷入局部最优解的缺点。本文首先讲述蚁群算法的来源和基本原理,然后讨论蚁群算法的几种改进策略,并简单介绍近年来蚁群算法在许多新领域中的发展应用,最后对今后进一步研究的方向作了展望。 关键词:蚁群算法;蚂蚁;信息素;优化 Abstract:Ant colony algorithm is a novel category of bionic algorithm for optim ization problems.Parallel computation mechanism is adopted in this algorithm.It has strong robustness and is easy to combinewith other methods in optimization,but it has the limitation of stagnation,and is easy to fall into local optimums.Firstly,the basic principle of ant colony algorithm is introduced.Then。a series of schemes on improving the ant colony algorithm are discussed,and the new applications are also provided.Finally,somerem arks on the further research and directions are presented. Key words:ant colony algorithm ;ant;pheromone;optimization 概念 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。原理 设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢? 现今有哪些关于蚁群算法的应用呢? 1大规模集成电路的线网布局 在大规模集成电路的线网布局中,需要根据电路和工艺的要求完成芯片上单元或功能模块的布局,然后实现它们之间的互连。此问题可看作是寻找一个网格平面上两端点之间绕过障碍的最短路径问题。线网上的每个Agent根据启发策略.像蚂蚁一样在开关盒网格上爬行,所经之处便设置一条金属线.历经一个线网的所有引脚之后.线网便布通了。应用蚁群算法,可以找到成本最低、最合理的线网布局.而且由于其本身的并行性。比较适合于解决此类问题。 2通信网络路由

相关文档
最新文档