应用统计方法第四章-多元线性模型
应用多元统计分析课后习题答案高惠璇第四章部分习题解答

4
第四章 回归分析
令
L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y
统计 多元线性模型精品资料

第五章 多元线性模型它包括多元回归分析、多元方差分析及多元协方差分析,它是多元统计分析的基础,应用十分广泛,专著很多。
此处仅介绍实用上最重要的基本内容。
§5.1 一元线性回归模型基本模型:y X u β=+ (5-1-1)2()0, ()n u Var u I εσ==式中y, 是n 维观察值的随机向量,X 是n ×p 的已知矩阵,常被认为已知的(即不当作随机),而一般认为rank(X)=p<n ,是p 维未知参数,叫回归系数, u 是非观察值,它代表随机误差。
常用的特例:1、 回归模型如果X 的第一列全是1,而其它变量为定量的数字,这时上式可化为如下回归模型:0111,1, 1,,i i p i p i y x x u i n βββ--=++++= (5-1-2)1n y y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 01p βββ-⎛⎫ ⎪= ⎪ ⎪⎝⎭, 1n u u u ⎛⎫⎪= ⎪⎪⎝⎭, 111,11,111p n n p x x X x x --⎛⎫⎪= ⎪ ⎪⎝⎭(5-1-3) 上述式子更常用的表达法为:01111,p p y x x u βββ--=++++ (5-1-4)其中u 是随机项2()0, ()u Var u εσ==2、方差分析模型如(5-1-1) 中X 内元素取值非1即0,则该模型就是方差分析,称X 为设计矩阵。
例在有k 个处理组的单因素方差分析中,记i n 为第i 个处理中的试验数,令1, k ij n n n y =++为第j 个处理中的第i 个试验结果,这时方差分析模型常写成下式: , 1,,, 1,,ij j ij j y u i n j k μτ=++== (5-1-5)这里μ表示n 次试验的平均水平, j τ表示第j 种处理的效应, ij u 表示随机误差。
用下述记号,这个模型可化为线性模型:121112121110011001010, 101000010011001k n n k kn y y y y X y y y ⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭, 1211112121, k n n k k n k u u u u u u u μτβτ⎛⎫ ⎪ ⎪ ⎪ ⎪⎛⎫ ⎪⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; 要检验k 个处理中有否显著性差异,就是检验01:k H ττ==,1:i j H ττ≠至少有一项这就是一个指标时上章中多母体的均值相等性检验。
线性统计模型知识点总结

线性统计模型知识点总结一、线性回归模型1. 线性回归模型的基本思想线性回归模型是一种用于建立自变量和因变量之间线性关系的统计模型。
它的基本思想是假设自变量与因变量之间存在线性关系,通过对数据进行拟合和预测,以找到最佳拟合直线来描述这种关系。
2. 线性回归模型的假设线性回归模型有一些假设条件,包括:自变量与因变量之间存在线性关系、误差项服从正态分布、误差项的方差是常数、自变量之间不存在多重共线性等。
3. 线性回归模型的公式线性回归模型可以用如下的数学公式来表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y 是因变量,X是自变量,β是模型的系数,ε是误差项。
4. 线性回归模型的参数估计线性回归模型的参数估计通常使用最小二乘法来进行。
最小二乘法的目标是通过最小化残差平方和来寻找到最佳的模型系数。
5. 线性回归模型的模型评估线性回归模型的好坏可以通过很多指标来进行评价,如R-squared(R^2)、调整后的R-squared、残差标准差、F统计量等。
6. 线性回归模型的应用线性回归模型广泛应用于经济学、金融学、市场营销、社会科学等领域,用以解释变量之间的关系并进行预测。
二、一般线性模型(GLM)1. 一般线性模型的基本概念一般线性模型是一种用于探索因变量与自变量之间关系的统计模型。
它是线性回归模型的一种推广形式,可以处理更为复杂的数据情况。
2. 一般线性模型的模型构建一般线性模型与线性回归模型相似,只是在因变量和自变量之间的联系上,进行了更为灵活的变化。
除了线性模型,一般线性模型还可以包括对数线性模型、逻辑斯蒂回归模型等。
3. 一般线性模型的假设一般线性模型与线性回归模型一样,也有一些假设条件需要满足,如误差项的正态分布、误差项方差的齐性等。
4. 一般线性模型的模型评估一般线性模型的模型评估通常涉及到对应的似然函数、AIC、BIC、残差分析等指标。
5. 一般线性模型的应用一般线性模型可以应用于各种不同的领域,包括医学、生物学、社会科学等,用以研究因变量与自变量之间的关系。
计量经济学-多元线性回归模型

Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
应用统计学多重线性回归模型

2020年8月3日星期一
重庆交通大学管理学院
08:19:10
残差分析
❖ 残差种类 非标准化残差(原始残差) 标准化残差(Pearson残差) 学生化残差 剔除残差 学生化剔除残差
2020年8月3日星期一
重庆交通大学管理学院
08:19:10
残差分析
❖ 模型适用条件的检验-因变量与自变量之间存在线性 关系的检验(以例1为例:年龄)
初步分析: 与简单线性回归相类似,先绘制散点图,以便在进行回 归分析之前了解各变量之间是否存在线性关系。本例有 两个自变量与一个反应变量,绘制散点图矩阵,如下。
2020年8月3日星期一
重庆交通大学管理学院
08:19:08
简单分析实例-初步分析
❖ 绘制散点图矩阵
2020年8月3日星期一
重庆交通大学管理学院
模型的进一步诊断与修正
❖ 多重共线性的识别
多重共线性:是指自变量间存在相关关系,即一个自变量可以用其他 一个或几个自变量的线性表达式进行表示。有以下表现形式:
整个模型的方差分析结果为P<,但各自变量的偏回归系数的统计学 结果却为P> ;
专业上认为应该有统计学意义的自变量检验结果却无统计学意义; 自变量的偏回归系数取值大小甚至符号明显与实际情况违背,难以 解释; 增加或删除一条记录或一个自变量,偏回归系数发生很大变化。
2020年8月3日星期一
重庆交通大学管理学院
08:19:11
残差分析
❖ 模型适用条件的检验-方差齐性的检验
2020年8月3日星期一
重庆交通大学管理学院
08:19:11
残差分析
❖ 模型适用条件的检验-正态性的检验
2020年8月3日星期一
应用统计学课件:实用多元统计分析

在线性回归分析中,自变量可以是连续的或离散的,因变量通常是连续的。
线性回归分析的假设包括误差项的独立性、同方差性和无偏性等。
线性回归分析的优点是简单易懂,可以用于解释自变量和因变量之间的关系,并且可以通过回归系数来度量自变量对因变量的影响程度。
非线性回归分析
非线性回归分析是指自变量和因变量之间存在非线性关系的回归分析方法。
详细描述
数据的收集与整理
总结词
描述性统计量是用来概括和描述数据分布特性的统计指标。
详细描述
描述性统计量包括均值、中位数、众数、标准差、方差等统计指标,以及偏度和峰度等统计量。这些统计量可以帮助我们了解数据的分布情况,如数据的集中趋势、离散程度和形状等。通过对这些统计量的计算和分析,可以进一步了解数据的特征和规律。
DBSCAN聚类分析
06
多元数据判别分析
基于距离度量的分类方法,通过最大化类间差异、最小化类内差异进行分类。
Fisher判别分析是一种线性判别分析方法,通过投影将高维数据降到低维空间,使得同一类别的数据尽可能接近,不同类别的数据尽可能远离。它基于距离度量,通过最大化类间差异、最小化类内差异进行分类。
数据的可视化方法
03
多元数据探索性分析
数据的相关性分析
总结词:通过计算变量间的相子分析用于探索隐藏在变量之间的潜在结构,即公共因子。
04
多元数据回归分析
线性回归分析
A
B
D
C
线性回归分析是一种常用的回归分析方法,通过建立自变量和因变量之间的线性关系,来预测因变量的取值。
01
02
03
04
05
多元统计分析的定义与特点
社会学
心理学
应用统计方法第四章-回归分析PPT课件

• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数
《应用多元分析》第三版(第四章 多元正态总体的统计推断)

aix t /2k n 1 aiSai
n aiμ aix t /2k n 1 aiSai
n
i 1, 2, , k 它的置信度至少为1−α。 若tα/2k(n−1)≤Tα ,则邦弗伦尼区间比T2区间要窄,这时宜采用 前者作为联合置信区间;反之,若tα/2k(n−1)>Tα,则邦弗伦尼 区间比T2 区间宽,宜采用后者作为联合置信区间。 当k=p时,邦弗伦尼区间要比T2 区间窄。故在求μ的所有p个 分量μ1, μ2,⋯, μp的联合置信区间时,应采用邦弗伦尼区间。
例4.3.1 设x~Np(μ,Σ),μ=(μ1,μ2,⋯,μp)′,Σ>0,x1,x2,⋯,xn是取 自该总体的一个样本,欲检验 H0:μ1=μ2=⋯=μp,H1:μi≠μj,至少存在一对i≠j 令 0 1 1 0 1 0 1 0 C 1 0 0 1 则上面的假设可表达为 H0:Cμ=0,H1:Cμ≠0 检验统计量为
μ的0.90置信区域为
0.0436 0.0406 72.5 1 8 72.5 1 , 79 2 8.073 0.0406 0.0475 79 2 即 0.0436×(μ1−72.5)2−0.0812×(μ1−72.5)(μ2−79) +0.0475×(μ2−79)2≤1.009 这是一个椭圆区域。μ1和μ2的0.90联合T2置信区间为
μ的置信度为1−α的置信区域为
μ : n x μ S 1 x μ T2
当p=1时,它是一个区间;当p=2时,它是一个椭圆, 这时可将其在坐标平面上画出;当p=3时,它是一 个椭球;当p>3时,它是一个超椭球;它们均以 x 为中心。 同置信区间与假设检验的关系一样,置信区域与假 设检验之间也有着同样的密切关系。一般来说,μ0 包含在上述置信区域内,当且仅当原假设 H0:μ=μ0 在显著性水平α下被接受。因此,可以通过构造的置 信区域的方法来进行假设检验。
应用多元统计分析 (5)

=
MMS (模型均方)
MSE(均方误差)
在H0成立时,检验统计量F~F(m,n-m-1),其中fm=m和 fe=n-m-1分别称为模型的自由度和误差的自由度.
28
第四章 §4.1 经典多元线性回归
回归方程的显著性检验
由观测数据计算F 值及显著性概率 (p值),p值是指在H0下,利用F 的分布 规律,计算出检验统计量F大于或等于样 本F 值(即比该组样本得到的F 值更极端 的事件)的概率。若得出的p值很小(小 于显著性水平α ),依统计思想,小概率 事件在一次实践中一般不会发生。如果 发生小概率事件,将否定前提假定H0.
并称模型(4.1.2)或(4.1.3)为经典多元线性回归模 型 . 其中 Y 是可观测的随机向量 ,ε 是不可观测的 随机向量 ,C 是已知矩阵 ,β,σ2 是未知参数 . 并设 n >m,且rk(C)=m+1.
9
第四章 §4.1 经典多元线性回归
多元线性回归模型
在经典回归分析中,我们讨论多元线 性回归模型中未知的参数向量β= (β0,β1,…,βm)′和σ2的估计和检验问题. 在近代回归分析中讨论变量筛选、 估计的改进及对模型中的一些假定进 行诊断.
22
第四章 §4.1 经典多元线性回归
回归方程的显著性检验—定理4.1.3
定理4.1.3 在模型(4.1.3)下有
23
第四章 §4.1 经典多元线性回归
回归方程的显著性检验
为检验H0,由总变差的分解公式: Total SS=MSS+ESS 可构造检验假设的检验统计量F F=
MSS / fm
ESS / fe
Q(b) Y PY (Y C C ) P(Y C C ) P (Y C , PC 0) E (Q (b)) E ( P ) E ( t r( P )) E ( t r( P )) t r[ PE ( )] t r( P 2 I n ) 2 t r( P ) 2 ( n m 1) (定理4.1.2的证明) 16
应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

0
2
)
3 2
(ˆ
2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
下列来讨论与V等价旳统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3
aˆ
2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1Y 3
(I3
X
(
X
X
)1
Q(β)=(Y-Cβ) '(Y-Cβ) . 试证明β^=(C'C)-1C'Y是在下列四种意义下达最小:
(1) trQ(β^)≤trQ(β) (2) Q(β^)≤Q(β) (3) |Q(β^)|≤|Q(β)|
(4) ch1(Q(β^))≤ch1(Q(β)),其中ch1(A)表达A
旳最大特征值. 以上β是(m+1)×p旳任意矩阵.
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量旳分子为
L(aˆ0
,ˆ
2 0
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
多元线性回归模型

多元线性回归模型多元线性回归是一种用于分析多个自变量与一个因变量之间关系的统计方法。
在这种分析中,我们试图根据已知自变量的值来预测因变量的值。
该模型常用于市场研究、金融分析、生物统计和其他领域。
在本文中,我们将介绍多元线性回归的基础概念和实践应用。
一般来说,线性回归的目的是找到一个线性函数y=ax+b来描述一个因变量y与一个自变量x的关系。
但是,在现实生活中,我们通常需要考虑多个自变量对因变量的影响。
这时就需要采用多元线性回归模型来描述这种关系。
多元线性回归模型可以表示为:y=b0 + b1x1 + b2x2 + … + bnxn + ε其中,y是因变量,x1, x2, …, xn是自变量,b0, b1, b2, …, bn是回归系数,ε是误差项,反映了因变量和自变量之间未能被回归方程中的自变量解释的差异。
多元线性回归的重要性质是,每个自变量对因变量的影响是独立的。
也就是说,当我们同时考虑多个自变量时,每个自变量对因变量的解释将被考虑到。
多元线性回归模型的核心是确定回归系数。
回归系数表明了自变量单位变化时,因变量的变化量。
确定回归系数的一种方法是最小二乘法。
最小二乘法是一种通过最小化实际值与预测值之间的差值来确定回归系数的方法。
我们可以使用矩阵运算来计算回归系数。
设X为自变量矩阵,y为因变量向量,则回归系数向量b可以通过以下公式计算:b = (XTX)-1XTy其中,XT是X的转置,(XTX)-1是X的逆矩阵。
在计算回归系数之后,我们可以使用多元线性回归模型来预测因变量的值。
我们只需要将自变量的值代入回归方程中即可。
但是,我们需要记住,这种预测只是基于样本数据进行的,不能完全代表总体数据。
多元线性回归模型有很多实际应用。
一个常见的例子是用于市场营销中的顾客预测。
通过对顾客的年龄、性别、教育程度、收入等数据进行分析,可以预测他们的购买行为、购买频率和购买方式等,这些预测结果可以帮助企业做出更好的营销决策。
多元线性回归模型及其应用-毕业论文

多元线性回归模型及其应用摘要本文介绍了多元线性回归模型,其过程分为模型构建、模型参数估计、模型检验和模型预测等几个方面。
通过对与我国物价指数CPI相关的几个因素建立初始多元线性回归模型,分析CPI的影响因素,之后对该模型进行各种统计检验,在模型检验中发现初始模型中有部分变量的系数不能通过检验,可能存在多重共线性的问题,最后采用逐步回归分析法来进行去除显著性不高的变量,并且建立新的模型,最终找出了影响CPI的关键要素是农业生产资料价格和人均GDP,通过最终确定的CPI与其影响因素之间的线性回归方程可以清晰地得到各个指标对CPI的影响大小,进而为我国控制CPI提供方向性的建议指导。
关键词多元线性回归 CPI影响因素逐步回归Multiple linear regression model and its applicationAbstract This article introduces the multiple linear regression model, and its process is divided into several aspects: model construction, model parameter estimation, model testing and model prediction. By establishing an initial multiple linear regression model on several factors related to China's price index CPI, analyzing the influencing factors of CPI, and then carrying out various statistical tests on the model, it is found in the model test that the coefficients of some variables in the initial model cannot pass Test, there may be a problem of multicollinearity, and finally use a stepwise regression analysis method to remove less significant variables, and establish a new model, and finally find out that the key factors affecting CPI are agricultural production materials prices and GDP per capita, Through the final linear regression equation between the CPI and its influencing factors, we can clearly get the impact of various indicators on the CPI, and then provide directional recommendations for the control of CPI in China.Key words Multiple linear regression CPI influencing factors stepwise regression目录引言 (1)1. 多元线性回归分析基本理论 (2)1.1 多元线性回归模型的一般形式 (2)1.2 多元线性回归模型的基本假设 (2)1.3 参数估计 (2)1.3.1 回归系数的估计 (2)1.3.2 样本方差的估计 (3)1.4 模型检验 (3)1.4.1 回归方程的显著性检验 (4)1.4.2 回归系数的显著性检验 (4)1.4.3 回归方程的拟合优度检验 (4)1.5 模型预测 (5)1.6 自变量的筛选方法 (5)2. 多元线性回归在CPI影响因素中的应用 (6)2.1 数据筛选 (6)2.1.1 指标选取 (6)2.1.2 数据收集 (6)2.2实证分析 (7)2.1.3 建立模型 (7)2.1.4 参数估计 (8)2.1.5 模型检验 (8)2.1.6 模型优化 (9)2.1.7 残差检验 (11)结论与建议 (13)参考文献 (14)致谢................................................................ 错误!未定义书签。
《应用多元统计分析》第04章-判别分析

04
判别分析的实例与演示
数据来源与预处理
数据来源
判别分析所使用的数据通常来源于实际研究或调查,这些数据可能涉及到多个 变量和观测样本。
数据预处理
在应用判别分析之前,需要对数据进行预处理,包括数据清洗、缺失值处理、 异常值检测与处理、数据标准化等步骤,以确保数据的质量和可靠性。
2. 建立判别模型
选择合适的变量,并进行数据清理和预处 理,包括缺失值处理、异常值检测与处理 等。
选择合适的判别分析方法,如线性判别分析 (LDA)或二次判别分析(QDA),并利用 已知分类的数据来估计判别函数。
3. 模型评估
4. 应用模型
使用诸如混淆矩阵、准确率、召回率等指 标来评估模型的性能,并可能进行交叉验 证。
目的
通过建立判别函数,使得不同类别之 间的差异尽可能大,而同一类别内的 差异尽可能小。
判别分析与聚类分析的区别
01
判别分析基于已知分类数据, 目标是建立预测分类的规则; 而聚类分析则是将未知分类的 数据进行归类。
02
判别分析要求对各变量之间的 相关性进行建模,而聚类分析 则更注重数据之间的距离或相 似性。
总结词
两总体判别分析是一种基本的判别分析方法,用于根据已知分类的数据集构建判别函数,从而对新数据进行分类。
详细描述
两总体判别分析通常用于解决二分类问题,其基本思想是通过选择一组特征变量,使得不同类别的样本在这组变 量上的均值差异最大,同时使同类样本之间的离散度最小。判别函数通常采用线性或非线性形式,通过最小化分 类错误率来构建。
对特征选择敏感
判别分析的特征选择可能对结果 影响较大,如果选择不合适的特 征,可能会导致分类效果不佳。
多元线性回归模型计量经济学

多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。
多元线性回归模型的公式和参数估计方法以及如何进行统计推断和假设检验

多元线性回归模型的公式和参数估计方法以及如何进行统计推断和假设检验多元线性回归模型是一种常用的统计分析方法,它在研究多个自变量与一个因变量之间的关系时具有重要的应用价值。
本文将介绍多元线性回归模型的公式和参数估计方法,并讨论如何进行统计推断和假设检验。
一、多元线性回归模型的公式多元线性回归模型的一般形式如下:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y表示因变量,X1至Xk表示自变量,β0至βk表示模型的参数,ε表示误差项。
在多元线性回归模型中,我们希望通过样本数据对模型的参数进行估计,从而得到一个拟合度较好的回归方程。
常用的参数估计方法有最小二乘法。
二、参数估计方法:最小二乘法最小二乘法是一种常用的参数估计方法,通过最小化观测值与模型预测值之间的残差平方和来估计模型的参数。
参数估计的公式如下:β = (X^T*X)^(-1)*X^T*Y其中,β表示参数矩阵,X表示自变量的矩阵,Y表示因变量的矩阵。
三、统计推断和假设检验在进行多元线性回归分析时,我们经常需要对模型进行统计推断和假设检验,以验证模型的有效性和可靠性。
统计推断是通过对模型参数的估计,来对总体参数进行推断。
常用的统计推断方法包括置信区间和假设检验。
1. 置信区间:置信区间可以用来估计总体参数的范围,它是一个包含总体参数真值的区间。
2. 假设检验:假设检验用于检验总体参数的假设是否成立。
常见的假设检验方法有t检验和F检验。
在多元线性回归模型中,通常我们希望检验各个自变量对因变量的影响是否显著,以及模型整体的拟合程度是否良好。
对于各个自变量的影响,我们可以通过假设检验来判断相应参数的显著性。
通常使用的是t检验,检验自变量对应参数是否显著不等于零。
对于整体模型的拟合程度,可以使用F检验来判断模型的显著性。
F检验可以判断模型中的自变量是否存在显著的线性组合对因变量的影响。
在进行假设检验时,我们需要设定显著性水平,通常是α=0.05。
《应用多元统计分析》第五版PPT(第四章)-简化版(JMP13.1)-作为选读

μ
:
n pn
pn 1
x
μ
S
1
x
μ
F
p,
n
p
❖ 当p=1时,它是一个区间;当p=2时,它是一个实心椭圆,这
时可将其在坐标平面上画出;当p=3时,它是一个椭球体;
当p>3时,它是一个超椭球体;它们均以 x 为中心。
9
置信区域与假设检验之间的关系
❖ 一般来说,μ0包含在上述1−α置信区域内,当且仅当 原假设 H0:μ=μ0在显著性水平α下被接受。
H0:μ=μ0,H1:μ≠μ0
表4.2.1
某地区农村男婴的体格测量数据
编号 1 2 3 4 5 6
身高(x1) 78 76 92 81 81 84
胸围(x2) 60.6 58.1 63.2 59.0 60.8 59.5
上半臂围(x3) 16.5 12.5 14.5 14.0 15.5 14.0
6
➢
两个项目的测试成绩
编号
12345678
甲项成绩(x1) 62 80 66 84 75 80 54 79 乙项成绩(x2) 70 77 75 87 87 91 61 84
➢ n=8,p=2,取1−α=0.90,查表得F0.10(2,6)=3.46,于是, T0.10(2,7)=2.841。
x
72.5
❖ 可以通过构造的置信区域的方法来进行假设检验。 实践中,该方法通常用于p=2时的情形,并借助于 平面置信区域图形。
10
❖ 例4.2.2 为评估某职业培训中心的教学效果,随机抽取8名受 训者,进行甲和乙两个项目的测试,其数据列于表4.2.2。假 定x=(x1,x2)′服从二元正态分布。
表4.2.2
37.3760 35.5936
多元统计分析第四章第一部分

04
使用估计和预测方法对 未知数据进行推断和预 测。
02 多元正态分布及其性质
多元正态分布的定义与性质
多元正态分布的定义
在多维空间中,如果一个随机向量X 的概率密度函数形式为每个维度上的 正态分布,则称X服从多元正态分布 。
多元正态分布的性质
多元正态分布具有旋转对称性、椭球 性、最大似然估计等性质,这些性质 使得多元正态分布在统计分析中具有 广泛的应用。
主成分的求解方法
计算原始变量的相关系数 矩阵。
将特征值从大到小排序, 并选择前k个特征值对应 的特征向量。
计算相关系数矩阵的特征 值和特征向量。
将特征向量单位化,得到 k个主成分。
主成分分析的应用场景
金融领域
用于分析股票、债券等金融产品的收 益率和风险,识别市场趋势和投资机 会。
市场营销领域
用于市场细分和客户群体分析,了解 不同客户群体的消费行为和偏好。
多元线性回归模型的参数估计
总结词
参数估计是多元线性回归模型的核心步骤,通过最小二乘法等统计方法,对模型中的未 知参数进行估计。
详细描述
参数估计的方法有多种,其中最小二乘法是最常用的一种。最小二乘法通过最小化预测 值与实际值之间的残差平方和,求解出最佳的参数值。此外,还有加权最小二乘法、广
义最小二乘法等参数估计方法。
多元统计分析第四章第一部分
目录
• 多元统计分析概述 • 多元正态分布及其性质 • 多元线性回归分析 • 主成分分析 • 因子分析
01 多元统计分析概述
多元统计分析的定义与特点
定义:多元统计分析 是研究多个随机变量 之间相互依赖关系以 及如何用这些变量对 样本进行分类、聚类、 估计和预测的统计方 法。
多元线性回归统计预测模型的应用

在研究方法中,我们详细介绍了多元线性回归模型的原理和算法。多元线性 回归模型是通过多个自变量来预测因变量的线性关系,能够更全面地考虑各种因 素的影响。在具体实现中,我们首先确定了影响铁路客运量的多个因素,如经济 发展、人口增长、路网建设等。然后,我们对数据进行预处理,包括数据清洗、 缺失值填充等。接下来,我们利用多元线性回归模型进行建模,并采用梯度下降 法对模型参数进行估计。
在数据处理方面,多元线性回归模型要求数据具有线性关系和正态分布假设。 在实际应用中,可能需要对数据进行标准化或对数转换,以满足正态分布假设。 此外,为解决异方差性问题,可以采用加权最小二乘法进行估计。
实证分析
多元线性回归模型在房价预测中具有广泛的应用。例如,一项基于美国房地 产数据的研究发现,位置、学区、房间数和建造年代等因素对房价有显著影响, 并且通过多元线性回归模型可以较为准确地预测房价。在中国,一项基于北京房 地产数据的研究也表明,多元线性回归模型可以有效地预测房价,预测结果的准 确度高于单变量回归模型。
然而,多元线性回归模型在房价预测中也存在一定的局限性。例如,房价不 仅受到地理位置、建筑特征等因素的影响,还受到市场供需、政策调控等因素的 影响。这些因素可能无法通过多元线性回归模型进行准确反映。此外,多元线性 回归模型难以处理非线性关系和交互效应,可能导致预测结果存在偏差。
未来展望
随着大数据和机器学习技术的发展,多元线性回归模型在房价预测中的应用 将得到进一步拓展。未来可以考虑以下几个方面进行改进:
针对未来的研究和实践,我们提出以下建议和展望:
1、探索新的技术和方法:随着机器学习和人工智能的不断发展,可以尝试 将其他先进的算法与多元线性回归模型相结合,以提高模型的预测性能和泛化能 力;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
• • • • • • • • • • • • • • • • • • • • • •
data d411; input x1-x4 y ; cards; 7 26 6 60 78.5 1 29 15 52 74.3 11 56 8 20 104.3 11 31 8 47 87.6 7 52 6 33 95.9 11 55 9 22 109.2 3 71 17 6 102.7 1 31 22 44 72.5 2 54 18 22 93.1 21 47 4 26 115.9 1 40 23 34 83.8 11 66 9 12 113.3 10 68 8 12 109.4 ; proc reg data=d411; model y=x1-x4 / selection=stepwise sle=0.10 sls=0.10; run; quit;
2019/4/23 31
应用统计方法第四章
• • • • •
The SAS System
13:43 Wednesday, March 10, 2008 The REG Procedure Model: MODEL1 Dependent Variable: y Analysis of Variance
b0 b 1 bm ( m 1)1
1 2 n
2
Y C , E 0n , D( ) I n
2019/4/23 应用统计方法第四章
5
• 一、多元线性回归模型的基本假定 • 解释变量x1,x2,…,xm是确定性变量,不是随机变量, 而且解释变量之间互不相关 • 随机误差项具有零均值和同方差 • 随机误差项在不同样本点之间是相互独立的,不存在 序列相关
1 x1m 2 x2 m n xnm 0
1 x 11 x1m
1 x21 x2 m
1 1 0 xn1 2 0 xnm n 0
2019/4/23
应用统计方法第四章
11
2019/4/23
应用统计方法第四章
12
2019/4/23
应用统计方法第四章
13
体现了Y的观测值y1 , y2 , yn总的波动大小 总的偏差平方和 l yy (TSS)
ˆ1 , y ˆ 2 , y ˆ n的波动大小,它是由于 体现了n个估计值y Y与自变量x1 , x2 x p 之间确有线性关系并通 过x1 , x2 x p的变化而引起 回归平方和 .U ( MSS)
应用统计方法第四章
26
2019/4/23
应用统计方法第四章
Hale Waihona Puke 272019/4/23应用统计方法第四章
28
2019/4/23
应用统计方法第四章
29
2019/4/23
data d411; input x1-x4 y ; cards; 7 26 6 60 78.5 1 29 15 52 74.3 11 56 8 20 104.3 11 31 8 47 87.6 7 52 6 33 95.9 11 55 9 22 109.2 3 71 17 6 102.7 1 31 22 44 72.5 2 54 18 22 93.1 21 47 4 26 115.9 1 40 23 34 83.8 11 66 9 12 113.3 10 68 8 12 109.4; proc reg data=d411 ; model y=x1-x4 ; 应用统计方法第四章 run; quit;
7
• 二、建立回归方程 ˆ b ˆ x b ˆ x b ˆ x ˆ b Y i 0 1 i1 2 i2 m im •设
ˆ b ˆ x b ˆ x b ˆ x ˆ i yi b i yi y 0 1 i1 2 i2 m im
2 i
0
0 x
2019/4/23 应用统计方法第四章 10
ˆ也是的最大似然估计 可以证明 .
2的估计:
n 1 ˆ b ˆ x b ˆ x )]2 ˆ 2 [ yi (b 2的最大似然估计为 0 1 i1 p ip n i 1
1 ˆ )(Y C ˆ ) 1 Q( ˆ) (Y C n n 1 2 ˆ )为 2的估计量,且为 通常取s Q( 2无偏估计量 n m 1 定理:设rank(C ) m 1 n, 则E ( s 2 ) 2
2
2019/4/23
应用统计方法第四章
4
y1 1 x11 y 1 x 21 Y 2 , C yn n1 1 xn1
x12 x1m x22 x2 m (1n X ) xn 2 xnm n( m 1)
2019/4/23
应用统计方法第四章
3
第一节
多元线性回归
2
Yi b0 b1 xi1 b2 xi 2 bm xim i , i 1,2 n E ( i ) 0,Var ( i ) , cov( i , j ) 0(i j ) or i ~ N (o, ), 相互独立(i 1,2 n) .
TSS : 总的偏差平方和 RSS : 回归平方和
• 例2中,方差分析表为:
Model 1 Sum of Squares 803.816 204.734 1008.550
ESS:残差平方和
ANOVAb df 3 16 19 Mean Square 267.939 12.796 F 20.939 Sig . .000a
C 0
C C C Y Y C ˆ C C 1 C Y C Y C C C 2019/4/23 应用统计方法第四章
9
ˆ C (C C ) 1 C Y HY为Y的预测向量值 ˆ C 设Y 其中H nn C (C C ) 1 C 称为“帽子”矩阵 ˆ ( I H )Y ˆ Y Y 此时残差向量为
ˆ b ˆ x b ˆ x b ˆ e b ˆ e x b ˆ ex 0 ei b 0 1 1i p pi 0 i 1 i 1i p i pi ˆi y ˆi y yi yi yi y
2 2 2
TSS RSS ESS
• 例如:若某公司管理人员要预测来年该公 司的销售额y时,研究认为影响销售额的因 素不只是广告宣传费x1,还有个人可支配收 入x2,价格x3,研究与发展费用x4,各种投资 x5,销售费用x6.
2019/4/23
应用统计方法第四章
2
• 多元线性回归 • 回归变量的选择与逐步回归。 • 可化为多元线性回归的问题
7
• •
• • • • • • • • • • • • • •
Source Model Error Corrected Total
DF 4 8
Sum of Squares
Mean Square
F Value 111.48
Pr > F <.0001
2667.89944 666.97486 47.86364 5.98295 12 2715.76308
ˆi2 残差平方和,记为 Q(or ESS)
2019/4/23
n
i 1
应用统计方法第四章
14
2019/4/23
应用统计方法第四章
15
ˆi y ˆi y yi yi yi y
y
ˆ y y
ˆy y
2 2 2 ˆ ˆ y y y y y y i i i i i 2 yi yˆ i yˆ i y yi yˆ i yˆ i y ei yˆ i y ei yˆ i ei y
Reg ression Residual Total
a. Predictors: (Constant), x3, x1, x2
2019/4/23
b. Dependent Variable: y
应用统计方法第四章
16
2019/4/23
应用统计方法第四章
17
2019/4/23
应用统计方法第四章
18
算出检验的p值,对于与给定显著性 水平。如果p , 拒绝原假设,即回归方 程显著。否则,接受原 假设
cov( i , j ) 0, i j, i, j 1,2,n
2019/4/23
应用统计方法第四章
6
• 随机误差项与解释变量之间不相关 cov(xi , i ) 0 • 随机误差项服从零均值,同方差的正态分 布 2
i ~ N (0, )
2019/4/23
应用统计方法第四章
n
def
ˆ) ˆ ˆ ˆ Y ( I n H )Y Y Y Y C 且残差平方和为 Q( 其中( I n H ) 2 ( I n H )
最小二乘估计的统计性 质 ˆ是的最小方差线性无偏估 1 计 ˆ ~ N ( , 2 (C C ) 1 ) 2 m 1 ˆ还是一切无偏估计中 3 在 ~ N n (0, 2 I n )的假设下, 方差最小的估计
2019/4/23
应用统计方法第四章
19
2019/4/23
应用统计方法第四章
20
2019/4/23
应用统计方法第四章
21
2019/4/23
应用统计方法第四章
22
2019/4/23
应用统计方法第四章
23
2019/4/23
应用统计方法第四章
24
2019/4/23