实验5 永磁式直流测速发电机
直流发电机 实验报告
直流发电机实验报告直流发电机实验报告引言:直流发电机是一种将机械能转化为电能的装置,广泛应用于工业生产和日常生活中。
本实验旨在通过搭建直流发电机的实验装置,了解其工作原理和特性,并通过实验数据分析验证理论模型的准确性。
一、实验装置及原理1. 实验装置:本实验采用基本的直流发电机实验装置,包括主磁极、励磁电源、电刷、电刷滑环、电刷支架等组成。
2. 原理:直流发电机的基本原理是利用电磁感应现象,通过转动的导体与磁场的相互作用,产生电势差。
主磁极产生磁场,励磁电源提供励磁电流,电刷与电刷滑环连接转动的导体,当导体与磁场相互作用时,电势差产生,形成电流。
二、实验步骤1. 搭建实验装置:按照实验指导书的要求,正确搭建直流发电机实验装置,确保各部件的连接正确牢固。
2. 测量励磁电流与电势差关系:通过改变励磁电流的大小,测量不同励磁电流下的电势差,并记录数据。
3. 测量负载电流与电势差关系:将负载电阻接入电路,通过改变负载电阻的大小,测量不同负载电流下的电势差,并记录数据。
4. 分析实验数据:根据测量数据,绘制励磁电流与电势差的关系曲线,以及负载电流与电势差的关系曲线。
通过曲线的形状和趋势,分析直流发电机的特性。
三、实验结果与数据分析1. 励磁电流与电势差关系:根据测量数据绘制的励磁电流与电势差的关系曲线显示,随着励磁电流的增加,电势差呈现出线性增长的趋势。
这表明励磁电流的增加会导致产生的电势差增加。
2. 负载电流与电势差关系:根据测量数据绘制的负载电流与电势差的关系曲线显示,随着负载电流的增加,电势差呈现出下降的趋势。
这表明负载电流的增加会导致电势差减小,即发电机的输出电压下降。
3. 实验结果分析:根据实验结果,可以得出以下结论:- 励磁电流对电势差有直接影响,增加励磁电流可以增加发电机的输出电压。
- 负载电流对电势差有间接影响,增加负载电流会导致发电机的输出电压下降。
四、实验误差分析与改进措施1. 实验误差:在实验过程中,可能存在以下误差:- 测量误差:由于测量仪器的精度限制,测量数据可能存在一定误差。
永磁同步电机参数测量试验方法
永磁同步电机参数测量实验一、实验目的1.测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。
二、实验内容1.掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。
2.了解三相永磁同步电机内部结构。
3.确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。
三、拟需实验器件1.待测永磁同步电机1台;2.示波器1台;3.西门子变频器一台;4.测功机一台及导线若干;5. 电压表、电流表各一件;四、实验原理1.定子电阻的测量采用直流实验的方法检测定子电阻。
通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。
如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。
I d 为母线电流采样结果。
当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。
因此,定子电阻值的计算公式为:1,2a d b c d I I I I I ===- (1)23d s dU R I = (2)图1 电路等效模型2. 直轴电感的测量在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。
测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。
向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为:d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3)对于d 轴电压输入时的电流响应为:()(1)d R t L U i t e R -=- (4)利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。
直流发电机实验报告
直流发电机实验报告1. 引言直流发电机是一种将机械能转化为电能的设备,广泛应用于各个领域。
通过本次实验,我们旨在深入了解直流发电机的工作原理和性能特点。
2. 实验目的本次实验的目的是通过对直流发电机的实验,探究其输出特性和效率。
3. 实验装置和方法我们使用了一台小型直流发电机和相应的测量仪器。
首先,我们连接了直流发电机的电源和负载。
然后,通过逐渐增加负载电流的方式,记录下电压、电流和转速的变化,以及相应的功率输出。
4. 实验结果及分析根据我们的实验数据,我们发现直流发电机的输出特性与负载的变化密切相关。
随着负载电流的增加,直流发电机的输出电压呈现出下降的趋势。
这是由于负载电流增加导致电枢绕组产生较大的电流,从而引起了电枢电阻的电压降。
同时,我们还观察到直流发电机的效率随着负载电流的增加而下降。
这是因为随着负载电流的增加,电枢绕组产生的热量也会增加,电机的内阻也会增加,从而导致效率的降低。
5. 结论通过本次实验,我们得出了以下结论:(1)直流发电机的输出电压与负载电流呈反比关系。
(2)随着负载电流的增加,直流发电机的效率会下降。
6. 拓展讨论本次实验只是对直流发电机的基本特性进行了研究,还有许多更深入的方面值得探讨。
例如,我们可以通过改变发电机的磁场强度或电枢绕组的电流来进一步研究直流发电机的输出特性。
此外,我们还可以探究不同类型的负载对直流发电机效率的影响。
7. 实验总结通过本次实验,我们对直流发电机的工作原理和性能特点有了更深入的了解。
我们通过实际操作和数据分析,验证了直流发电机的输出特性与负载电流的关系,并了解到了直流发电机的效率随着负载电流的增加而下降。
这对我们今后的学习和应用都有着重要的指导意义。
在未来的学习中,我们将进一步探索直流发电机的性能特点,深入了解其内部结构和工作原理。
通过不断的实践和研究,我们也将能够更好地应用直流发电机于实际工程中,为社会的发展做出贡献。
直流电机转速测量与控制实验
直流电机转速测量与控制实验1、实验目的:了解霍尔器件工作原理及转速测量与控制的基本原理、基本方法,掌握DAC0832电路的接口技术和应用方法,提高实时控制系统的设计和调试能力。
2、实验内容:设计并调试一个程序其功能为测量电机的转速,并在超想-3000TB综合实验仪显示器上显示出来,采用比例调节器方法,使电机转速稳定在某一设定值。
此设定值可由超想-3000TB综合实验仪上的键盘输入。
3、工作原理:转速是工程上一个常用参数。
旋转体的转速常以每秒钟或每分钟转数来表示,因此其单位为转/秒、转/分,也有时用角速度表示瞬时转速,这时的单位相应为孤度/秒。
转速的测量方法很多,由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。
霍尔开关传感器正由于其体积小,无触点,动态特性好,使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用。
霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的两个侧面之间产生霍尔电势。
其大小和外磁场及电流大小成比例。
本实验选用美国史普拉格公司(SPRAGUE)生产的3000系列霍尔开关传感器3020,它是一种硅单片集成电路,器件的内部含有稳压电路、霍尔电势发生器、放大器、史密特触发器和集电极开路输出电路,具有工作电压范围宽、可靠性高、外电路简单、输出电平可与各种数字电路兼容等特点。
器件采用三端平塑封装。
引出端功能符号如下:引出端序号 1 2 3功能电源地输出符号 VC1 GND OUT我们根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔器件3020,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比,测出脉冲的周期或频率即可计算出转速。
直流电机的转速与施加于电机两端的电压大小有关。
本实验用DAC0832控制输出到直流电机的电压,控制DAC0832的模拟输出信号量来控制电机的转速。
直流发电机实验报告
一、实验目的1. 理解直流发电机的工作原理。
2. 掌握直流发电机的基本结构及其各部分的作用。
3. 学习直流发电机输出电压和电流的测量方法。
4. 分析直流发电机的性能参数,评估其性能。
二、实验原理直流发电机是利用电磁感应原理将机械能转换为电能的装置。
当导体在磁场中做切割磁感线运动时,会产生感应电动势。
直流发电机通过改变磁场强度、导体长度和转速等因素来调节输出电压和电流。
三、实验仪器与设备1. 直流发电机2. 数字多用表3. 磁铁4. 铅笔芯(导体)5. 螺丝刀6. 导线7. 开关8. 电源9. 实验台四、实验步骤1. 组装电路:将直流发电机、数字多用表、磁铁、铅笔芯、开关和电源等实验仪器连接成电路,确保连接牢固。
2. 调整磁铁位置:将磁铁放置在实验台上,调整其位置,使磁铁的磁场与铅笔芯的长度垂直。
3. 测量输出电压:打开开关,逐渐增加电源电压,同时观察数字多用表上显示的输出电压值,记录数据。
4. 改变导体长度:调整铅笔芯的长度,重复步骤3,记录不同长度下的输出电压值。
5. 改变转速:使用螺丝刀旋转发电机轴,改变转速,重复步骤3,记录不同转速下的输出电压值。
6. 分析数据:对实验数据进行整理和分析,得出直流发电机的输出电压与磁铁磁场强度、导体长度和转速之间的关系。
五、实验结果与分析1. 输出电压与磁铁磁场强度的关系:实验结果表明,输出电压与磁铁磁场强度呈线性关系。
当磁铁磁场强度增加时,输出电压也随之增加。
2. 输出电压与导体长度的关系:实验结果表明,输出电压与导体长度呈线性关系。
当导体长度增加时,输出电压也随之增加。
3. 输出电压与转速的关系:实验结果表明,输出电压与转速呈线性关系。
当转速增加时,输出电压也随之增加。
六、实验结论1. 直流发电机是利用电磁感应原理将机械能转换为电能的装置。
2. 直流发电机的输出电压与磁铁磁场强度、导体长度和转速呈线性关系。
3. 通过实验,掌握了直流发电机的基本工作原理和性能参数。
实验五++直流发电机
实验五直流发电机一.实验目的1.掌握用实验方法测定直流发电机的运行特性,并根据所测得的运行特性评定该被试电机的有关性能。
2.通过实验观察并励发电机的自励过程和自励条件。
二.预习要点1.什么是发电机的运行特性?对于不同的特性曲线,在实验中哪些物理量应保持不变,而哪些物理量应测取。
2.做空载试验时,励磁电流为什么必须单方向调节?3.并励发电机的自励条件有哪些?当发电机不能自励时应如何处理?三.实验项目1.他励发电机(1)空载特性:保持n=n N,使I=0,测取U0=f(I f)。
(2)外特性:保持n=n N,使I f =I fN,测取U=f(I)。
(3)调节特性:保持n=n N,使U=U N,测取I f=f(I)。
2.并励发电机(1)观察自励过程(2)测外特性:保持n=n N,使R f2=常数,测取U=f(I)。
四.实验设备及仪器1.MEL系列电机教学实验台主控制屏(MEL-I、MEL-IIA、B)。
2.电机导轨及测功机,转矩转速测量组件(MEL-13)或电机导轨及转速表。
3.直流并励电动机M03。
4.直流复励发电机M01。
5.直流稳压电源(位于主控制屏下部)。
6.直流电压、毫安、安培表(MEL-06)。
7.波形测试及开关板(MEL-05)。
8.三相可调电阻900Ω(MEL-03)。
9.三相可调电阻90Ω(MEL-04)。
10.电机起动箱(MEL-09)。
五.实验说明及操作步骤1.他励发电机。
按图5-1接线图5-1 直流他励发电机接线图G:直流发电机M01,P N=100W,U N=200V,I N=0.5A,n N=1600r/minM:直流电动机M03,按他励接法S1、S2:双刀双掷开关,位于MEL-05R f1:磁场调节电阻3000Ω/200mA,位于MEL-09。
R f2:磁场调节变阻器,采用MEL-03最上端900Ω变阻器,并采用分压器接法。
R2:发电机负载电阻,采用MEL-03中间端和下端变阻器,采用串并联接法,阻值为2250Ω(900Ω与900Ω电阻串联加上900Ω与900Ω并联)。
直流电机的测速实验
实验十四直流电机的测速实验一、实验目的1、掌握直流电机的工作原理。
2、了解开关型霍尔传感器的工作原理和使用方法。
3、掌握电机测速的原理。
二、实验原理直流电机是我们生活当中常用的一种电子设备。
其内部结构如下图14-1所示:图14-1 直流电机结构图下面就上图来说明直流电机的工作原理。
将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过,由于电磁作用,这样电枢导体将会产生磁场。
同时产生的磁场与主磁极的的磁场产生电磁力,这个电磁力作用于转子,使转子以一定的速度开始旋转。
这样电机就开始工作。
为了能够测定出电机在单位时间内转子旋转了多少个周期,我们在电机的外部电路中加入了一个开关型的霍尔原件(44E),同时在电子转子上的转盘上加入了一个能够使霍尔原件产生输出的带有磁场的磁钢片。
当电机旋转时,带动转盘是的磁钢片一起旋转,当磁钢片旋转到霍尔器件的上方时,可以导致霍尔器件的输出端高电平变为低电平。
当磁钢片转过霍尔器件上方后,霍尔器件的输出端又恢复高电平输出。
这样电机每旋转一周,则会使霍尔器件的输出端产生一个低脉冲,我们就可以通过检测单位时间内霍尔器件输出端低脉冲的个数来推算出直流电机在单位时间内的转速。
直流电机和开关型霍尔器件的电路原理图如下图14-2所示:图14-2 直流电机、霍尔器件电路图电机的转速通常是指每分钟电机的转速,也就是单位为rpm,实际测量过程中,为了减少转速刷新的时间,通常都是5~10秒刷新一次。
如果每6秒钟刷新一次,那么相当于只记录了6秒钟内的电机转数,把记录的数据乘10即得到一分钟的转速。
最后将这个数据在数码管上显示出来。
最后显示的数据因为是将数据乘以10,也就是将个位数据的后面加上一位来做个位即可,这一位将一直为0。
如:45*10变为450,即为在“45”个位后加了一位“0”。
由此可知,这个电机的转速的误差将是20以内。
为了使显示的数据能够在数码管是显示稳定,在这个数据的输出时加入了一个16位的锁存器,把锁存的数据送给数码管显示,这样就来会因为在计数过程中,数据的变化而使数码管显示不断变化。
修改_控制电机实验指导书
控制电机实验指导书南通大学电气工程学院2011.9.20实验一永磁式直流测速发电机一、实验目的1、通过实验加深对直流测速发电机工作原理及其运行情况的理解;2、掌握直流测速发电机的输出特性的测定方法。
二、实验项目1、测定直流测速发电机的输出特性U=f(n)。
三、实验内容12、按图1.1接线。
图中直流电机M选用DJ25作他励接法,永磁式直流测速发电机为HK10,R f1选用900Ω阻值,R Z选用10KΩ/2W电阻,把R f1调至输出电压最大位置,电压表选择直流电压表的20V档,S选择控制屏上的开关并断开。
图1.1 直流测速发电机接线图3、先接通励磁电源,再接通电枢电源,并将电枢电源调至220V,使电动机运行,调节励磁电阻R f1使转速达1600 r/min,然后减小励磁电阻R f1和电枢电源输出电压使逐渐电机减速,每200 r/min记录对应的转速和输出电压。
4、共测取8~9组,记录于表1.1中。
5、合上双刀双掷开关S,重复上面步骤,记录8~9组数据于表1.2中。
四、实验报告1、由:得:式中: R a ――电枢回路总电阻 R z ――负载电阻 E 0=C e Φn――电枢总电势 2、作出U=f(n)曲线。
五、思考题1、直流测速发电机的误差主要由哪些因素造成?2、在自动控制系统中主要起什么作用?aa a R RzU E R I E U -=-=00nR R C R R E U za e za +=+=110φ实验二控制式自整角机参数测定一、实验目的1、通过实验测定控制式自整角机的主要技术参数;2、掌握控制式自整角机的工作原理和运行特性。
二、实验项目1、测自整角机变压器输出电压与失调角的关系U2=f(θ);2、测定比电压Uθ;3、测定零位电压U0 。
三、实验内容1、测定控制式自整角机变压器输出电压与失调角的关系U2=f(θ)(1)按图2.1接线;发送机CX自整角变压器CT图2.1 控制式自整角机实验接线图(2)发送机加额定电压,旋转发送机刻度盘至0o位置并固紧;(3)用手缓慢旋转自整角机变压器的指针圆盘,接在L1、L2两端的数字电压表就会有相应读数,找到输出电压为最小值的位置,即初始零点;(4)然后,用手缓慢旋转自整角机变压器的指针圆盘,在指针每转过10o时测量一次自整角机变压器的输出电压U2;(5)测取各点U2及θ值并记录于表2.1中。
直流发电机实验报告
直流发电机实验报告
实验目的,通过实验了解直流发电机的工作原理,掌握直流发电机的实验操作
方法,加深对直流发电机的理解。
实验仪器和设备,直流发电机、直流电源、电流表、电压表、转速表、导线等。
实验原理,直流发电机是将机械能转化为电能的装置,其工作原理是利用磁场
和导体之间的相对运动产生感应电动势。
当导体在磁场中运动时,会在导体两端产生电动势,这就是感应电动势的产生原理。
实验步骤:
1. 将直流发电机固定在实验台上,并连接好电源和仪器。
2. 调节电源,使直流发电机转动起来。
3. 测量直流发电机的电压、电流和转速,并记录数据。
4. 改变电源的电压,再次测量电压、电流和转速,并记录数据。
实验结果分析:
通过实验数据的记录和分析,我们可以得出直流发电机的工作特性曲线。
在实
验中,我们可以观察到随着电压的增加,电流和转速也会相应增加;而当电压达到一定值后,电流和转速将趋于稳定。
这说明直流发电机的输出电流和转速与输入电压之间存在一定的关系,这也是直流发电机的特性之一。
实验心得体会:
通过本次实验,我们对直流发电机的工作原理有了更深入的了解,也掌握了直
流发电机的实验操作方法。
在实验中,我们要注意安全操作,避免触电和机械伤害。
同时,对实验数据的记录和分析也要认真细致,以便后续的实验结果分析和讨论。
总结:
直流发电机是一种重要的电机设备,其工作原理和特性对于电气工程领域具有重要意义。
通过本次实验,我们对直流发电机有了更深入的了解,也为以后的学习和研究打下了良好的基础。
实验报告结束。
直流测速发电机工作特性测试报告 word
172.10
184.40
电压U/v
14.80
17.00
19.40
22.20
24.80
26.60
数据处理:
866.30 144.38 124.8 20.8 3123.27 3003.17 21678.71 20846.55
0.14 -0.04回归方程:
2、 RL=3600 时,电压与转速关系
直流电动机(一台)
直流测速发电机(一台)
电机及自动控制实验装置(一台)
测速器(一台)
导线若干
三、实验电路图:
实验电路图
四、实验步骤
1、严格按照实验电路图连接电路。
2、将电动机的保护电阻(可调电阻)调到适当的值,打开电源,检查电路是否正常工作。
3、调节电阻使 ,改变电压的值,观察转速的变化,并记下电压和对应的转速的值。
0.03 15.42回归方程:
六、误差分析
实际上直流测速发电机的输出特性U a = f (n)并不是严格的线性特性,而与线性特性之间存在有误差。下面讨论产生误差的原因:
(1)电枢反应
直流测速发电机负载时电枢电流会产生电枢反应,电枢反应的去磁作用使气隙磁通Φ0减小,使输出电压减小。从输出特性看,斜率将减小,而且电枢电流越大,电枢反应的去磁作用越显着,输出特性斜率减小越明显,输出特性直线变为曲线。
3600
转速n(r/min)
97.20
111.70
125.60
147.80
166.70
173.50
电压U/v
13.80
16.00
18.20
21.30
23.50
24.60
数据处理:
822.50 137.08 117.40 19.57 2791.36 2682.26 19572.68 18791.84
直流发电机的工作特性实验报告范文
直流发电机的工作特性实验报告范文实验报告:直流发电机的工作特性实验一、实验目的1.了解直流发电机的工作原理。
2.掌握直流发电机的工作特性。
3.通过实验,验证直流发电机的特性方程。
二、实验仪器1.直流发电机2.变阻器3.直流电源4.万用表5.振荡器6.实验电路板和连接线三、实验原理四、实验步骤1.搭建实验电路,将直流发电机、变阻器和直流电源连接在一起。
2.调节变阻器的阻值,改变负载电阻大小。
3.设置直流电源输出电压为合适的值。
4.通电后,分别测量直流发电机的输出电压和电流,并记录数据。
5.根据测量数据,绘制输出电流与电压的关系曲线。
五、数据记录与处理1.设直流电源输出电压为12V,负载电阻分别为10Ω、20Ω、30Ω、40Ω、50Ω。
2.测量并记录各负载下的输出电压和电流数据如下表所示:负载电阻(Ω),输出电压(V),输出电流(A)-------------,------------,------------10,4.5,0.4520,6.0,0.3030,7.2,0.2440,8.0,0.2050,8.5,0.17[图表省略]六、实验结果与讨论通过测量数据和绘制的曲线图,我们可以得出以下结论:1.在负载电阻不变的情况下,输出电流随着输出电压的增加而增加。
2.输出电压和电流之间存在线性关系,即输出电流与输出电压成正比。
3.当输出电压达到一定值时,电流开始呈现不再增加的趋势,这是因为直流发电机的最大输出功率有限。
4.曲线的斜率代表了电流与电压的比值,即负载电阻的大小。
斜率越大,负载电阻越小。
七、实验总结通过本次实验,我们深入了解了直流发电机的工作原理和工作特性。
实验结果验证了直流发电机的特性方程,并成功绘制了输出电流与电压的关系曲线。
实验过程中,我们还学会了使用各种实验仪器和搭建实验电路的操作技巧。
这些知识和技能对我们今后的学习和研究将会有很大帮助。
最后,我们要注意实验的安全性,保护实验设备,并正确使用电源和仪器。
直流发电机 实验报告
直流发电机实验报告引言直流发电机是一种将机械能转化为电能的装置。
它通过在闭合电路中产生电流来实现电能的转换。
本实验旨在研究直流发电机的基本原理和工作过程。
实验目的1.了解直流发电机的基本原理和构造;2.掌握直流发电机的工作特性;3.学习使用实验仪器进行直流发电机的实验测量。
实验仪器和材料•直流发电机•电阻箱•电流表•万用表•直流电源•连接电缆实验步骤1.将直流发电机放置在平稳的台面上,并确保其轴线与水平线平行。
2.连接直流电源的正极和负极分别到直流发电机的正极和负极。
3.使用连接电缆将直流发电机的输出端与电阻箱相连接。
4.调节电阻箱的阻值,设置不同的负载条件。
5.打开直流电源,将电流表连接到直流发电机的输出端,测量输出电流的大小并记录下来。
6.使用万用表测量直流发电机的输出电压,并记录下来。
7.分析数据,绘制出直流发电机的U-I特性曲线图。
8.关闭直流电源,断开电路连接,结束实验。
实验结果根据实验步骤中所记录的数据,我们可以绘制出直流发电机的U-I特性曲线图。
该曲线图展示了直流发电机在不同负载条件下的输出电压和输出电流之间的关系。
我们可以观察到随着负载电阻的增加,输出电压逐渐下降,而输出电流逐渐增加的趋势。
结论通过本次实验,我们对直流发电机的工作原理和特性有了更深入的理解。
我们了解到直流发电机的输出电压和输出电流之间存在一定的关系,随着负载电阻的增加,输出电压会下降,而输出电流会增加。
这些实验结果对于我们进一步研究和应用直流发电机具有重要的指导意义。
参考文献(这里列出参考过的文献,如有)。
直流发电机实验报告数据
直流发电机实验报告数据
实验目的:通过实验了解直流发电机的结构、工作原理、特性等,并学习使用实验仪器,掌握模拟电路的测量技能和基本操作。
实验器材:
1. 直流电机实验箱
2. 直流电源
实验原理:
直流发电机是一种将机械功转变成电能的旋转电机器,由定子、转子、集电器等部件
组成。
当转子通过磁场时,电势差就会在定子绕组中产生,从而在定子绕组的两端产生感
应电动势。
当定子上接上一个负载时,负载会通过定子回路,电动势就会产生电流,这就
是直流发电机的基本工作原理。
实验过程:
1. 打开实验箱,确保电机和直流电源都正常工作。
2. 将直流电源的输出电压调整到所需的电压,并将负载电阻面板上的电阻设置为所
需的负载电阻。
3. 将电机的正极接在负载电阻的一端,将电机的负极接在电源的负极上。
4. 打开开关,注意在实验过程中要小心操作。
5. 通过万用表或示波器,测量电机的电流、电压、转速和功率等参数,并记录下
来。
6. 分析和比较不同电压下电机的性能差异,如电机的功率输出和效率等。
实验结果:
在实验过程中,我们测量了直流发电机的电流、电压、转速和功率等参数。
我们发现,不同电压下电机的性能表现出明显的差异。
同时,我们也发现了在一定范围内,电机的输
出功率随电压的增加而增加,功率达到最大值后又开始下降。
这是因为在过高的电压下,
电机会受到过度的负荷,而发生故障。
结论:。
直流电机测速实训报告
一、实训目的通过本次实训,使学生了解直流电机测速的基本原理,掌握直流电机测速仪的设计与制作方法,提高学生的动手能力和创新意识。
同时,培养学生的团队合作精神和严谨的科学态度。
二、实训内容1. 直流电机测速原理直流电机测速是通过测量电机转动时产生的电压信号,从而确定电机的转速。
常用的测速方法有电磁测速、光电测速和霍尔元件测速等。
本次实训采用霍尔元件测速方法。
2. 直流电机测速仪的设计与制作(1)电路设计直流电机测速仪的电路主要由以下几个部分组成:电源模块、霍尔元件模块、放大电路模块、滤波电路模块、A/D转换模块、单片机控制模块和显示模块。
(2)硬件制作根据电路设计,制作电路板,焊接各个元件,连接好电路。
(3)软件编程编写单片机控制程序,实现以下功能:1)采集霍尔元件输出的电压信号;2)将电压信号转换为转速值;3)将转速值显示在LCD屏幕上;4)通过红外遥控器控制测速仪的开关和转速设定。
3. 实验步骤(1)组装测速仪按照电路图组装好测速仪,确保各个元件焊接牢固,电路连接正确。
(2)调试测速仪将组装好的测速仪接入电源,调试各个模块,确保电路正常工作。
(3)测试测速仪将测速仪与待测电机连接,通过红外遥控器控制测速仪的开关和转速设定,观察LCD屏幕上显示的转速值是否准确。
三、实训结果与分析1. 实验结果本次实训成功制作了一台直流电机测速仪,通过测试,测速仪能够准确测量电机的转速,满足实验要求。
2. 结果分析(1)电路设计合理,元件选择合适,电路连接正确,确保了测速仪的正常工作。
(2)软件编程实现功能完善,能够满足实验要求。
(3)测速仪具有较好的稳定性和抗干扰能力。
四、实训总结1. 通过本次实训,使学生掌握了直流电机测速的基本原理和测速仪的设计与制作方法。
2. 提高了学生的动手能力和创新意识,培养了团队合作精神和严谨的科学态度。
3. 深化了对电子电路、单片机编程和传感器应用等课程知识的理解。
五、实训体会1. 在实训过程中,认真对待每一个环节,确保电路连接正确,编程无误。
直流测速发电机的工作原理
直流测速发电机的工作原理直流测速发电机是一种将机械能转化为电能的设备,具有广泛的应用。
其工作原理是基于法拉第电磁感应定律和洛伦兹力的作用机制。
直流测速发电机的转子是由永磁体和电枢组成的。
当转子以一定的转速旋转时,永磁体和电枢之间就会产生相对运动。
这时,电枢中就会产生感应电动势,其大小和方向与转子旋转的速度和方向相关。
法拉第电磁感应定律指出,当磁通量发生变化时,就会在导体中产生感应电动势。
在直流测速发电机中,永磁体的磁通量是固定的,而电枢旋转时会改变磁通量的大小和方向,进而在电枢中产生感应电动势。
洛伦兹力的作用机制是指当导体在磁场中运动时,就会受到一个与运动方向垂直的力。
在直流测速发电机中,电枢中的电流会产生磁场,与永磁体产生相互作用,导致电枢受到一个与旋转方向垂直的力,这就是洛伦兹力。
这个力的方向和大小与电枢的旋转速度和方向相关。
综合以上三个作用机制,可以得到直流测速发电机的工作原理。
当转子以一定的转速旋转时,永磁体和电枢之间就会产生相对运动,进而在电枢中产生感应电动势。
同时,电枢中的电流会产生磁场,与永磁体产生相互作用,导致电枢受到一个与旋转方向垂直的力。
这些相互作用的效果使得直流测速发电机能够将机械能转化为电能。
需要注意的是,直流测速发电机的输出电压和转速之间存在一定的关系。
当转速增加时,感应电动势的大小也会增加,进而输出电压也会增加。
但是当转速过高时,还会产生一些不利的影响,如电刷磨损、晶闸管发热等,因此需要在设计和使用中进行合理的控制。
直流测速发电机是一种重要的能量转换设备,其工作原理基于法拉第电磁感应定律和洛伦兹力的作用机制。
通过对其工作原理的研究,可以更好地理解其产生电能的原理,为其应用和优化提供更加科学的依据。
直流发电机实验报告
实验报告二实验名称:直流发电机实验实验目的:掌握用实验方法测定直流发电机的运行特性,并根据所测得的运行特性评定该被试电机的有关性能。
实验项目:1.他励发电机的空载特性:保持NU=f(I)。
n=n,使I=0,测取0f2.他励发电机的外特性:保持NI =I,测取U=f(I)。
n=n,使f fN3.他励发电机的调节特性:保持NU=U,测取f I=f(I)。
n=n,使N(一)填写实验设备表序号名称型号和规格用途1 电机教学实验台NMEL-II 提供电源,固定电机2 转矩、转速测量及控制平台NMEL-13测量调节转矩3 三相可调电阻器NMEL-03 改变输出电流4 电机起动箱NMEL-09 起动电机5 直流电机仪表,电源NMEL-18 提供电压6 旋转指示灯及开关板NMEL-05 通断电路7 直流电压表、直流电流表NMEL-06 测量电压,电流(二)空载特性实验填写空载特性实验数据表格表2-1 n=n N=1600r/minU O(V)230 220 210 205 200 190 150 100I f2(mA)109.2 98.6 88.5 83.3 79.3 71.9 47.3 26.9(三)外特性实验填写外特性实验数据表格表2-2 n=n N=1600r/min I f2=I f2NU(V)203 207 210 212 218 222 227I(A)0.449 0.401 0.33 0.28 0.2 0.099 0(四)调整特性实验填写外特性实验数据表格表2-3 n=n N=1600r/min,U=U N=200VI(A)0.112 0.152 0.258 0.374 0.459 0.504I f2(A)89.2 91.4 95.8 103.2 110.1 111.2(五)问题讨论1. 什么是发电机的运行特性?对于不同的特性曲线,在实验中哪些物理量应保持不变,而哪些物理量应测取?答:发电机的外部可测量有三个,即端电压U、负载电流I、励磁电流。
直流发电机实验报告
直流发电机实验报告
实验报告:直流发电机实验
一、实验目的:
掌握直流发电机的基本原理和工作特性,了解直流发电机的构造和工作原理。
二、实验仪器和材料:
1. 直流发电机;
2. 电源;
3. 电阻器;
4. 电流表、电压表。
三、实验原理:
直流发电机是将机械能转换为电能的装置,由主磁极、励磁极、电枢等组成。
当直流发电机运转时,电枢通过电刷与外界连接,产生感应电动势,从而产生电流。
励磁极提供励磁电流,使发电机工作。
四、实验步骤:
1. 将直流发电机连接到电源上,并接上电流表、电压表以及电阻器;
2. 将电流表选在电流量程为最大值的档位上;
3. 调节电阻器的阻值,观察电流表和电压表的示数变化。
五、实验结果与分析:
通过调节电阻器的阻值,可以观察到电流表和电压表的示数变
化。
实验中可以观察到以下现象:
1. 当电阻器的阻值较大时,电流表的示数较小,电流的大小受到电阻器的阻值限制;
2. 当电阻器的阻值较小时,电流表的示数较大,电流的大小受到电压表和发电机的电压限制。
六、实验结论:
通过本实验,我们可以得出直流发电机的工作特性与电阻器的阻值有关,当电阻器的阻值较大时,电流较小,当电阻器的阻值较小时,电流较大。
直流发电机的输出电流受到外界电路的阻值和电压的限制。
七、实验注意事项:
1. 小心操作电源和实验仪器,避免触电或短路的危险;
2. 注意电流表和电压表的量程选择,避免超过量程造成损坏;
3. 实验结束后,关闭电源并进行仪器的整理和清洁。
直流电动机的实验报告
一、实验目的1. 了解直流电动机的工作原理和结构;2. 掌握直流电动机的工作特性和机械特性;3. 学习直流电动机的调速方法;4. 熟悉实验仪器的使用方法。
二、实验原理直流电动机是将直流电能转换为机械能的装置,其工作原理是利用电磁感应原理。
当直流电流通过电动机的电枢绕组时,产生磁场,与永磁体或电磁铁的磁场相互作用,从而产生力矩,使电枢旋转。
直流电动机的工作特性包括转速特性、转矩特性、功率特性等。
转速特性是指在一定负载下,电动机转速与输入电压之间的关系;转矩特性是指在一定电压下,电动机转矩与负载之间的关系;功率特性是指在一定负载下,电动机功率与输入电压之间的关系。
直流电动机的调速方法有电压调速、电流调速、磁场调速等。
电压调速是通过改变电枢电压来改变电动机转速;电流调速是通过改变电枢电流来改变电动机转速;磁场调速是通过改变磁场强度来改变电动机转速。
三、实验仪器与设备1. 直流电动机;2. 直流电源;3. 测功机;4. 转速表;5. 电流表;6. 电压表;7. 电阻箱;8. 实验台。
四、实验步骤1. 接线:按照实验电路图连接好实验装置,确保连接正确、牢固。
2. 测量空载转速:将直流电源调至一定电压,使电动机空载运行,记录转速表读数。
3. 测量负载转速:在电动机轴上加载一定的负载,记录转速表读数。
4. 测量电压、电流、转矩:记录电动机运行时的电压、电流、转矩数值。
5. 改变电枢电压:调整直流电源电压,观察电动机转速、转矩的变化。
6. 改变负载:调整负载,观察电动机转速、转矩的变化。
7. 改变励磁电流:调整励磁电流,观察电动机转速、转矩的变化。
五、实验数据与分析1. 空载转速:实验测得空载转速为n1,理论计算转速为n2,误差为Δn = n2 - n1。
2. 负载转速:实验测得负载转速为n3,理论计算转速为n4,误差为Δn = n4 - n3。
3. 电压、电流、转矩:实验测得电压为U,电流为I,转矩为T。
4. 改变电枢电压:调整电压后,测得转速为n5,转矩为T5。
永磁式直流测速发电机实验
7-1永磁式直流测速发电机测速发电机是一种测量转速信号的元件,它将输入的机械转速变换为电压信号输出,且输出电压与转速成正比。
在自动控制系统中用作测量元件和反馈元件,用以测量转速或调节和稳定转速。
测速发电机有交直流两大类,交流测速发电机有异步和同步之分,直流测速发电机根据励磁方式不同,又可分为永磁式和他励磁式之分。
本处使用的是永磁式直流测速发电机。
一、实验方法12、屏上挂件排列顺序D44、D313、按图7-1接线。
图中直流电动机M选用DJ23作他励接法,TG选用导轨上的永磁式直流测速发电机,R f1选用D44上900Ω阻值,R1选用D44上180Ω阻值调至最大位置,R Z选用D44上10K/8W功率电阻,电流表A1、A2选用D31挂件上,开关S选用D44上的开关,并处于断开位置。
图7-1 直流测速发电机接线图4、先接通励磁电源,调节电阻R f1使励磁电流达到最大的位置,接通电枢电源,电动机M运行后将R1调至最小。
调节电阻R f1、R1转速达2400r/min,然后逐渐使电机减速(电阻R1调至最大位置以后可降低电枢电源的输出电压来降低转速)。
记录对应的转速和输出电压。
共测取8~9组数据记录于表7-1中。
5、合上开关S,重复上面步骤,记录8-9组数据于表7-2中。
表7-2二、实验报告1、由:得:式中: R a ――电枢回路总电阻 R z ――负载电阻 E 0=C e Φn――电枢总电势 2、作出U=f(n)曲线。
三、思考题1、直流测速发电机的误差主要由哪些因素造成?2、在自动控制系统中主要起什么作用?aa a R RzUE R I E U -=-=00n R R C R R E U za e z a +=+=110φ。
直流发电机综合实验指导书(全文5篇)
直流发电机综合实验指导书(全文5篇)第一篇:直流发电机综合实验指导书直流发电机综合实验指导书一、实验目的1.熟悉直流发电机实验的基本设备,掌握直流发电机的接线和操作方法。
2.巩固直流发电机基本理论,试验研究直流发电机的各种运行特性。
3.通过对直流发电机实验方案的自主设计和实验,锻炼实际动手能力,提高综合分析问题和解决问题的水平。
二、实验内容1.自行设计实验方案,完成他励直流发电机空载特性、外特性的测试。
2.自行设计实验方案,研究并励发电机外特性和自励现象。
3.直流发电机调节特性的测试(选做)。
三、直流发电机实验设备介绍1.系统概述:DSZ—1型电机拖动系统实验装置采用模块化设计,挂箱组合式结构,安装方便灵活。
电表多量程设计,数字显示,设有过载保护。
实验系统在交流电源输入端设有漏电保护器,所用交直流电源均与外界电网隔离。
2.系统组成:系统主要由实验主屏、电机实验机组、实验桌组成。
实验主屏设有外界交流电源开关(带漏保断路器)、主屏电源开关、设备挂箱、直流电源、测功机加载旋钮,可调电机励磁绕组电阻、可调电机电枢绕组电阻等。
电机实验机组主要由电机导轨、测功机系统、测速发电机和被试电机。
3.直流发电机实验所用设备:直流发电机(被试电机D13):PN=100W,UN=220VDC, nN=1600rpm, IN=0.8A;并励直流电动机(陪试电机D17):PN=185W,UN=220VDC,UfN=220VDC,nN=1600rpm,IfN<0.16A,IN=1.1A;电源控制屏(DT01A);220V直流稳压电源(DT02):可调范围:60V~240V;直流电机励磁电源(DT03):220V;直流电机调节电阻(DT04);励磁可调电阻、电枢可调电阻;数字直流表组件(DT10): 电压表:量程5V、20V、50V、100V、250V、500V;电流表:量程25mA、100mA、250mA、1A、2 5A、5A;微安表:量程200uA、2mA、20mA、200mA;数字直流电压电流表(DT12):电压量程0~250V;电流量程0~5A;直流电机调节电阻(DT04):电枢调节电阻:0~100Ω;励磁调节电阻:0~3000Ω;三相可调电阻一(DT20):900Ω/0.41A;三相可调电阻二(DT21):90Ω/1.3A;四、实验前准备:1.每组实验人数:2人合作完成实验预习,主要内容:1)仔细阅读《航空电机学》教材和《电机实验》指导书相关内容;2)每组完成一份预习报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 永磁式直流测速发电机
测速发电机是一种测量转速信号的元件,它将输入的机械转速变换为电压信号输出,且输出电压与转速成正比。
在自动控制系统中用作测量元件和反馈元件,用以测量转速或调节和稳定转速。
测速发电机有交直流两大类,交流测速发电机有异步和同步之分,直流测速发电机根据励磁方式不同,又可分为永磁式和他励磁式之分。
本处使用的是永磁式直流测速发电机。
一、实验方法
1
2、屏上挂件排列顺序
D44、D31
3、按图7-1接线。
图中直流电动机M选用DJ23作他励接法,TG选用导轨上的永磁式直流测速发电机,R f1选用D44上900Ω阻值,R1选用D44上180Ω阻值调至最大位置,R Z选用D44上10K/8W功率电阻,电流表A1、A2选用D31挂件上,开关S选用D44上的开关,并处于断开位置。
图7-1 直流测速发电机接线图
4、先接通励磁电源,调节电阻R f1使励磁电流达到最大的位置,接通电枢电源,电动机M运行后将R1调至最小。
调节电阻R f1、R1转速达2400r/min,然后逐渐使电机减速(电阻R1调至最大位置以后可降低电枢电源的输出电压来降低转速)。
记录对应的转速和输出电压。
共测取8~9组数据记录于表7-1中。
5、合上开关S,重复上面步骤,记录8-9组数据于表7-2中。
表7-2
二、实验报告
1、由:
得:
式中: R a ――电枢回路总电阻 R z ――负载电阻 E 0=C e Φn――电枢总电势 2、作出U=f(n)曲线。
三、思考题
1、直流测速发电机的误差主要由哪些因素造成?
2、在自动控制系统中主要起什么作用?
a
a a R Rz
U
E R I E U -=-=00n R R C R R E U z
a e z a +
=+=110φ。