概率论 常用统计分布

合集下载

概率论三大分布四大定理

概率论三大分布四大定理

概率论三大分布四大定理概率论是统计学的一个分支,它讨论和研究一些随机事件发生的概率。

它的研究对于进行统计分析和做出经验推断都非常重要。

概率论主要分为三大分布及四大定理。

首先来谈谈三大分布:正态分布、泊松分布和二项式分布。

正态分布又称高斯分布,是一种表征连续随机变量的概率分布,由其特殊的曲线形式,常可以清楚直观地反映出总体中随机变量分布的特点。

它具有平均值、标准差和期望值等参数,常用于描述一般性普适性状。

泊松分布也称为指数分布,这种分布可以用来描述一定时间内发生某类事件的次数。

它具有概率分布函数及期望值、方差等参数,主要应用于线性回归模型中,广泛应用于抽样检验、可靠性分析。

二项式分布是离散随机变量的概率分布,它可以描述试验重复完成某类事情的次数。

它反映的是一系列重复实验中成功次数的概率,具有概率函数及期望值、方差等参数,主要应用于网络设计中,广泛应用于效率分析及统计检验。

接下来让我们来谈谈四大定理:大数定律、中心极限定理、方差定理和期望定理。

大数定律规定,一系列的实验结果的均值越多越接近期望值,它解释了总体均值和样本均值的关系,是概率论中最重要的定理。

中心极限定理指出,在进行大量独立重复实验时,总体随机变量的分布接近正态分布,即随着实验次数的增加,实验结果越来越接近期望值。

方差定理规定,当做一系列实验时,总体方差应越来越小,而样本方差则越来越接近总体方差,这表明样本变量的方差可以代表总体方差。

期望定理定义了实验的期望值的关系,表明总体期望值可以由样本期望值准确估计。

概率论中的三大分布及四大定理是概率研究的基础知识,也是统计分析的基础。

掌握这些基本概念和定理,可以帮助我们理解和深入探讨更多有关概率和统计的主题,从而更好地应用于各种实际领域。

概率论与数理统计:c6_2 常用统计分布

概率论与数理统计:c6_2 常用统计分布

n
n
E(2 )
E
(
X
2 i
)
D( X i ) n,
i 1
i 1
2021/3/5
6
数理统计常用分布
n
D(χ2 )
D(
X
2 i
)
i 1
n
{E(
X
4 i
)
[E(
X
2 i
)]2 }
2n.
i 1
性质2(可加性)设Y1、Y2相互独立,且Y1~2(n1) , Y1~2(n2),则 Y1+Y2 ~ 2(n1+ n2) .
2
n
Xi2
~
2(n)
i 1
即随机变量 2 服从自由度为 n 的卡方分布.
例 统计量的分布 (之一)
2021/3/5
5
数理统计常用分布
2分布的三条性质: 性质1.(数字特征) 设 2 ~ 2(n) ,则有
E( 2 ) = n , D( 2 ) = 2n
证明:
2
n
X
2 i
i 1
且 X1,X2,…,Xn相互独立,Xi~N(0,1),
的样本, X , S 2分别是样本均值和样本方差,

(1)X与S 2相互独立;
(2) X ~ N (0,1); n
n1
(3) 2
S2
~
2(n
1);
(4) X ~ t(n 1)
Sn
2021/3/5
18
数理统计常用分布
证明(4) : 由(2) U X ~ N (0,1) n
由(3)
V
(n 1)S 2
2
~
2(n 1)

数学分布类型

数学分布类型

数学分布类型
1. 均匀分布
在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。

均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

2. 正态分布
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution)。

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

当μ = 0,σ = 1时的正态分布是标准正态分布。

3. t分布
在概率论和统计学中,t-分布(t-distribution)用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t分布曲线形态与n(确切地说与自由度df)大小有关。

与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。

概率论中几种常用重要分布

概率论中几种常用重要分布

概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。

其在实际中的应用。

关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。

它是一种“定性”类型的概念。

为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。

称这种变数为随机变数。

本章内将讨论取实值的这种变数—— 一维随机变数。

定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P Xx x=∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。

它是一个普通的函数。

成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。

更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。

称它的分布为离散型分布。

【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。

一个退化分布可以用一个常数a 来确定。

(2)X 可能取的值只有两个。

确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。

如果([])P X b p ==,那么,([])1P X a p ===-。

因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。

概率论与统计分布公式总结【已整理 可直接打印】

概率论与统计分布公式总结【已整理 可直接打印】

概率论与统计分布公式总结【已整理可直接打印】概率论与统计分布公式总结概率论和统计分布是数学中重要的分支。

本文将总结一些常见的概率论和统计分布公式,以便帮助读者更好地理解和应用这些知识。

一、概率论公式1. 概率计算公式- 条件概率公式:P(A|B) = P(A ∩ B) / P(B)- 乘法法则:P(A ∩ B) = P(A) * P(B|A)- 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)- 全概率公式:P(A) = ΣP(A|B) * P(B)2. 期望值和方差- 期望值公式:E(X) = Σx * P(X = x)- 方差公式:Var(X) = Σ(x - E(X))^2 * P(X = x)二、统计分布公式1. 正态分布- 概率密度函数:f(x) = (1 / (σ * √(2π))) * exp(-(x - μ)^2 / (2σ^2)) - 累积分布函数:F(x) = (1 / 2) * (1 + erf((x - μ) / (σ * √2)))2. 泊松分布- 概率质量函数:P(X = k) = (e^(-λ) * λ^k) / k!3. 指数分布- 概率密度函数:f(x) = λ * e^(-λx)4. 二项分布- 概率质量函数:P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)5. t分布- 概率密度函数:f(x) = (Γ((v + 1) / 2) / (√(v * π) * Γ(v / 2))) * (1 + (x^2 / v))^(-(v + 1) / 2)以上是一些常见的概率论和统计分布公式。

希望本文能对您对概率论和统计分布的研究和应用有所帮助。

如需更深入了解,请参考相关教材或咨询专业人士。

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。

因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。

关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。

(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。

例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。

在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。

为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。

2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。

(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。

定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。

概率论常见分布及应用

概率论常见分布及应用

概率论常见分布及应用概率论是数学中的一个分支学科,研究随机现象的规律以及概率的性质和应用。

概率论中有许多常见的分布,它们描述了各种不同的随机现象,并在实际应用中发挥重要作用。

本文将介绍一些常见的概率分布及其应用。

1. 均匀分布(Uniform Distribution)均匀分布是最简单的概率分布之一,表示随机变量在一段区间内取值的概率相等。

在实际应用中,均匀分布常被用于模拟随机抽样和产生随机数。

2. 正态分布(Normal Distribution)正态分布是自然界中非常常见的一种分布模式,也被称为高斯分布。

它具有钟形曲线状的密度函数,均值和方差完全决定了分布的形状。

正态分布在统计学中有广泛应用,常被用于描述连续型变量的分布,例如身高、体重、测试成绩等。

3. 泊松分布(Poisson Distribution)泊松分布是一种用于描述单位时间或空间内事件发生次数的概率分布。

它的特点是事件在时间或空间上是随机独立的,并且平均发生率是恒定的。

泊松分布广泛应用于计数模型,例如描述单位时间内电话呼叫数量、人员流量等。

4. 二项分布(Binomial Distribution)二项分布是一种离散概率分布,它描述的是在n次独立重复试验中成功次数的概率分布。

每次试验有两个可能结果,成功和失败,并且每次试验的成功概率相同。

二项分布常用于描述二分类问题的概率,例如抛硬币的正反面结果、产品合格率等。

5. 指数分布(Exponential Distribution)指数分布描述了连续型随机变量的等待时间或寿命的概率分布。

它的密度函数呈指数形式下降,适用于描述无记忆性的随机现象,例如设备故障间隔、客户到达间隔等。

6. 卡方分布(Chi-Square Distribution)卡方分布是一种常用的统计分布,它由平方和的形式得到。

卡方分布常用于检验两个分类变量之间的独立性,或者检验样本数据与理论模型之间的拟合度。

7. t分布(t-Distribution)t分布是一种广泛应用于小样本数据的概率分布。

概率论与数理统计常用的统计分布

概率论与数理统计常用的统计分布

n(
)2
X
)2
概率论与数理统计i 1
抽样分布定理 最重要的总体: X ~ N (, 2 )
如何由样本 X1, X2,...X n 推断 , 2 ?
分析:
对 , 2 的推断是通过构造统计量实现的
(1)如何构造“好”的统计量 (X1, X2,...Xn ) (2) g(X1, X2,...Xn ) 服从什么分布?
概率论与数理统计
定理 1 设总体 X ~ N (, 2 ) , X1, X2,...Xn 是取自 X 的一个样本, X 为该样本的样本均值,则有 (1) X ~ N(, 2 / n) (2)U X ~ N (0,1)
/ n
概率论与数理统计
本,则
设 X1, X2 ,, Xn 是来自总体 X ~ N(, 2 ) 的样
❖要求由样本构造一个以较大的概率包含真 实参数的一个范围或区间,这种带有概率 的区间称为置信区间,通过构造一个置信 区间对未知参数进行估计的方法
称为区间估计。
概率论与数理统计
设总体X的分布函数形式已知, 但它的一 个或多个参数为未知, 借助于总体X的一个样 本来估计总体未知参数的问题称为点估计问 题.
Review
F
设 U ~ 2 (n1), V ~ 2 (n2 ) ,且 U ,V 相互独立,令
F
U /n1 V /n2
称 F 服从自由度为 (n1, n2) 的 F 分布,记为 F ~ F (n1, n2).
F(n1, n2 )的上侧分位点记为F (n1, n2 )
O
F (n1 , n2)
抽样分布的途径: (1) 精确地求出抽样分布,并称相应的统
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.

概率论分布函数

概率论分布函数

概率论分布函数概率论分布函数是概率论中的重要概念,它描述了一个随机变量取值的概率分布情况。

在统计学和概率论中,有许多常见的概率分布函数,如正态分布、均匀分布、泊松分布等。

本文将针对这些常见的概率分布函数进行介绍和解释。

一、正态分布(Normal Distribution)正态分布是自然界中最常见的分布之一。

它以钟形曲线形式展现,其分布函数描述了随机变量在不同取值上的概率密度。

正态分布的特点是对称且呈现出标准差的影响,标准差越大,曲线越平缓。

正态分布广泛应用于自然科学、社会科学等领域,用于描述各种现象的分布情况。

二、均匀分布(Uniform Distribution)均匀分布是最简单的概率分布之一,它描述了随机变量在一定范围内各个取值出现的概率是相等的。

均匀分布的分布函数是一个常数函数,其特点是在一定范围内的取值概率是相等的。

均匀分布常用于模拟随机事件或生成随机数,广泛应用于数值计算和概率统计等领域。

三、泊松分布(Poisson Distribution)泊松分布是用于描述单位时间(或空间)内随机事件发生次数的概率分布。

泊松分布的分布函数可以表示在一段时间或空间内发生某种事件的次数的概率。

泊松分布的特点是具有独立性和稀有性,适用于描述稀有事件的发生情况,如电话交换机接听电话的次数、汽车在某路段通过的次数等。

四、指数分布(Exponential Distribution)指数分布是一种连续概率分布函数,描述了随机事件发生的时间间隔的概率分布。

指数分布的分布函数具有单峰性,随着时间的推移,事件发生的概率逐渐减小。

指数分布常用于描述随机事件的间隔时间,如人们等待公交车的时间、网络传输数据包到达的时间等。

五、二项分布(Binomial Distribution)二项分布是描述在一次试验中成功次数的概率分布函数。

二项分布的分布函数描述了在一定次数的独立重复试验中成功次数的概率分布情况。

二项分布的特点是具有两个参数,成功概率和试验次数,常用于描述二元随机事件的发生情况,如硬币正反面的次数、投篮命中的次数等。

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

统计分布公式数据

统计分布公式数据

统计分布公式数据统计分布是描述一组数据的集中趋势和分散程度的重要工具,它是对大量随机现象的抽象和概括。

在数据分析中,我们常常会遇到各种各样的统计分布,如正态分布、泊松分布、卡方分布等。

这些分布都有其特定的公式和特性,可以帮助我们更好地理解和解释数据。

一、正态分布正态分布,又称为高斯分布,是最常见的一种连续型概率分布。

它的特点是所有的模式值都集中在均值附近,且离均值越远,概率密度越小。

正态分布的公式如下:f(x) = 1/σ√(2π) * e^[-(x-μ)^2 / (2σ^2)]其中,μ为均值,σ为标准差,e为自然对数的底数,约为2.71828。

这个公式描述了任意一个x值出现的概率。

二、泊松分布泊松分布是一种离散型概率分布,通常用于描述单位时间内随机事件发生的次数。

例如,电话交换机接到呼叫的次数、汽车通过路口的次数等。

泊松分布的公式如下:P(X=k) = (λ^k * e^-λ) / k!其中,λ为平均发生率,k为发生的次数,!表示阶乘。

这个公式描述了在给定时间内,事件发生k次的概率。

三、卡方分布卡方分布是一种连续型概率分布,主要用于检验样本是否符合某种理论分布,或者比较两个样本的差异。

卡方分布的自由度(df)等于构成卡方统计量的独立变量的个数减1。

卡方分布的公式如下:f(x) = (1/2^(df/2) * Γ(df/2)) / √(x) * e^(-x/2)其中,Γ为伽马函数,x为卡方统计量的值,df为自由度。

这个公式描述了在给定自由度下,卡方统计量取某个值的概率。

四、t分布t分布是一种连续型概率分布,主要用于小样本的均值检验和方差分析。

t分布的形状取决于自由度,当自由度趋于无穷时,t分布接近正态分布。

t分布的公式如下:f(t) = Γ((ν+1)/2) / (√(νπ) * Γ(ν/2)) * (1+t^2/ν)^(-(ν+1)/2)其中,t为t统计量的值,ν为自由度。

这个公式描述了在给定自由度下,t统计量取某个值的概率。

概率论八大分布的期望和方差

概率论八大分布的期望和方差

概率论八大分布的期望和方差
概率论是数学中一个很重要的分支,它通过概率来研究不确定性事件发生的规律。

其中,概率论8大分布描述了多次实验和事件中,可能出现的概率位置及其期望等统计量,被广泛用于对数据的拟合和预测。

首先说明的是正态分布,即平均数和方差成正比的分布,它的期望为μ,标准差为σ,因此它的方差为σ²。

接下来介绍的是指数分布,它是描述数据发生在某一时刻及其之前的分布,其期望是1/λ,方差也为1/λ²,其中λ>0。

三角分布是描述一个实验发生三次时的分布,其期望是a+b+c/3,方差为abcb/36。

威布尔分布的期望是α/(1+α),方差为α/((1+α)²(1+2α))。

泊松分布是按概率论中常用的概率模型,其期望是λ,方差也为λ。

F比例的期望依赖于自由度的不同,给定两个自由度为m和n的差异,它的期望为m/n,方差为2m²n²/((m+n)²(m+n+2))。

相间分布是另一种概率模型,它描述了一个试验出现在某个位置的概率,它的期望为μ+σ/2,及其方差为(σ/2)²。

最后要介绍的是Gamma分布,它由α和β决定,其期望为αβ,方差为
αβ²。

以上是概率论8种分布的期望和方差。

科学家们利用这些概念,处理概率性事件作出合理的决策,从而取得成果。

从长远来看,熟悉概率论8大分布的期望和方差,对于科学家精确处理概率性问题有着至关重要的作用。

概率论——常用分布

概率论——常用分布

概率论——常⽤分布伯努利试验 伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独⽴地进⾏的⼀种随机试验,其特点是该随机试验只有两种可能结果:发⽣或者不发⽣。

我们假设该项试验独⽴重复地进⾏了 n 次,那么就称这⼀系列重复独⽴的随机试验为 n 重伯努利试验,或称为伯努利概型。

单个伯努利试验是没有多⼤意义的,然⽽,当我们反复进⾏伯努利试验,去观察这些试验有多少是成功的,多少是失败的,事情就变得有意义了,这些累计记录包含了很多潜在的⾮常有⽤的信息。

如果⽆穷随机变量序列 X1,X2,… 是独⽴同分布 (i.i.d.) 的,⽽且每个随机变量 X i 都服从参数为 p 的伯努利分布, 那么 随机变量 X1,X2,… 就形成参数为 p 的⼀系列伯努利试验。

同样,如果 n 个随机变量 X1,X2,…,X n 独⽴同分布,并且都服从参数为 p 的伯努利分布,则随机变量 X1,X2,…,X n 形成参数为 p 的 n 重伯努利试验。

下⾯举⼏个例⼦加以说明,假定重复抛掷⼀枚均匀硬币,如果在第 i 次抛掷中出现正⾯,令 X i=1 ;如果出现反⾯X i=0,那么,随机变量 X1,X2,… 就形成参数为 p=12 的⼀系列伯努利试验,同样,假定由⼀个特定机器⽣产的零件中 10% 是有缺陷的,随机抽取n 个进⾏观测,如果第 1 个零件有缺陷,令 X i=1 ; 如果没有缺陷,令 X i=0,i=1,2,…,n , 那么,随机变量 X1,X2,…,X n 就形成参数为 p=110 的 n 重伯努利试验。

离散分布⼆项分布 定义:在 n 次独⽴重复的伯努利试验中,设每次试验中事件 A 发⽣的概率为 p。

⽤ X 表⽰ n 重伯努利试验中事件 A 发⽣的次数,则 X 的可能取值为 0,1,…,n ,且对每⼀个 k(0≤k≤n),事件 X=k 即为 “ n 次试验中事件 A 恰好发⽣ k 次”,随机变量 X 的离散概率分布即为⼆项分布(Binomial Distribution)。

概率论与数理统计第四章_几种重要的分布

概率论与数理统计第四章_几种重要的分布
用贝努公式计算ξ的分布律下
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0

概率论与数理统计:常用统计分布

概率论与数理统计:常用统计分布

0,
x 0, 其它.
F-分布的性质 由F分布定义可得:
F
~
F(n1, n2 )
1 F
~
F(n2, n1)
五、F-分布与t分布的关系
定理3 若X~t(n),则Y=X2~F(1,n)。
证明:X~t(n),X的分布密度p(x)= n 1 2 nπ n 2
1
x2 n
n 1 2
Y=X2的分布函数F(y) =P{Y<y}=P{X<y}。当y≤0时,FY(y)=0,
② X 与 S2相互独立。
二、χ2-分布(卡方分布)
定义 设X1,X2,…,Xn是来自标准正态总体 N(0,1)的样本,称统计量
2
X
2 1
X
2 2
X
2 n
服从自由度为n的 χ2-分布 ,记为 2 ~ 2( n ).
2 (n)-分布的概率密度为
f
(
y
)
2n /
1
2 (
n
/
2
)
y
n 1
2e
服从正态分布,且
i 1
i 1
一、正态分布
定理2 若( X1, X 2 ,, X n )是来自总体X ~ N(,2) 的一个
样本,X 为样本均值,则 (1) X ~ N (, 2 ) ,(由上述结论可知:X 的期望与 X 的期望相同,而 X
n
的方差却比 X 的方差小的多,即 X 的取值将更向 集中.)
p(y)=0;当y>0时,FY(y) =P{-

y
y
n
n 2 1 n
Y=X的分布密度p(y)= 2,•
1 n
2 2
<X<

概率论常见的几种分布

概率论常见的几种分布

概率论常见的几种分布常见的概率论分布有:均匀分布、正态分布、泊松分布和指数分布。

1. 均匀分布均匀分布是指在一段区间内,各个取值的概率是相等的。

比如在一个骰子的例子中,每个面出现的概率是相等的,为1/6。

均匀分布在实际应用中常用于随机数生成、样本抽取等场景。

2. 正态分布正态分布又被称为高斯分布,是最常见的概率分布之一。

正态分布的特点是呈钟形曲线,数据集中在均值周围,并且具有对称性。

正态分布在自然界中广泛存在,比如人的身高、体重等都近似服从正态分布。

在统计学和数据分析中,正态分布的应用非常广泛,例如在建模、假设检验和置信区间估计等方面。

3. 泊松分布泊松分布是一种离散概率分布,描述了在一段时间或空间内,某事件发生的次数的概率分布。

泊松分布的特点是事件之间是独立的,并且事件发生的平均速率是恒定的。

泊松分布在实际应用中常用于描述稀有事件的发生概率,比如电话呼叫中心的接听次数、交通事故的发生次数等。

4. 指数分布指数分布是描述连续随机变量的概率分布,用于描述时间间隔的概率分布。

指数分布的特点是事件之间是独立的,并且事件发生的速率是恒定的。

指数分布在实际应用中常用于描述如等待时间、寿命等连续性事件的概率分布。

这四种分布在概率论和统计学中都有广泛的应用。

它们分别适用于不同的场景和问题,能够帮助人们理解和分析数据。

在实际应用中,我们常常需要通过对数据进行建模和分析来确定数据的分布类型,从而更好地理解数据的特征和规律。

除了这四种常见的分布外,还有其他许多概率分布,例如二项分布、伽玛分布、贝塔分布等。

每种分布都有其独特的特点和应用领域。

在实际应用中,选择合适的分布模型对数据进行建模和分析是非常重要的,可以帮助我们更好地理解数据,做出准确的推断和预测。

概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。

每种分布都有其特点和应用场景,在实际问题中选择合适的分布模型对数据进行建模和分析是非常重要的。

通过对数据的分布进行研究,我们能够更好地理解数据的规律和特征,为决策提供科学依据。

概率统计频率分布

概率统计频率分布

概率统计频率分布【概率统计频率分布】概率统计是数学中重要的概念之一,用于研究随机事件出现的规律性。

概率统计的核心是频率分布,即某个事件发生的次数的统计结果。

本文将详细介绍概率统计的频率分布。

概率统计的频率分布指的是统计一个事件发生的次数,然后将这些次数进行分类统计,得到各个次数所占的比例。

这样就可以了解事件发生的规律性,并可以对未来事件的发生进行预测。

在概率统计中,常用的频率分布有离散分布和连续分布两种类型。

一、离散分布离散分布是指事件发生的结果是离散的、有限的,且每个结果之间是互斥的。

常见的离散分布有伯努利分布、二项分布和泊松分布等。

1. 伯努利分布:用于描述一次试验只有两个可能结果的情况,如抛硬币的结果只有正面和反面两种可能。

伯努利分布只有一个参数p,表示事件发生的概率。

2. 二项分布:用于描述n次独立的伯努利试验中事件发生k次的概率分布,其中n表示试验次数,k表示事件发生的次数。

二项分布有两个参数n和p,分别表示试验次数和事件发生的概率。

3. 泊松分布:用于描述在一定时间或空间内,事件发生的次数的概率分布。

泊松分布有一个参数λ,表示单位时间或单位空间内事件发生的平均次数。

二、连续分布连续分布是指事件发生的结果是连续的,不是有限个的点。

常见的连续分布有正态分布、指数分布和均匀分布等。

1. 正态分布:也称为高斯分布,是最常见的连续分布之一。

其概率密度函数呈钟形曲线,对称以均值为中心。

正态分布具有两个参数,均值μ和方差σ²。

2. 指数分布:用于描述随机事件之间的间隔时间,如等车的等待时间、设备的寿命等。

指数分布具有一个参数λ,表示单位时间内事件发生的平均次数。

3. 均匀分布:也称为矩形分布,是最简单的连续分布之一。

其概率密度函数在一个区间内是常数,区间外为零。

均匀分布具有两个参数,最小值a和最大值b。

概率统计的频率分布在现实生活中有广泛的应用,例如用于银行窗口的等待时间、产品的寿命、销售额的分布等。

概率论五大分布

概率论五大分布

概率论五大分布
概率论五大分布指的是常见的五种概率分布,分别是二项分布、泊松分布、正态分布、指数分布和卡方分布。

二项分布是二项试验中成功次数的概率分布,其中试验次数有限,每次试验结果只有成功和失败两种可能,且各次试验结果独立。

例如,抛10次硬币,正面朝上的次数就是一个二项分布。

泊松分布是描述单位时间内事件发生次数的概率分布,例如单位时间内到达某个地方的车辆数、单位时间内电话接通的数量等。

正态分布是最为常见的概率分布之一,它的概率密度函数呈钟形曲线,符合中心极限定理。

正态分布被广泛应用于自然、社会、经济等各个领域,如身高、体重、成绩等。

指数分布是连续型概率分布的一种,常用于描述某些随机事件的时间间隔,如等待某人回电话的时间、等待下一辆公交车的时间等。

卡方分布是一种概率分布,广泛应用于统计学中的假设检验和置信区间的推导。

它的特点是非负、右偏、单峰,形状受自由度的影响。

以上五种分布在实际应用中都有着重要的作用,掌握它们的特点和应用场景,能够更好地理解和分析各种相关问题。

- 1 -。

lambda分布概率统计中的一种分布

lambda分布概率统计中的一种分布

lambda分布概率统计中的一种分布
lambda分布是一种常用的概率统计分布。

它是以希腊字母λ命名的,用来表示事件发生的平均速率或频率。

lambda分布通常用于描述事件的到达率或等待时间。

lambda分布在统计学和概率论中广泛应用,尤其用于连续型随机变量。

它的概率密度函数可以描述事件发生的概率分布情况。

lambda分布具有一些特征,如具有无记忆性、单峰分布、非负值等。

利用lambda分布,可以进行事件的概率分析和数值计算,从而更好地理解和预测事件的发生和延迟。

lambda分布在实际应用中有着广泛的应用,例如在排队论中,可以用lambda分布来模拟事件的到达情况;在可靠性工程中,lambda分布可以用来估计和预测设备的故障率;在金融领域中,lambda分布可以用来描述股票价格的变动等。

总之,lambda分布是一种重要的概率统计分布,它在许多领域中都有广泛的应用,可以帮助我们更好地理解和分析事件的发生和延迟的概率特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由中心极限定理得
n
lim P {
n
2 n n
2n
x}
x
lim P{ i 1
n
2 X i n
n
x}


1 2
t2 e 2 dt
即 2分布的极限分布是正态 分布,也即当 n
很大时,
2 n n
2n
2 服从N (0,1), 进而 n N ( n,2n).
Y12
Y22
~ 2 ( 2)
则C1 1 2 , C2 1 4 .
2. t 分布 历史上,正态分布由于其广泛的应用背景 和良好的性质,曾一度被看作是“万能分布”, 在这样的背景下,十九世纪初英国一位年轻 的酿酒化学技师Cosset. WS, 他在酒厂从事试验 数据分析工作,对数据误差有着大量感性的认 识,我们知道在总体均值和方差已知情况下, 样本均值的分布将随样本量 增大而接近正态分布,
n
x
1 2

e dt .
t2
2
2 证 由假设和定义5.6, n X i2 , 其中X 1 , X 2 ,, X n i 1
2 2 2 独立且每个X i ~ N (0,1),因而X1 , X2 ,, X n 独立同分布,

E( X i2 ) 1, D( X i2 ) 2 (i 1,2,, n)
(3) T的数字特征
E (T ) 0,
n D(T ) n2
( n 2).
例3 设总体X和Y相互独立, 且都服从N(0,9)
X 1 , X 2 ,, X 9和Y1 ,Y2 ,,Y9来自总体X ,Y的样本,
求统计量T的分布,其中
T Xi /
i 1 9 2 Y i. i 1 9
1. 2 分布 正态分布是自然界中最常见的一类概率 分布,例如测量的误差;人的生理尺寸:身 高,体重等都近似服从正态分布.常见的问题 是关于这些正态随机变量的平方以及平方和 的概率分布问题. 例如在统计物理中,若气体分子速度是随 机向量 V ( X ,Y , Z ) 各分量相互独立,且均服 从 N (0,1.5), 要求该分子运动动能 1 S m( X 2 Y 2 Z 2 ) 2 的分布规律.
n 1 根据 分布的可加性知 X i ~ , 2 2 i 1
2 n n 2
.
(3) 分布的性质
2
性质1 ( 分布的可加性) 设 Y1 ~ 2 ( n1 ), Y2 ~ 2 ( n2 ), 并且 Y1 , Y2 独
2
立, 则 Y1 Y2 ~ 2 ( n1 n2 ).
(1) 定义 定义5.7 设 X ~ N (0, 1), Y ~ 2 ( n), 且 X , Y
独立, 则称随机变量
X T Y /n 服从自由度为n的 t 分布, 记为 T ~ t (n).
t 分布又称学生氏 (Student)分布.
( 2) t ( n) 分布的概率密度函数为 n 1 n 1 2 t 2 2 h( t ) 1 , t n n πn y 2
2 2
又因为 X i ~ N (0, 1), 由定义 X i2 ~ 2 (1),
1 1 即 X ~ , , i 1, 2, , n. 2 2
2 i
因为X1 , X 2 ,, X n相互独立,
2 2 2 所以 X 1 , X2 , , X n 也相互独立,
2 i 1
n
( E( Xi2 ) 1 )
n n 2 2 2 D ( n ) D X i D ( X i ) 2 n. i 1 i 1
2 ~ 2 ( n), 则对任意x , 有 性质3 设 n
lim P{
n
2 n n
2n
x}
但是Cosset在实验中遇到的样本容量仅有5~6 个,在其中他发现实际数据的分布情况与 正态分布有着较大的差异. y Cosset 样本曲线
正态曲线
O
x
于是Cosset怀疑存在一个不属于正态的 其他分布,通过学习终于得到了新的密度曲线, 并在1908年以“Student”笔名发表了此项结果,
后人称此分布为“t 分布”或“学生氏”分布.
(此性质可以推广到多个随机变量的情形)
设 Yi ~ 2 ( ni ), 并且 Yi ( i 1, 2,, m ) 相互
独立, 则 Yi ~ 2 ( n1 n2 nm ).
i 1 m
性质2 ( 分布的数学期望和方差)
2
2 2 2 若 n ~ 2 ( n), 则 E ( n ) n, D ( n ) 2 n.

9X
Yi
i 1
9
~ t ( 9)2源自即T Xi
i 1 9
9
~ t (9).
2
Yi
i 1
3. F分布
(1) 定义 定义5.8 设X ~ 2 ( n1 ) ,Y ~ 2 ( n2 ), 且X ,Y相互独立,
则称随机变量
X / n1 F Y / n2
服从自由度为 ( n1 , n2 )的F分布,记为

1) N (0,1):u1 u
x O

x


x
2) t ( n) : t1 ( n) t ( n)
1) 正态分布的上侧分位数u:
设X服从标准正态分布 N (0,1), 则其上侧
分位数u 满足
1 P { X u } 2π
x2 e 2 dx u
第二节
常用统计分布
一、常见分布 二、概率分布 的分位数
下 回

一、常见分布
在实际中我们往往会遇到这样的问题,要求有 关随机变量的函数的概率分布. 例如在无线电接收中,某时刻接收到的信号 是一个随机变量X ,若我们把 这个信号通过平方示波器,则 输出的信号为 Y X2 通常需要求出Y的概率分布. 本节介绍一些最常见的统计分布.
F ~ F ( n1 , n2 ).
( 2) F ( n1 , n2 )分布的概率密度为
n1 n1 n1 2 2 1 n1 n2 y 2 n2 , y0 n1 n2 p( y ) 2 n n n y 1 2 1 1 2 2 n2 其它 0,
若存在x , 使
P{ X x }
则称x 为X的分布的上侧 分位数.
2. 常用分布的上侧分位数记号 分布 N(0,1)
2 ( n ) t( n )
2 ( n)
F(n1,n2)
记号
u
t (n)
F ( n1 , n2 )
3. 查表法 (1) 若X的分布密度关于y轴对称,则 y x1 x 1 特例:
n2 2
3) 设F ~ F ( n1 , n2 ), 则当n2 4时, 对任意x有
x F E(F ) 1 lim P{ x} 2π D( F ) n1
2 t e 2 dt
这说明F分布极限分布也是正态分布.
例4 已知 T ~ t ( n), 试证 T 2 ~ F (1, n). 证 因为 T ~ t ( n), 由定义5.7有
X ~ N (0,1) 解 从抽样分布知
而 Yi ~ N (0,9), 故Yi / 3 ~ N (0,1),
从而
Yi 2 2 ( ) ~ (1), i 1,2,,9. 3
由可加性知
Yi 2 2 ( 3 ) ~ ( 9) i 1
X 1 2 Yi 9 i 1
9
9
于是由t 的定义有
自由度为 n的 2分布.
自由度:
2 2 2 2 指 n X1 X2 X n 中右端包含独立
变量的个数.
2 ( 2) χ n 分布的概率分布
2 定理5.4 n 分布的概率密度:
n x 1 1 2 2 x e x0 n 2 n p( x ) 2 ( ) 2 其它 0 1 1 证 因为 2 (1) 分布即为 , 分布,
( 3) F分布有以下性质 1) 若F ~ F ( n1 , n2 ), 则 1 ~ F ( n2 , n1 ). F n2 2) E ( F ) , ( n2 2),
n2 2) D( F ) , ( n2 4) 2 n1 ( n2 2) ( n2 4)
2 2n2 ( n1
t分布的概率密度曲线如 图. 显然图形是关于 t 0 对称.
当n充分大时,其图形
n n2 n9 n2
类似于标准正态变量
概率密度的图形 .
O
x
1 因为lim h( t ) e n 2π
t2 2
,
所以当n足够大时t分布近似于N (0,1)分布,
但对于较小的n, t分布与N (0,1)分布相差很大.
同理
X 3 X 4 X 5 X 6 ~ N (0,4),
X3 X4 X5 X6 则 Y2 ~ N (0,1) 4
X3 X4 X5 X6 X1 X 2 又 Y1 与 Y2 4 2
相互独立.
X1 X 2 2 X3 X4 X5 X6 2 所以 ( ) ( ) 2 4
例1 设X ~ N (0,4),Y ~ 2 ( 2),且X ,Y相互独立,
X2 试求解 Y 的概率分布. 4
解 因为X ~ N (0,4)且 X ,Y 相互独立,所以 X ~ N (0,1) 2 2 X 且 与Y相互独立 4 2 X 又因为 ~ χ 2 (1),由可加性得 4 X2 得 Y ~ χ 2 ( 3). 4
相关文档
最新文档